Attention Mechanism in Neural Networks

Encoder-Decoder Models

Encoder-Decoder with Attention

Encoder-Decoder with Attention

Attention Mechanisms

Computing Attention Weights

Three ways of attention

Encoder-Decoder Attention

MaskedDecoder Self-Attention

Transformer

Transformers

Transformers

Attention Visualization

(a) Step 1

John went to the hallway.	John went to the hallway .
John went back to the bathroom .	John went back to the bathroom .
John grabbed the milk there .	John grabbed the milk there .
Sandra went back to the office .	Sandra went back to the office .
Sandra journeyed to the kitchen .	Sandra journeyed to the kitchen .
Sandra got the apple there .	Sandra got the apple there .
Sandra dropped the apple there .	Sandra dropped the apple there .
John dropped the milk .	John dropped the milk .
Where is the milk?	Where is the milk?

(b) Step 2		
John went to the hallway .	John went to the hallway .	
John went back to the bathroom .	John went back to the bathroom .	
John grabbed the milk there .	John grabbed the milk there .	
Sandra went back to the office .	Sandra went back to the office .	
Sandra journeyed to the kitchen .	Sandra journeyed to the kitchen .	
Sandra got the apple there .	Sandra got the apple there .	
Sandra dropped the apple there .	Sandra dropped the apple there .	
John dropped the milk .	John dropped the milk .	
Where is the milk?	Where is the milk?	

(c) Step 3 John went to the hallway. John went to the hallway . John went back to the bathroom . John went back to the bathroom . John grabbed the milk there . John grabbed the milk there . Sandra went back to the office . Sandra went back to the office . Sandra journeyed to the kitchen . Sandra journeyed to the kitchen . Sandra got the apple there . Sandra got the apple there . Sandra dropped the apple there . Sandra dropped the apple there . John dropped the milk . John dropped the milk . Where is the milk? Where is the milk?

(d) Step 4

Related Papers

- Attention for Machine Translation
 - <u>https://nlp.stanford.edu/pubs/emnlp15_attn.pdf</u>
- Transformer
 - <u>https://arxiv.org/abs/1706.03762</u>
- Universal Transformer
 - <u>https://arxiv.org/abs/1807.03819</u>
- Transformer-XL
 - <u>https://arxiv.org/abs/1901.02860</u>

Useful Resources

- Source Codes:
 - <u>https://github.com/tensorflow/tensor2tensor</u>
 - <u>https://github.com/tensorflow/models/tree/master/official/transformer/model</u>
- Visualization of attention heads for BERT:
 - <u>https://github.com/jessevig/bertviz</u>
- Nice blogposts:
 - <u>https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html</u>
 - http://jalammar.github.io/illustrated-transformer/
 - <u>http://nlp.seas.harvard.edu/2018/04/03/attention.html</u>
 - <u>http://jalammar.github.io/illustrated-bert/</u>
- Blogpost comparing Transformers with Capsule Networks:
 - https://staff.fnwi.uva.nl/s.abnar/?p=108

Bidirectional Encoder Representations from Transformers (BERT)

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova Google Al Language

Presented by: Shantanu Chandra

Agenda

- Recap Traditional Language Models
- Limitations
- BERT to the rescue!
- BERT Architecture and Training
- BERT Results and Discussion
- Summary
- Future work

Traditional Seq2Seq - recap

Traditional Seq2Seq

ELMo

- Bi-directional LSTM
- Lower layers Syntactic
- Higher layers Semantic
- Feature based use feed embeddings to model
- Dependency on task-customized models

OpenAl GPT

Multi-layer Transformer architecture

(not shallow concat of independently trained LSTMs)

Fine tune usage - fine tune the same base model for all end tasks

Attention applied left-to-right, hence unidirectional!

BERT to the rescue!

- B Bidirectional
- ► E Encoder
- R- Representation
- T- Transformers

- Bidirectional
 - naturally bidirectional in all the layers. (ELMo is "shallow bidirectional")
- General purpose representations: plug-and-play in real sense
- Transformer Architecture (new paradigm!)
- Novel training methods not one, but TWO!!

BERT in numbers

- Pushed the GLUE benchmark to 80.4% (7.6% absolute improvement).
- Pushed MultiNLI accuracy to 86.7% (5.6% absolute improvement).
- Pushed the SQuAD v1.1 question-answering Test F1 to 93.2 (1.5 absolute improvement), outperforming human performance by 2.0.

BERT in numbers

- BERT Base shattered OpenAI GPT
- BERT Large beat BERT-Base

BERTBASE

BERTLARGE

BERT to the rescue!

- B Bidirectional
- ► E Encoder
- R- Representation
- T- Transformers

B - **Bidirectional**

Actually non-directional

Context is everything

- No Context (Word2Vec)
 - River [bank]
 - [Bank] deposit
- Left-to-right context
 - I made a [bank] deposit = I made a [....]
- Bi-directional context
 - I made a [bank] deposit = I made a [....] deposit

BERT to the rescue!

- B Bidirectional
- ► E Encoder
- R- Representation
- T- Transformers

Transformer Block

Transformer: Types of Attention

Encoder-Decoder Attention

Encoder-Self Attention

Decoder - Self Attention

Transformer: in action

Source: Google Al Blog

Transformer: Self-Attention

Source: <u>Tensor2Tensor</u>

Transformer: Self-Attention

Transformer: Self-Attention

BERT - Architecture

- Transformers Encoder blocks only
- No weight sharing
- REMEMBER attention mechanism!
- NOTE residual connections

BERT - Architecture

BERT - Input

- Input = (inp_len × emb_dim)
- Output = (inp_len × emb_dim)
- NOTE: padding for equal length of batch

Ζ	=
L	=

	<	_	d_{emb_dim}	_	>
Helle	0 /123.4	0.32		94	32
,	83	34		77	19
how	0.2	50		33	30
are	289	432.98		150	92
you	80	46		23	32
?	\setminus 41	21		74	$_{33}/$

BERT - Positional encoding

- Non-sequential input
- Hence Positional Encoding
- Non-learned, pre-determined sinusoidal functions [-1,1]
- Thus, same word in different position has different embedding in the SAME sentence.

BERT - Positional encoding

>

BERT - Model Input

 \rightarrow X = Z + P

Input to the encoder block

Input	[CLS]	my	[MASK] dog	is	cute	[SEP]	he	[MASK]	play	##ing	[SEP]
Token Embeddings	E _[CLS]	E _{my}	E _[MASK]	E _{is}	E _{cute}	E _[SEP]	E _{he}	E	E _{play}	E _{##ing}	E _[SEP]
	+	+	+	+	+	+	+	+	+	+	+
Sentence Embedding	EA	E _A	E _A	E _A	E _A	E _A	E _B	E _B	E _B	E _B	E _B
	+	+	+	+	+	+	+	+	+	+	+
Transformer Positional Embedding	E ₀	E ₁	E ₂	E ₃	E ₄	E ₅	E ₆	E ₇	E ₈	E ₉	E ₁₀

BERT - Encoder Block

- Multi-head Attention (h_i) modules:
 - Multiple times,
 - ..with different weight matrices
 - ..then concat all and pass through linear

BERT - Encoder Block

- Multi-head Attention (h_i) modules:
 - Multiple times,
 - ...with different weight matrices
 - ...finally concat all and pass through linear

Hellohowareyou $4.30 * 10^{-08}$ Hello $(72.40 * 10^{-06})$ $1.23 * 10^{-21}$ $6.51 * 10^{-40}$ $2.62 * 10^{-22}$ $9.99 * 10^{-01}$ $1.00 * 10^{+00}$ $7.51 * 10^{-30}$ $9.91 * 10^{-13}$ $8.15 * 10^{-69}$ $1.09 * 10^{-30}$ $1.54 * 10^{-17}$, $3.12 * 10^{-70}$ $2.51 * 10^{-51}$ $2.72 * 10^{-21}$ $8.03 * 10^{-09}$ $1.29 * 10^{-07}$ $9.99 * 10^{-01}$ how $5.54 * 10^{-05}$ $1.98 * 10^{-02}$ $2.77 * 10^{-82}$ $2.58 * 10^{-08}$ $2.47 * 10^{-72}$ $9.80 * 10^{-01}$ are $1.21 * 10^{-09}$ $3.64 * 10^{-28}$ $2.67 * 10^{-05}$ $3.17 * 10^{-76}$ $9.99 * 10^{-01}$ $9.75 * 10^{-07}$ you $1.05 * 10^{-35}$ $2.38 * 10^{-15}$ $8.59 * 10^{-47}$ $9.99 * 10^{-01}$ $4.21 * 10^{-27}$ $4.07 * 10^{-06}$?

BERT - Encoder Block

Feed Forward module:

Add, norm, dropout layer

BERT - Training Tasks

- Novel method 1: Masked Language model
 - ► 15% input words *masked*.
 - 80% replaced by <MASK>
 - Eg: "My dog is <u><MASK></u>"
 - 10% replaced with random words
 - Eg: "My dog is <u>hotdog</u>"
 - 10% left intact
 - Eg: "My dog is <u>hairy</u>"

- Novel method 1: Masked Language model
 - Network trained not to predict all the context words, but only the masked tokens.

- Design Decision:
 - Longer training time than other context predicting models(?)
 - Not really due to performance boost from attention module

- Novel method 1: Masked Language model
 - Design Decision :
 - Why replace with random words?
 - Would have only learned a contextual representation of '<MASK>'
 - Why not change/mask words for 1.5% of the time?
 - Bias the representation towards actual observed token

- Novel method 2: Next sentence prediction
 - Feed pair of sentences separated by [SEP]
 - 50% times the following sentence
 - 50% times random sentence

Label = NotNext

Novel method 2: Next sentence prediction

► WHY?

- To make representation versatile (eg, sentence level tasks)
- Shows it helps

BookCorpus - 800M words

- English Wikipedia 2,500M words The ENTIRE WikiPedia!!
- Tokens tokenized using 37,000 WordPiece tokens

BERT - **Procedure**

 Random samples in batches of two (50% of the time adjacent to each other)

- ► ...such that combined length \leq 512 tokens
- 15% masked from each sequence

BERT - Procedure

- Batch size = 256 sequences
- Each sequence of length 512 tokens
- ► Hence $256 \times 512 = 128,000$ tokens per batch
- ▶ NOTE: sequences can have more than 2 sentences.

The loss was calculated as:

$\mu_{masked_LM} + \mu_{sent_pred_likelihood}$

BERT - Experiments

- Hyperparameters:
 - **Batch-size:** 16,32
 - Learning rate(ADAM): 5e-5, 3e-5, 2e-5
 - **Number of epochs:** 3,4
 - GELU activation

BERT - Experiments (GLUE)

Evaluation tasks:

- ► MNLI ► SST-2
- ► QQP ► CoLA
- ► QNLI ► STS-B
- ► MRPC ► RTE
- WNLI

BERT - Experiments (GLUE)

Model used:

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

BERT - Results(GLUE)

Glue Scores

Pre-OpenAl ELMo OpenAl GPT BERT(B) BERT(L)

BERT - Experiments (SQuAD)

• Input Question:

Where do water droplets collide with ice crystals to form precipitation?

• Input Paragraph:

... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. ...

• Output Answer:

within a cloud

BERT - Experiments (SQuAD)

Model used:

BERT - Experiments (SQuAD)

> S: start vector of answer span

▶ T_i : Output at step 'i'

$$P_i = \frac{e^{S \cdot T_i}}{\sum_j e^{S \cdot T_j}}$$

Same for stop

BERT - Results(SQuAD)

System	D	ev	Test		
s. 1112.	EM	F1	EM	F1	
Leaderboard (Oct	8th, 2	(018)			
Human	_ '	-	82.3	91.2	
#1 Ensemble - nlnet	-	-	86.0	91.7	
#2 Ensemble - QANet	-	-	84.5	90.5	
#1 Single - nlnet	-	-	83.5	90.1	
#2 Single - QANet	-	-	82.5	89.3	
Publishe	ed				
BiDAF+ELMo (Single)	-	85.8	-	-	
R.M. Reader (Single)	<mark>78</mark> 9	863	79.5	86.6	
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5	
- Ours				2	
BERT _{BASE} (Single)	80.8	88.5	94 A	-	
BERT _{LARGE} (Single)	84.1	90.9	-	-	
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-	
BERTLARGE (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8	
BERTLARGE (Ens.+TriviaQA)	86.2	92.2	87.4	93.2	

Table 2: SQuAD results. The BERT ensemble is 7x systems which use different pre-training checkpoints and fine-tuning seeds.

BERT - Results(Named Entity Recognition)

System	Dev F1	Test F1
ELMo+BiLSTM+CRF	95.7	92.2
CVT+Multi (Clark et al., 2018)	-	92.6
BERT _{BASE}	96.4	92.4
BERT _{LARGE}	96.6	92.8

BERT - Results(SWAG)

A girl is going across a set of monkey bars. She (i) jumps up across the monkey bars. (ii) struggles onto the bars to grab her head. (iii) gets to the end and stands on a wooden plank. (iv) jumps up and does a back flip.

BERT - Results(SWAG)

System	Dev	Test
ESIM+GloVe	51.9	52.7
ESIM+ELMo	59.1	59.2
BERTBASE	81.6	_
BERTLARGE	86.6	86.3
Human (expert) [†]	-	85.0
Human (5 annotations) [†]	-	88.0

Table 4: SWAG Dev and Test accuracies. Test results were scored against the hidden labels by the SWAG authors. [†]Human performance is measure with 100 samples, as reported in the SWAG paper.

- Pre-training tasks
 - MLM and no NSP (effect of NSP)

- LTR and no NSP (effect of MLM)
 - i.e, OpenAl GPT architecture

Pre-training tasks

MLM and no NSP (effect of NSP)

	Dev Set						
Tasks	MNLI-m (Acc)	QNLI (Acc)	MRPC (Acc)	SST-2 (Acc)	SQuAD (F1)		
BERTBASE	84.4	88.4	86.7	92.7	88.5		
No NSP	83.9	84.9	86.5	92.6	87.9		
LTR & No NSP + BiLSTM	82.1 82.1	84.3 84.1	77.5 75.7	92.1 91.6	77.8 84.9		

Pre-training tasks

Effect of MLM

	Dev Set						
Tasks	MNLI-m (Acc)	QNLI (Acc)	MRPC (Acc)	SST-2 (Acc)	SQuAD (F1)		
BERTBASE	84.4	88.4	86.7	92.7	88.5		
No NSP	83.9	84.9	86.5	92.6	87.9		
LTR & No NSP + BiLSTM	82.1 82.1	84.3 84.1	77.5 75.7	92.1 91.6	77.8 84.9		

Model Size

Less data, Huge model - still works

Hy	perpar	ams		Dev Set Accuracy				
#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2		
3	768	12	5.84	77.9	79.8	88.4		
6	768	3	5.24	80.6	82.2	90.7		
6	768	12	4.68	81.9	84.8	91.3		
12	768	12	3.99	84.4	86.7	92.9		
12	1024	16	3.54	85.7	86.9	93.3		
24	1024	16	3.23	86.6	87.8	93.7		

Training Steps

- YES, more steps = higher performance
- Converges slower, but performance HIGHER

BERT - Final Remarks and Salient Points

Bi-Directional learning

2 Novel pre-training tasks (PROVED to be better)

New Input representation

Very comprehensive and FAIR comparisons/experiments

Extending BERT

Multi-Task Learning - natural extension of BERT

Studying what do different layers learn? (cue: ELMo)

What if syntactic information added?

Thank you and have a Happy Easter!

Q and A