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Overview of the course

Overview of the course

I Focus on language interpretation and modelling meaning
I Methods for learning meaning representations from

linguistic data
I Analysis of meaning representations learnt
I Applications

I This is a research seminar
I Focus on recent progress in the field
I Lectures
I You will present and critique research papers
I and conduct a research project
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Overview of the course

Overview of the topics

Modelling meaning at different levels

I Word representations

I Compositional semantics and sentence representations

I Modelling meaning variation in context: ambiguity and metaphor

I Discourse processing, document representations
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Overview of the course

Overview of the topics

Focus on deep learning and joint learning

I Different neural architectures (e.g. LSTMs, attention,
transformers etc.)

I Contextualised representations: ELMo and BERT

I Joint learning at different linguistic levels

I Multitask learning

I Multilingual joint learning

I Learning from multiple modalities (language and vision)
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Overview of the course

Interdisciplinary topics and applications

I Language grounding and multimodal
semantics

I Representation learning and
neurocognition of language

I Applications: stance detection and fact
checking

The dog chewed at the shoes

Predicting Human Brain Activity
Associated with the Meanings
of Nouns
Tom M. Mitchell,1* Svetlana V. Shinkareva,2 Andrew Carlson,1 Kai-Min Chang,3,4
Vicente L. Malave,5 Robert A. Mason,3 Marcel Adam Just3

The question of how the human brain represents conceptual knowledge has been debated in
many scientific fields. Brain imaging studies have shown that different spatial patterns of neural
activation are associated with thinking about different semantic categories of pictures and
words (for example, tools, buildings, and animals). We present a computational model that predicts
the functional magnetic resonance imaging (fMRI) neural activation associated with words for which
fMRI data are not yet available. This model is trained with a combination of data from a trillion-word
text corpus and observed fMRI data associated with viewing several dozen concrete nouns. Once
trained, the model predicts fMRI activation for thousands of other concrete nouns in the text corpus,
with highly significant accuracies over the 60 nouns for which we currently have fMRI data.

The question of how the human brain rep-
resents and organizes conceptual knowledge
has been studied bymany scientific commu-

nities. Neuroscientists using brain imaging studies
(1–9) have shown that distinct spatial patterns of
fMRI activity are associated with viewing pictures
of certain semantic categories, including tools, build-
ings, and animals. Linguists have characterized dif-
ferent semantic roles associated with individual
verbs, aswell as the types of nouns that can fill those
semantic roles [e.g., VerbNet (10) and WordNet
(11, 12)]. Computational linguists have analyzed
the statistics of very large text corpora and have
demonstrated that a word’s meaning is captured to
some extent by the distribution of words and phrases
with which it commonly co-occurs (13–17). Psy-
chologists have studied word meaning through
feature-norming studies (18) in which participants
are asked to list the features they associate with var-
ious words, revealing a consistent set of core fea-
tures across individuals and suggesting a possible
grouping of features by sensory-motor modalities.
Researchers studying semantic effects of brain dam-
age have found deficits that are specific to given
semantic categories (such as animals) (19–21).

This variety of experimental results has led to
competing theories of how the brain encodesmean-
ings of words and knowledge of objects, including
theories that meanings are encoded in sensory-
motor cortical areas (22, 23) and theories that they
are instead organized by semantic categories such
as living and nonliving objects (18, 24). Although
these competing theories sometimes lead to differ-

ent predictions (e.g., of which naming disabilities
will co-occur in brain-damaged patients), they are
primarily descriptive theories that make no attempt
to predict the specific brain activation that will be
produced when a human subject reads a particular
word or views a drawing of a particular object.

We present a computational model that makes
directly testable predictions of the fMRI activity as-
sociated with thinking about arbitrary concrete
nouns, including many nouns for which no fMRI
data are currently available. The theory underlying
this computational model is that the neural basis of
the semantic representation of concrete nouns is
related to the distributional properties of thosewords
in a broadly based corpus of the language. We de-
scribe experiments training competing computation-
al models based on different assumptions regarding
the underlying features that are used in the brain
for encoding of meaning of concrete objects. We
present experimental evidence showing that the best

of these models predicts fMRI neural activity well
enough that it can successfully match words it has
not yet encountered to their previously unseen fMRI
images, with accuracies far above those expected
by chance. These results establish a direct, predic-
tive relationship between the statistics of word
co-occurrence in text and the neural activation
associated with thinking about word meanings.

Approach. We use a trainable computational
model that predicts the neural activation for any
given stimulus word w using a two-step process,
illustrated in Fig. 1. Given an arbitrary stimulus
word w, the first step encodes the meaning of w as
a vector of intermediate semantic features computed
from the occurrences of stimulus word w within a
very large text corpus (25) that captures the typ-
ical use of words in English text. For example,
one intermediate semantic feature might be the
frequency with which w co-occurs with the verb
“hear.” The second step predicts the neural fMRI
activation at every voxel location in the brain, as a
weighted sum of neural activations contributed by
each of the intermediate semantic features. More
precisely, the predicted activation yv at voxel v in
the brain for word w is given by

yv ¼ ∑
n

i¼1
cvi fiðwÞ ð1Þ

where fi(w) is the value of the ith intermediate
semantic feature for word w, n is the number of
semantic features in the model, and cvi is a learned
scalar parameter that specifies the degree to which
the ith intermediate semantic feature activates voxel
v. This equation can be interpreted as predicting the
full fMRI image across all voxels for stimulus word
w as a weighted sum of images, one per semantic
feature fi. These semantic feature images, defined
by the learned cvi, constitute a basis set of compo-
nent images that model the brain activation asso-
ciated with different semantic components of the
input stimulus words.

1Machine Learning Department, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, USA.
2Department of Psychology, University of South Carolina,
Columbia, SC 29208, USA. 3Center for Cognitive Brain
Imaging, Carnegie Mellon University, Pittsburgh, PA 15213,
USA. 4Language Technologies Institute, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213,
USA. 5Cognitive Science Department, University of California,
San Diego, La Jolla, CA 92093, USA.

*To whom correspondence should be addressed. E-mail:
Tom.Mitchell@cs.cmu.edu

Predictive model

predicted
activity for 

“celery”

stimulus
word

“celery”

Intermediate
semantic features

extracted from
trillion-word text

corpus

Mapping learned 
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training data

Fig. 1. Form of the model for predicting fMRI activation for arbitrary noun stimuli. fMRI activation
is predicted in a two-step process. The first step encodes the meaning of the input stimulus word in
terms of intermediate semantic features whose values are extracted from a large corpus of text
exhibiting typical word use. The second step predicts the fMRI image as a linear combination of the
fMRI signatures associated with each of these intermediate semantic features.

www.sciencemag.org SCIENCE VOL 320 30 MAY 2008 1191
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Overview of the course

Assessment

I Presentation and participation (25%)
I Present 1 paper in class
I Read and discuss other papers

I Practical assignment (25%)
1. Implement a model of sentence meaning
2. Evaluate it in a set of NLP tasks
3. Assessed by presenting results to TAs
4. Deadline: 19 April 2019

I Research project (50%)

No exam!

More information at the first lab session on Tuesday, 2 April.
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Overview of the course

Research project

I Goal: Investigate a new research question
I Apply the models discussed in the course
I Perform experiments and analyse results
I Write a research paper
I Present the results at a poster session

I Organisation
I We will propose projects on several topics – you choose
I Work in groups of 3 or 4
I Deadline: 25 May 2019
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Overview of the course

It gets even better...

1. Best Poster Award

2. If you are interested, we will help you to prepare a research
paper for publication (optional)

e.g. CONLL 2019 conference, deadline: 31 May
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Overview of the course

Also note:

Course materials and more info:
https://cl-illc.github.io/semantics

Piazza for discussions:
piazza.com/university_of_amsterdam/spring2019/smnls1

Access code: elmobert

Contact

I Assignments: Samira and Verna
I Paper presentations: Katia

Sign up to groups on Canvas by Friday, 5 April.



Statistical Methods in Natural Language Semantics

Semantics in wider NLP

Natural Language Processing

Many popular applications

...and the emerging ones
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Semantics in wider NLP

Why is NLP difficult?

Similar strings mean different things, different strings mean the
same thing.

I Synonymy: different strings can mean the same thing
The King’s speech gave the much needed reassurance to his people.
His majesty’s address reassured the crowds.

I Ambiguity: same strings can mean different things
His majesty’s address reassured the crowds.
His majesty’s address is Buckingham Palace, London SW1A 1AA.
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Semantics in wider NLP
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Semantics in wider NLP

Computational semantics

Computational semantics = Natural language understanding (NLU)

an area of NLP concerned with language interpretation and
modelling meaning

1. Lexical semantics: modelling the meaning of words

2. Compositional semantics: modelling the meaning of sentences

3. Discourse processing: modelling larger text passages

4. Pragmatics: modelling meaning in wider situational context (e.g.
social meaning)
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Statistical semantics and representation learning

Statistical semantics
Distributional semantics

I The meaning of a word can
be defined by its use

I as a distribution of contexts

I extracted from a text corpus

N: dog N: car
248 bark 493 drive
197 eat 428 park
193 take 317 steal
110 walk 248 stop
101 run 102 break
... ...
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Statistical semantics and representation learning

Statistical semantics in pre-deep learning era

I Vector space models (dimensionality reduction, SVD etc.)
I Information theoretic approaches
I Supervised learning with hand-engineered features

I a range of classifiers (SVM, decision trees etc.)
I features based on lexico-syntactic patterns
I or lexical resources (such as WordNet)

I Unsupervised learning
I Clustering
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Statistical semantics and representation learning

Paradigm shift: representation learning
Deep learning

I dominates the field since ≈2014

I led to performance improvements in many tasks

Is This a Revolution?

• Move from symbolic to 
statistical NLP (1990s) 
certainly was a paradigm shift


• Neural models certainly 
dominant in 2018


• Will neural models prove as 
successful for text as they 
have for vision and speech?
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Statistical semantics and representation learning

Paradigm shift: representation learning

But why?

I Neural networks have been around for decades.

I What has changed in the way they are applied in NLP?

I Key conceptual innovation:

learning intermediate meaning representations in
the process of end-to-end training for a particular task.
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Statistical semantics and representation learning

Paradigm shift: representation learning

But why?

I Neural networks have been around for decades.

I What has changed in the way they are applied in NLP?

I Key conceptual innovation:

learning intermediate meaning representations in
the process of end-to-end training for a particular task.
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Statistical semantics and representation learning

Example: sentiment analysis

Components of an End-to-End 
(Sentiment Analysis) System

This film is n’t great

+ —
-VE

binary classifier
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Statistical semantics and representation learning

Example: sentiment analysis

Word representations

Word Embeddings

• Random initialization, learn as 
part of task objective


• External initialization (eg 
Word2Vec), update as part of 
task objective


• External initialization, keep 
fixed This film is n’t great
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Statistical semantics and representation learning

Example: sentiment analysis

Sentence representations

Sentence Embeddings

• Recurrent neural network 
(RNN, LSTM, Tree RNN) 
combines the word vectors


• Could use a convolutional 
neural network (CNN), or a 
combination of RNN, CNN

This film is n’t great
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Word representations

General-purpose word representations

Mikolov et. al. 2013. Efficient
Estimation of Word
Representations in Vector Space.

Skip-gram model:

I Given a word

I predict its neighboring words

I learn word representations in
the process
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Word representations

Word embeddings in NLP tasks

I Random initialization,
learn as part of task
objective

I External initialization (e.g.
skip-gram), update as
part of task objective

I External initialization,
keep fixed

Word Embeddings

• Random initialization, learn as 
part of task objective


• External initialization (eg 
Word2Vec), update as part of 
task objective


• External initialization, keep 
fixed This film is n’t great
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Sentence representations

Learning sentence representations

(Long-term) goal:

I a general-purpose neural
network sentence encoder

I which can be applied across
diverse NLP tasks.

A general-purpose sentence encoder

Input Text

Reusable Encoder

Task Model

Task Output

Representation 
for Each Sentence
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Sentence representations

Why is this useful?

1. Improve performance
I produce rich semantic representations for downstream

NLP tasks

2. Improve data efficiency
I provide a model of sentence representation for language

understanding tasks which lack training data
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Sentence representations

What can we expect this model to capture?

I Lexical semantics and meaning disambiguation in context
I Word order
I Some syntactic structure
I Idiomatic/non-compositional phrase meanings
I Connotation and social meaning.
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Sentence representations

Sentence representation models

Unsupervised training on single sentences:

I Sequence autoencoders (Dai and Le, 2015)
I Paragraph vector (Le and Mikolov, 2015)

Unsupervised training on running text:

I SkipThought (Kiros et al., 2015)
I FastSent (Hill et al. 2016)

We will look at these models later in the course.
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Sentence representations

Sentence representation models

Supervised training on large corpora:

I Dictionaries (Hill et al. 2015)
I Image captions (Hill et al. 2016)
I Natural language inference data (Conneau et al. 2017)
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Sentence representations

Learning from dictionary definitions

Hill et al., 2016. Learning to Understand Phrases by Embedding the
Dictionary

3/31/2019 Deep Learning for Language Processing | Felix Hill

https://fh295.github.io/teaching.html 1/2

Felix Hill

Research Scientist, DeepMind, London

View My GitHub Profile

Deep Learning for Language Processing

This course was first taught for MPhil Students at Cambridge University Computer
Lab in 2018, by Stephen Clark and Felix Hill with guest lectures from the brilliant Ed
Grefenstette and Chris Dyer.

The course gave a basic introduction to artificial neural networks, including the
sometimes overlooked question of why these are appropriate models for language
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Sentence representations

Natural language inference task
Bowman et al, 2015. A large annotated corpus for learning natural
language inference

I Stanford Natural Language Inference (SNLI) corpus

I 570k sentence pairs

I labeled for entailment, contradiction, and semantic
independence

Natural Language Inference (NLI)
also known as recognizing textual entailment (RTE)

 James Byron Dean refused to move without blue jeans

{entails, contradicts, neither}

James Dean didn’t dance without pants

Example: MacCartney thesis ‘09
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Sentence representations

More NLI examples

A black race car starts up in front of a crowd of people.

A man is driving down a lonely road.

CONTRADICTION

A soccer game with multiple males playing.

Some men are playing a sport.

ENTAILMENT
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Sentence representations

General architecture for NLI

Conneau et al, 2017. Supervised
Learning of Universal Sentence
Representations from Natural
Language Inference Data

InferSent model

I Siamese architecture (same
encoder to represent premise
and hypothesis)

I 3-way classification (entails,
contradicts, neither )

embeddings in a supervised way. That is, we aim
to demonstrate that sentence encoders trained on
natural language inference are able to learn sen-
tence representations that capture universally use-
ful features.

sentence encoder
with hypothesis input

sentence encoder
with premise input

3-way softmax

u v

fully-connected layers

(u, v, |u − v|, u ∗ v)

Figure 1: Generic NLI training scheme.

Models can be trained on SNLI in two differ-
ent ways: (i) sentence encoding-based models that
explicitly separate the encoding of the individual
sentences and (ii) joint methods that allow to use
encoding of both sentences (to use cross-features
or attention from one sentence to the other).

Since our goal is to train a generic sentence en-
coder, we adopt the first setting. As illustrated in
Figure 1, a typical architecture of this kind uses a
shared sentence encoder that outputs a representa-
tion for the premise u and the hypothesis v. Once
the sentence vectors are generated, 3 matching
methods are applied to extract relations between
u and v : (i) concatenation of the two representa-
tions (u, v); (ii) element-wise product u ∗ v; and
(iii) absolute element-wise difference |u− v|. The
resulting vector, which captures information from
both the premise and the hypothesis, is fed into
a 3-class classifier consisting of multiple fully-
connected layers culminating in a softmax layer.

3.2 Sentence encoder architectures

A wide variety of neural networks for encod-
ing sentences into fixed-size representations ex-
ists, and it is not yet clear which one best cap-
tures generically useful information. We com-
pare 7 different architectures: standard recurrent
encoders with either Long Short-Term Memory
(LSTM) or Gated Recurrent Units (GRU), con-
catenation of last hidden states of forward and
backward GRU, Bi-directional LSTMs (BiLSTM)
with either mean or max pooling, self-attentive

network and hierarchical convolutional networks.

3.2.1 LSTM and GRU
Our first, and simplest, encoders apply re-
current neural networks using either LSTM
(Hochreiter and Schmidhuber, 1997) or GRU
(Cho et al., 2014) modules, as in sequence to se-
quence encoders (Sutskever et al., 2014). For
a sequence of T words (w1, . . . , wT ), the net-
work computes a set of T hidden representations
h1, . . . , hT , with ht =

−−−−→
LSTM(w1, . . . , wT ) (or

using GRU units instead). A sentence is repre-
sented by the last hidden vector, hT .

We also consider a model BiGRU-last that con-
catenates the last hidden state of a forward GRU,
and the last hidden state of a backward GRU to
have the same architecture as for SkipThought
vectors.

3.2.2 BiLSTM with mean/max pooling
For a sequence of T words {wt}t=1,...,T , a bidirec-
tional LSTM computes a set of T vectors {ht}t.
For t ∈ [1, . . . , T ], ht, is the concatenation of a
forward LSTM and a backward LSTM that read
the sentences in two opposite directions:

−→
ht =

−−−−→
LSTMt(w1, . . . , wT )

←−
ht =

←−−−−
LSTMt(w1, . . . , wT )

ht = [
−→
ht ,
←−
ht ]

We experiment with two ways of combining the
varying number of {ht}t to form a fixed-size vec-
tor, either by selecting the maximum value over
each dimension of the hidden units (max pool-
ing) (Collobert and Weston, 2008) or by consider-
ing the average of the representations (mean pool-
ing).

The movie was great

←−
h1

←−
h2

←−
h3

←−
h4

−→
h4

−→
h3

−→
h2

−→
h1

w1 w2 w3 w4

x

x
x

x

x x x x

max-pooling

… …u :

Figure 2: Bi-LSTM max-pooling network.
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Sentence representations

InferSent encoder: BiLSTM with max pooling

embeddings in a supervised way. That is, we aim
to demonstrate that sentence encoders trained on
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tence representations that capture universally use-
ful features.

sentence encoder
with hypothesis input

sentence encoder
with premise input

3-way softmax

u v

fully-connected layers

(u, v, |u − v|, u ∗ v)

Figure 1: Generic NLI training scheme.

Models can be trained on SNLI in two differ-
ent ways: (i) sentence encoding-based models that
explicitly separate the encoding of the individual
sentences and (ii) joint methods that allow to use
encoding of both sentences (to use cross-features
or attention from one sentence to the other).

Since our goal is to train a generic sentence en-
coder, we adopt the first setting. As illustrated in
Figure 1, a typical architecture of this kind uses a
shared sentence encoder that outputs a representa-
tion for the premise u and the hypothesis v. Once
the sentence vectors are generated, 3 matching
methods are applied to extract relations between
u and v : (i) concatenation of the two representa-
tions (u, v); (ii) element-wise product u ∗ v; and
(iii) absolute element-wise difference |u− v|. The
resulting vector, which captures information from
both the premise and the hypothesis, is fed into
a 3-class classifier consisting of multiple fully-
connected layers culminating in a softmax layer.

3.2 Sentence encoder architectures

A wide variety of neural networks for encod-
ing sentences into fixed-size representations ex-
ists, and it is not yet clear which one best cap-
tures generically useful information. We com-
pare 7 different architectures: standard recurrent
encoders with either Long Short-Term Memory
(LSTM) or Gated Recurrent Units (GRU), con-
catenation of last hidden states of forward and
backward GRU, Bi-directional LSTMs (BiLSTM)
with either mean or max pooling, self-attentive

network and hierarchical convolutional networks.

3.2.1 LSTM and GRU
Our first, and simplest, encoders apply re-
current neural networks using either LSTM
(Hochreiter and Schmidhuber, 1997) or GRU
(Cho et al., 2014) modules, as in sequence to se-
quence encoders (Sutskever et al., 2014). For
a sequence of T words (w1, . . . , wT ), the net-
work computes a set of T hidden representations
h1, . . . , hT , with ht =

−−−−→
LSTM(w1, . . . , wT ) (or

using GRU units instead). A sentence is repre-
sented by the last hidden vector, hT .

We also consider a model BiGRU-last that con-
catenates the last hidden state of a forward GRU,
and the last hidden state of a backward GRU to
have the same architecture as for SkipThought
vectors.

3.2.2 BiLSTM with mean/max pooling
For a sequence of T words {wt}t=1,...,T , a bidirec-
tional LSTM computes a set of T vectors {ht}t.
For t ∈ [1, . . . , T ], ht, is the concatenation of a
forward LSTM and a backward LSTM that read
the sentences in two opposite directions:

−→
ht =

−−−−→
LSTMt(w1, . . . , wT )

←−
ht =

←−−−−
LSTMt(w1, . . . , wT )

ht = [
−→
ht ,
←−
ht ]

We experiment with two ways of combining the
varying number of {ht}t to form a fixed-size vec-
tor, either by selecting the maximum value over
each dimension of the hidden units (max pool-
ing) (Collobert and Weston, 2008) or by consider-
ing the average of the representations (mean pool-
ing).

The movie was great

←−
h1

←−
h2

←−
h3

←−
h4

−→
h4

−→
h3

−→
h2

−→
h1

w1 w2 w3 w4

x

x
x

x

x x x x

max-pooling

… …u :

Figure 2: Bi-LSTM max-pooling network.
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Sentence representations

NLI and language understanding

To perform well at NLI, your representations of meaning must
handle with the full complexity of compositional semantics...

I Lexical entailment (cat vs. animal, cat vs. dog)
I Lexical ambiguity (e.g. bank, run)
I Quantification (all, most, fewer than eight etc.)
I Modality (might, should, etc.)
I Common sense background knowledge
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Sentence representations

Evaluation framework: SentEval

Conneau and Kiela, 2018. SentEval: An Evaluation Toolkit for
Universal Sentence Representations

I Formalised an evaluation standard for sentence
representations

I Suite of ten tasks
I Software package automatically trains and evaluates

per-task classifiers using supplied representations.
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Sentence representations

SentEval tasks

I Classification tasks:
I sentiment analysis / opinion polarity
I subjectivity vs. objectivity
I question type (e.g. for question answering)

I Natural language inference:
I several datasets

I Semantic similarity tasks:
I sentence similarity
I paraphrasing
I image caption retrieval
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Sentence representations

Practical 1

Learning general-purpose sentence representations

I supervised training

I SNLI task

I Implement three variants of the InferSent model:

1. Unidirectional LSTM encoder
2. Bidirectional (Bi-) LSTM encoder
3. BiLSTM encoder with max pooling

I Compare to a baseline averaging word embeddings

I Evaluate using SentEval

Submit a mini-report containing your results and your code
Deadline: 19 April
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Sentence representations

Next lecture

Next time we will:

I discuss unsupervised models of semantic composition
I e.g. neural language models

I give an overview of research projects (get excited!)
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Sentence representations

Acknowledgement
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