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Overview of the course

» Focus on language interpretation and modelling meaning

» Methods for learning meaning representations from
linguistic data

» Analysis of meaning representations learnt

» Applications

» This is a research seminar

» Focus on recent progress in the field

» Lectures

» You will present and critique research papers
» and conduct a research project
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Overview of the topics

Modelling meaning at different levels
» Word representations
» Compositional semantics and sentence representations

» Modelling meaning variation in context: ambiguity and metaphor

» Discourse processing, document representations



Statistical Methods in Natural Language Semantics

LOverview of the course

Overview of the topics

Focus on deep learning and joint learning

>

Different neural architectures (e.g. LSTMs, attention,
transformers etc.)

Contextualised representations: ELMo and BERT
Joint learning at different linguistic levels
Multitask learning

Multilingual joint learning

Learning from multiple modalities (language and vision)
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Interdisciplinary topics and applications

» Language grounding and multimodal ‘r“w

semantics The dog chewed at the shoes

» Representation learning and
neurocognition of language

» Applications: stance detection and fact
checking
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Assessment

» Presentation and participation (25%)

» Present 1 paper in class
» Read and discuss other papers

» Practical assignment (25%)

1. Implement a model of sentence meaning
2. Evaluate it in a set of NLP tasks

3. Assessed by presenting results to TAs

4. Deadline: 19 April 2019

» Research project (50%)

No exam!

More information at the first lab session on Tuesday, 2 April.
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Research project

» Goal: Investigate a new research question

Apply the models discussed in the course
Perform experiments and analyse results
Write a research paper

Present the results at a poster session

vV vy vVvYyy

» Organisation
» We will propose projects on several topics — you choose
» Work in groups of 3 or 4
» Deadline: 25 May 2019



Statistical Methods in Natural Language Semantics

LOverview of the course

It gets even better...

1. Best Poster Award

2. If you are interested, we will help you to prepare a research
paper for publication (optional)

e.g. CONLL 2019 conference, deadline: 31 May
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Also note:

Course materials and more info:
https://cl-illc.github.io/semantics

Piazza for discussions:
piazza.com/university_of_amsterdam/spring2019/smnlsl

Access code: elmobert

Contact

» Assignments: Samira and Verna
» Paper presentations: Katia

Sign up to groups on Canvas by Friday, 5 April.
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Natural Language Processing

Many popular applications

CESSTO CITY

Watson

Google

...and the emerging ones
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Why is NLP difficult?

Similar strings mean different things, different strings mean the
same thing.



Statistical Methods in Natural Language Semantics
LSemantics in wider NLP

Why is NLP difficult?

Similar strings mean different things, different strings mean the
same thing.

» Synonymy: different strings can mean the same thing
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Why is NLP difficult?

Similar strings mean different things, different strings mean the
same thing.

» Synonymy: different strings can mean the same thing

The King’s speech gave the much needed reassurance to his people.
His majesty’s address reassured the crowds.

» Ambiguity: same strings can mean different things

His majesty’s address reassured the crowds.
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Why is NLP difficult?

Similar strings mean different things, different strings mean the
same thing.

» Synonymy: different strings can mean the same thing
The King’s speech gave the much needed reassurance to his people.
His majesty’s address reassured the crowds.

» Ambiguity: same strings can mean different things

His majesty’s address reassured the crowds.
His majesty’s address is Buckingham Palace, London SW1A 1AA.
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Computational semantics

Computational semantics = Natural language understanding (NLU)

an area of NLP concerned with language interpretation and
modelling meaning

—_

. Lexical semantics: modelling the meaning of words
Compositional semantics: modelling the meaning of sentences

Discourse processing: modelling larger text passages

N

Pragmatics: modelling meaning in wider situational context (e.g.
social meaning)
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Statistical semantics
Distributional semantics

» The meaning of a word can
be defined by its use

» as a distribution of contexts

» extracted from a text corpus
eat &

cat
dog

car

drive

N: dog
248 bark
197 eat
193 take
110 walk
101 run

493 drive
428 park
317 steal
248 stop
102 break
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Statistical semantics in pre-deep learning era

v

Vector space models (dimensionality reduction, SVD etc.)
Information theoretic approaches

Supervised learning with hand-engineered features

» arange of classifiers (SVM, decision trees etc.)
» features based on lexico-syntactic patterns
» or lexical resources (such as WordNet)

Unsupervised learning
» Clustering

v

v

v
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Paradigm shift: representation learning
Deep learning

» dominates the field since ~2014

» led to performance improvements in many tasks

. AcL
. NP

Papers with "Deep" or "Neural” in title

2010 2011 2012 2013 2014 2015 2016

vear

u]
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Paradigm shift: representation learning

But why?

» Neural networks have been around for decades.

» What has changed in the way they are applied in NLP?
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Paradigm shift: representation learning

But why?

» Neural networks have been around for decades.
» What has changed in the way they are applied in NLP?
» Key conceptual innovation:

learning intermediate meaning representations in
the process of end-to-end training for a particular task.
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Example: sentiment analysis

binary classifier

N

e00 @00 000 000 [0;0]

@?oﬂo?o}{o?oﬂo?oﬂo#q
000 000 000 000 000

This film is n’t great
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Example: sentiment analysis

Word representations

°
(X)) EOCTCJ 00 ©00 ©00

[.,.H.,.}{.’.}’@é‘]—’@,.]

000 000 000 000 000
This film
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n’t great
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Example: sentiment analysis

Sentence representations

()

?
000 COOTOJ 000 ©00 000

@QOHQQOH.,OHQ;QHO;.J

film

is

000 000 000 000 000
This

n’t great
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General-purpose word representations

Mikolov et. al. 2013. Efficient
Estimation of Word
Representations in Vector Space.

Skip-gram model:

» Given a word
» predict its neighboring words

» learn word representations in
the process

INPUT PROJECTION  OUTPUT

w(t-2)

wit-1)

wit) ’—»

wit+1)

wit+2)
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Word embeddings in NLP tasks

» Random initialization,

learn as part of task @

oblective @00 e0e 0 oo ee0
» External initialization (e.g.

skip-gram), update as @,’H”‘H.,.H.,.H.’.]

part of task objective [.6.] [..'.) [.'..] [.6.] [...]
» External initialization, This film is n’t great

keep fixed
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Learning sentence representations

Task Output

Representation
> a general-purpose neural for Each Sentence

network sentence encoder

(Long-term) goal:

» which can be applied across
diverse NLP tasks.

Input Text
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Why is this useful?

1. Improve performance

» produce rich semantic representations for downstream
NLP tasks

2. Improve data efficiency

» provide a model of sentence representation for language
understanding tasks which lack training data
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What can we expect this model to capture?

v

Lexical semantics and meaning disambiguation in context
Word order

Some syntactic structure

Idiomatic/non-compositional phrase meanings
Connotation and social meaning.

v

v

v

v
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Sentence representation models

Unsupervised training on single sentences:

» Sequence autoencoders (Dai and Le, 2015)
» Paragraph vector (Le and Mikolov, 2015)

Unsupervised training on running text:

» SkipThought (Kiros et al., 2015)
» FastSent (Hill et al. 2016)

We will look at these models later in the course.
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Sentence representation models

Supervised training on large corpora:

» Dictionaries (Hill et al. 2015)
» Image captions (Hill et al. 2016)
» Natural language inference data (Conneau et al. 2017)
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Learning from dictionary definitions

Dictionary

Hill et al., 2016. Learning to Understand Phrases by Embedding the

X pre-trained
RNN with LSTM ‘

jump

X embeddings
X word

to propel oneself into the air with
one’s legs




Statistical Methods in Natural Language Semantics

LSentence representations

Natural language inference task

Bowman et al, 2015. A large annotated corpus for learning natural
language inference

» Stanford Natural Language Inference (SNLI) corpus

» 570k sentence pairs

» |abeled for entailment, contradiction, and semantic
independence

James Byron Dean refused to move without blue jeans
{entails, contradicts, neither}

James Dean didn’t dance without pants
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More NLI examples

A black race car starts up in front of a crowd of people.
A man is driving down a lonely road.
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A man is driving down a lonely road.
CONTRADICTION

A soccer game with multiple males playing.

Some men are playing a sport.



Statistical Methods in Natural Language Semantics

LSentence representations

More NLI examples
A black race car starts up in front of a crowd of people.
A man is driving down a lonely road.
CONTRADICTION
A soccer game with multiple males playing.
Some men are playing a sport.

ENTAILMENT
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General architecture for NLI

Conneau et al, 2017. Supervised

Learning of Universal Sentence R
Representations from Natural
Language Inference Data [fuly-connected layers|

*
InferSent model | (w0, Ju—v|,uxv) |

» Siamese architecture (same / \
encoder to represent premise i | : >

and hypothesis)

sentence encoder

with hypothesis input

» 3-way classification (entails,
contradicts, neither) ‘

sentence encoder
with premise input
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InferSent encoder: BiLSTM with max pooling

max-pooling

t

Ifalulialﬁlﬁrlul

=y

:| ha |1:":}|h2 |’:":'| hs |E_':'| h_>4 |i

=1




Statistical Methods in Natural Language Semantics

LSentence representations

NLI and language understanding

To perform well at NLI, your representations of meaning must
handle with the full complexity of compositional semantics...

v

Lexical entailment (cat vs. animal, cat vs. dog)
Lexical ambiguity (e.g. bank, run)
Quantification (all, most, fewer than eight etc.)
Modality (might, should, etc.)

Common sense background knowledge

v

v

v

v
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Evaluation framework: SentEval

Conneau and Kiela, 2018. SentEval: An Evaluation Toolkit for
Universal Sentence Representations

» Formalised an evaluation standard for sentence
representations
» Suite of ten tasks

» Software package automatically trains and evaluates
per-task classifiers using supplied representations.
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SentEval tasks

» Classification tasks:

» sentiment analysis / opinion polarity
» subjectivity vs. objectivity
» question type (e.g. for question answering)

» Natural language inference:
» several datasets
» Semantic similarity tasks:

» sentence similarity
» paraphrasing
» image caption retrieval
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Practical 1

Learning general-purpose sentence representations

» supervised training
» SNLI task
» Implement three variants of the InferSent model:

1. Unidirectional LSTM encoder
2. Bidirectional (Bi-) LSTM encoder
3. BILSTM encoder with max pooling

» Compare to a baseline averaging word embeddings

» Evaluate using SentEval

Submit a mini-report containing your results and your code
Deadline: 19 April
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Next lecture

Next time we will:

» discuss unsupervised models of semantic composition
» e.g. neural language models

» give an overview of research projects (get excited!)
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