References

Interpretation of Neural Networks

Dieuwke Hupkes

Institute for Logic, Language and Computation
University of Amsterdam

May 14, 2019



Outline

1. Can RNNs represent hierarchy?
® The arithmetic language
® Diagnostic classifiers
2. What do neural language models learn?
® The subject verb agreement task
® Neuron ablation studies

® Temporal generalisation matrix and interventions
® Contextual Decomposition
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How do recurrent neural networks process such hierarchically
compositional structures?
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Looking inside

What does the network do?
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Discussion

Some intermediate conclusions:

® GRU models seem fairly able to compute the meaning of
sequences with hierarchical structure

e With diagnostic classification we can narrow down which
strategy they are following



Discussion

Some other possibilities:

® Further fine-grained analysis of the strategy models are using,
and comparison with other recurrent cells (Hupkes et al., 2018)

® Understand by masking DC weights whether information is
represented in a distributive or local way (Hupkes and Zuidema,
2017)

® Locating important neurons (Lakretz et al., 2019)
¢ Changing the behaviour of models (Giulianelli et al., 2018)
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Subject-Verb Agreement

root

nsubj
. pobj pobj
et
prep prep
v \Y¥Y—~/ v X\ ~—~/7 ¥

The keys to the cabinet are on the table

Linzen et al. (2016)
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But how do they do this?
Ablation studies

—— Singular-Singular .. Singular-Plural

—— Plural-Plural —.. Plural-Singular

The boy(s) near the  car(s) greet(s) the
(a) 988 (singular)

Lakretz et al. (2019)
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But how do they do this?

Contextual Decomposition
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June Projects

Grammar in use: analysing emergent languages in referential
games

The Syntactic Awareness of Transformer Language Models

Exploring Language Understanding with Modern Neural
Architecture Search Methods

Irregular world for regular language
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Polysemy

“It's a good ten miles to the next gas station.”



Motivation

To understand where contextual representations improve over conventional embeddings.

Is this information primarily syntactic in nature, or do the representations also encode
higher-level semantic relationships? Is this information local, or do the encoders also capture
long-range structure?

What do contextual representations encode that conventional word embeddings do not?



Objective of the Paper

To probe word-level contextual representations from four recent models and inves-
tigate how they encode sentence structure across a range of syntactic, semantic,
local, and long-range phenomena.

Models Probed : -

1. CoVe
2. ELMo
3. OpenAl GPT
4. BERT



A (very) Quick Recap on the
Models



e Leverages Machine Translation to build Contextualized Word Vectors (CoVe).

a) - b)
Translation :
: s
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Task-specific Model

A

, : : Shs 1 ,

’ Word ‘ : ‘ Word ’ Word
Vectors : Vectors Vectors

McCann B., Bradbury )., Xiong C., Socher R. (2017)



CoVe(w) = MT-LSTM(GloVe(w))

w: Word
GloVe(w): Word Vectors after applying GloVe Word Embeddings
MT-LSTM(GloVe(w)): The vector learned from MT-LSTM architecture.

McCann B., Bradbury J., Xiong C., Socher R. (2017)

w = [GloVe(w); CoVe(w)]

McCann B., Bradbury |., Xiong C., Socher R. (2017)



ELMo (Embeddings from Language Model)




ELMo (Embeddings from Language Model)

Leverages a sophisticated Neural Language Model
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OpenAl GPT

e The model stacks twelve decoder layers (of transformer) and it is trained on Language Modelling task.

?
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Generate Contexualized Embeddings
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Back To The Paper



Tasks

Experiments are conducted on eight core NLP labeling tasks : -

Part-of-speech tagging : Syntactic task of assigning tags such as noun, verb, adjective etc. to individual
tokens.

Constituent labeling : Task is to predict a label for a span of tokens within the phrase-structure parse of
the sentence: e.g. noun phrase, verb phrase, etc.

Dependency labeling : Dependency labeling seeks to predict the functional

relationships of one token relative to another: a subject-object relationship, etc.

Named entity labeling : Task of predicting the category of an entity referred to by a given span,e.g. does
the entity refer to a person, a location, an organization, etc.

Semantic role labeling (SRL) : Given a predicate and argument-pair, the task is to predict the role that
argument fills. For e.g. given a sentence like “Mary pushed John”, SRL is concerned with identifying
“Mary” as the pusher and “John” as the pushee.

Coreference : The task of determining whether two spans of tokens refer to the same

entity (or event) i.e pronoun resolution.

Semantic proto-role (SPR) : It is the task of annotating fine-grained, non-exclusive semantic attributes,
such as change of state or awareness, over predicate-argument pairs.E.g. given the sentence “Mary
pushed John”, SPR is concerned with identifying attributes such as awareness (whether the pusher

is aware that they are doing the pushing).

Relation Classification (Rel.): It is the task of predicting the real-world relation that holds between

two entities . Eg - “Mary is walking to work”. Relationship between “Mary” and “Work” : Entity-Destination.



Datasets

1. OntoNotes 5.0 corpus
- POS Tagging
- Constituent Labelling
- Named entity labeling
- Semantic role labeling (SRL)
- Coreference

2. English Web Treebank portion of Universal Dependencies
- Dependency labeling

3. SPR1 (derived from Penn Treebank) and SPR2 (derived from English Web Treebank)

4. Semeval 2010 Task 8 dataset
- Relation Classification

5. Definite Pronoun Resolution dataset
- A challenge coreference dataset based on “Winograd schema”. Requires subtle semantic inference to
resolve correctly.



Examples From Paper

POS

The important thing about Disney is that it is a global [brand];. — NN (Noun)

Constit.

The important thing about Disney is that it [is a global brand];. — VP (Verb Phrase)

Depend.

[Atmosphere]; is always [fun]2 — nsubj (nominal subject)

Entities

The important thing about [Disney]; is that it is a global brand. — Organization

SRL

[The important thing about Disney], [is]; that itis a global brand. — Argl (Agent)

SPR

[1t]; [endorsed], the White House strategy. .. — {awareness, existed_after, . .. }

Coref.©

The important thing about [Disney]; is that [it], is a global brand. — True

Coref.V

[Characters], entertain audiences because [they]; want people to be happy. — True
Characters entertain [audiences]2 because [they]; want people to be happy. — False

Rel.

The [burst]; has been caused by water hammer [pressure]2. — Cause-Effect(ez, €1)

Table 1: Example sentence, spans, and target label for each task. O = OntoNotes, W = Winograd.



Probing Model Architecture

Note : Model is trained to predict Multi-Label Target.

t t t t t
[ Pre-trained encoder ]
pmmmm T " 't """" ' 'f """ 1
I . eat | | strawberry . ice i cream

__________________________________________

Labels

Binary classifiers

Span

representations

Contextual
vectors

Input tokens

Projection layer is used
since span inputs have
different dimensions based
on the model being probed.

Self Attention Pooling is
used to compute s2.

The only information model
accesses about the rest of
the sentence is provided by
the contextualised
embeddings within the given
spans.

Span representations are
concatenated and fed into a
two layer MLP for
classification.



Experiments

Research Question : What do contextual representations encode that conventional word embeddings do
not?

The experiments are designed to investigate how the models capture linguistic information.

e Lexical Baselines : The authors train a version of the probing model directly on the most closely
context-independent word representations.

CoVe - Glove Embeddings.
ELMo - Activations of the character CNN layer.
GPT and BERT - Subword embeddings.

Factors out access to surrounding words.

e Randomized ELMo : All weights above lexical layer (layer 0) are replaced with random orthonormal
matrices - To investigate the impact of architecture of ELMo.



Experiments

e Word-Level CNN

e Lexical Baseline + fixed-width CNN layer.

e Considers presence of nearby words.

e Comparison with word level CNN indicates contribution of long-range context to
performance of encoder.



Before | show you Results

Metric Used : Binary F1 score (Harmonic mean of precision and recall).

-1
P recall ! + precision _, brecision - recall coe coe ceoe
i 2 ~ " precision + recall
5 i 1 O G|
] i [ Y ] ) [ ) [ [ )
Q) Which layer’s activation to use as contextual embedding for e CEEE EEEE
BERT and GPT?
s FEEE EEEE
The paper uses two methods : - e i S
1. Cat - The activations of last layer are concatenated with the EEEE BRI BElE
subword embeddings. T (T (T
2. Mix - Linear combination of layer activations (including o
embeddlng) Help Prince Mayuko

But which one should we use?



BERT-base BERT-large
F1 Score Abs. A F1 Score Abs. A
CoVe ELMo GPT @ s

Lex. Full Abs.A | Lex. Full Abs. A | Lex. cat mix Lex. cat mix HLMo | Lex. cat mix (bas) ELMo

Part-of-Speech | 85.7 94.0 84 | 904 96.7 63 | 882 949 950 884 97.0 96.7 00 8.1 9%5 99 02 02
Constituents 56.1 816 254 | 69.1 84.6 154 | 65.1 813 846 68.4 837 867 2.1 1 69.0 80.1 87.0 0.4 2.5
Dependencies 750 836 86804 939 136|777 921 941 80.1  93.0 95.1 1.1 | 802 91.5 954 0.3 1.4
Entities 884 903 1.9 | 920 95.6 35| 886 929 925 9.9 9.1 962 06| 91.8 962 965 03 0.9
SRL (all) 59.7 804 20.7 | 741 90.1 160 | 67.7 860 897 754 8.4 913 121765 8.2 923 1.0 22
Core roles 562 81.0 247 | 736 92.6 19.0 | 65.1 880 92.0 74.9 914 936 1.0 ] 76.3 899 94.6 1.0 2.0
Non-core roles | 67.7 78.8 11.1 | 754 84.1 88 | 73.9 813 84.1 76.4 84.7 859 1.8 1 76.9 8&4.1 86.9 1.0 2.8
OntoNotes coref. | 729 79.2 63| 753 84.0 87 | 71.8 836 863 749 837 90.2 63| 7577 89.6 914 1.2 74
SPR1 737 711 34| 80.1 84.8 47| 792 835 83.1 79.2 847 86.1 13| 79.6 85.1 85.8 03 1.0
SPR2 766 802 36| 821 83.1 10| 822 838 835 81.7 83.0 838 07| 81.6 832 84.1 0.3 1.0
Winograd coref. | 52.1 543 22| 543 535 -08 | 5.7 526 538 543 53.6 549 14| 53.0 538 614 6.5 7.8
Rel. (SemEval) | 51.0 60.6 96| 557 77.8 221 | 582 813 810 574 783 820 42| 562 716 824 0.5 4.6
Macro Average | 69.1 78.1 9.0 | 754 844 9.1 ] 73.0 832 844 75.1 84.8 86.3 19| 752 842 873 1.0 2.9

Comparison of representation models and their respective lexical baselines. Numbers
reported are micro-averaged F1 score on respective test sets. Lex denotes the lexical baseline
for each model, and bold denotes the best performance on each task. Lines in italics are subsets

of the targets from a parent task; these are omitted in the macro average. 95% confidence intervals

(normal approximation) are approximately +3 (6 with BERT-large) for Winograd, +1 for SPR1 and
SPR2, and +0.5 or smaller for all other tasks



Analysis

e ELMo and GPT (mix) have comparable performance with GPT higher on relation classification and
OntoNotes coreference.

e As expected, both ELMo and GPT outperform CoVe except for Winograd coreference.

e By using character level CNN and subword embeddings in ELMo and GPT respectively, the models
benefit by encoding morphological information.

e (mix) is better than (cat) - In agreement with Peters et al (2018) - most relevant information is contained
in intermediate layers.

e BERT-base > GPT, BERT-Large > BERT-Base



Analysis (2)

Comparison with Lexical Baselines

In brief, the authors try to convey that contextualized embeddings offer higher improvements on
tasks which are related to syntax in comparison to semantics.

Large gains on syntactic tasks such as dependency labelling and constituency labelling in
comparison to semantic tasks such as SPR and Winograd coreference.

Note : SRL(core) is an exception. The authors attribute the increase in performance to better
labelling of core roles which are closely tied to syntax.

Another exception: Relation Classification - Semantic tasks but shows high performance with
contextual embedding. Authors attribute this to poor performance of lexical priors (embeddings)
and presence of keywords like “caused” that suggest “cause-effect” relation and makes
classification easy.

SPR requires higher-level semantic properties, and the improvement is small.



Analysis (3)

Q)How much information is carried

| oot o ¥ ® ot * Lex. 4 CNN1 v CNN2 = Ortho. ® Ful over long distances?
Part-of-Speech4 90 96 96 91 97 * H
Consttvents{ 69 84 85 72 85 i 4 # - CNN?1 (Kernel width 3) closes 72%
Dependencies NS P& He (macro avg) of the gap between
Enties1 92 94 94 93 96 .l+ .
g | & 4t 4 lexical and full ELMO.
SRL(core){ 74 87 89 79 93 i % it ¢
SRL(non-core){ 75 80 81 77 84 W WG - CNN2 (kernel width 5) closes 79%
OntoNotes Coref.4 75 80 80 80 84 H . + Of the gap
SPR11 80 81 81 81 85 - +
sPR2{ 82 82 82 83 83 B .
Winograd Coref.1 55 63 52 59 52 «,]; | - On SyntaCtIC taSkS SUCh as
b 5 5 = % = & % 100 constituent labelling, POS the
F1 Score performance of CNN2 is close

enough with Full ELMo -> Local
information is very relevant for
syntactic tasks.

Orthonormal ELMo = ELMo with random weights. Shows
improvement from lexical baseline.

- However the learned weights account for over 70% of

; - Onthe contrary for semantic
the improvements on full ELMo.

tasks, such as coreference, the
gap is larger -> ELMo encodes
long-range information.



Analysis (4)

¢ Lex. # CNN1 v CNN2 = Ortho. ® Full

F1 Score

10k
8k
6k
4k
2k

[ | S S S S S S S S B |

6 8 10 12 14
Span separation distance (tokens)

Figure 3: Dependency labeling F1 score as a function of separating distance between the two spans.
Distance 0 denotes adjacent tokens. Colored bands are 95% confidence intervals (normal approxi-
mation). Bars on the bottom show the number of targets (in the development set) with that distance.

ELMo indeed
encodes
long-range
dependencies.



Conclusions

1. Contextualized embeddings encode syntax more than higher-level semantics.
2. Contextualized representation encode long-range information.



My Opinion

Pros
1.  Well and concisely written paper with helpful appendix and analysis.
2. Builds on related token-probing work.
3. Vast set of tasks and experiments covering syntax, semantics and range of context.
4. FEradicates effect of training genre for GPT vs ELMO to make results comparable.

Cons

1. Authors should have talked about performance on Winograd coreference i.e Why CovE outperforms
ELMo and GPT. Also why does ortho ELMo outperform full ELMo?

- Comment by authors on openreview :

https://openreview.net/forum?id=SJzSgnRcKX&noteld=HkIXVExYpQ - “Dataset size is small and
hence results on Winograd are not significant”

2. To prove that contextualized embeddings offer less improvement for semantic tasks, the authors
could have added more semantic related tasks for eg - word sense disambiguation or metaphor processing.



Future Research

1. More semantic related tasks.

2. Further Investigations like removing top few encoders of BERT, changing dimensions of
LSTMs in ELMo etc.

3. Visualizing the activations of network.
Demo by OpenAl for Visual Data : https:/distill.pub/2078/building-blocks/



https://distill.pub/2018/building-blocks/

Questions Are Welcomel
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