Multilingual Models for Compositional Distributed Semantics

Karl Moritz and Phil Blunsom University of Oxford

PRESENTED BY

NITHIN HOLLA

MSC AI, UNIVERSITY OF AMSTERDAM

Motivation

- •Over 7000 known languages
- •Most of NLP focused on English
- •Many languages are low-resource
- •Universal language learner a holy grail of NLP?

https://www.ethnologue.com/guides/how-many-languages

Overview

- •Learn word embeddings across languages in a shared multilingual semantic space
- •Similar words lie close by and dissimilar words are far apart
- •Unsupervised approach
- •Make use of sentence-aligned parallel corpora
 - The weather is nice today Het is lekker weer vandaag
- The book was interesting Het boek was interessant
- •Composition Vector Model (CVM) for sentences and documents
- •No need of syntactic parse trees, word alignment or annotations
- •Downstream tasks can be made language-agnostic

http://www.marekrei.com/blog/multilingual-semantic-models/

Approach

•Parallel sentences share semantics, hence should also share the representation

•Consider two languages x and y and sentence embedding functions $f: X \to \mathbb{R}^d$ and $g: Y \to \mathbb{R}^d$ •Let C be the parallel corpus. For two sentences $(a, b) \in C$, the energy is defined as $E_{hi}(a, b) = ||f(a) - g(b)||^2$

•For every (a, b) sample sentences n that are not related to a for hinge loss $E_{hl}(a, b, n) = \max\left(\left(m + E_{bi}(a, b) - E_{bi}(a, n)\right), 0\right)$

•Final objective function

$$J(\theta) = \sum_{(a,b)\in C} \sum_{i=1}^{k} E_{hl}(a,b,n_i) + \frac{\lambda}{2} \|\theta\|^2$$

Two Composition Models

•ADD – Represents a sentence by sum of its word vectors

$$f_{ADD}(x) = \sum_{i=1}^{n} x_i$$

•BI – Captures interaction with non-linearity over bigram pairs

$$f_{BI}(x) = \sum_{i=1}^{n} \tanh(x_{i-1} + x_i)$$

Document Representation

- •Compose sentences into documents
- Recursively apply composition and a similar objective function
- •4 models ADD, BI, DOC/ADD, DOC/BI

Corpora

Europarl v7

- Parallel corpus extracted from the proceedings of the European Parliament
- 21 European languages
- EN \rightarrow L2 and L2 \rightarrow EN

TED Corpus

- English transcripts and translations of TED talks
- Selected subset of talks based on keywords technology, culture, science, global issues etc.
- Keywords used as document labels for classification task later
- 12,078 parallel documents across 12 language pairs

Training

•Model weights initialized according to Gaussian distribution with $\mu = 0$, $\sigma^2 = 0.1$

•Development set used to set hyperparameters

•For each positive sample, $k \in \{1, 10, 50\}$ noise samples used

- •Embedding dimensionality d = 128
- •Margin m = d
- •L2 regularization with $\lambda = 0.1$
- •Learning rate in $\{0.01, 0.05\}$
- •Batch size $b \in \{10, 50\}$
- •AdaGrad optimizer

RCV1/RCV2 Document Classification Experiment

•Contains news articles with topic as labels (not parallel corpora)

- •Experiment with $EN \rightarrow DE$ and $DE \rightarrow EN$
- •Embeddings first learned from Europarl corpus
- •Document represented by average embedding of all its sentences
- •Train multiclass classifier using average perceptron
- •Training on English and testing on German documents and vice-versa

RCV1/RCV2 Document Classification Experiment

Model	$en \to de$	$de \to en$
Majority Class	46.8	46.8
Glossed	65.1	68.6
MT	68.1	67.4
I-Matrix	77.6	71.1
dim = 40		
ADD	83.7	71.4
ADD+	86.2	76.9
BI	83.4	69.2
BI+	86.9	74.3
dim = 128		
ADD	86.4	74.7
ADD+	87.7	77.5
BI	86.1	79.0
BI+	88.1	79.2

- •ADD Trained on 500k sentence pairs
- •ADD+ Trained with addition of 500k EN-FR pairs
- •BI, BI+ Likewise but with bigrams
- •BI models outperform ADD in general
- •French acts like a pivot language and improves performance

•BI models not always better than ADD+

•EN \rightarrow DE better than DE \rightarrow EN

Classification accuracy for training on 1000 examples

RCV1/RCV2 Document Classification Experiment

- •Small performance gain with increasing number of documents
- •Decent performance with just 100 documents
- Possibly high bias due to simplistic model

•Training performed in two settings:

- Single mode Vectors learned from single language pair EN-X
- Joint mode Vectors learned from all parallel sub-corpora simultaneously

•DOC models trained with ADD and BI as CVM in single and joint mode

•Document representations used to train classifiers

•Classifier trained on one language and evaluated on another

- Machine translation baseline
 - For the experiment $L_1 \rightarrow L_2$, train Naive Bayes classifier on L_1 and evaluate on translated L_2
 - Expected to be a strong baseline

Setting	Languages														
	Arabic	German	Spanish	French	Italian	Dutch	Polish	Pt-Br	Roman.	Russian	Turkish				
$en \rightarrow L2$															
MT System	0.429	0.465	0.518	0.526	0.514	0.505	0.445	0.470	0.493	0.432	0.409				
ADD single	0.328	0.343	0.401	0.275	0.282	0.317	0.141	0.227	0.282	0.338	0.241				
BI single	0.375	0.360	0.379	0.431	0.465	0.421	0.435	0.329	0.426	0.423	0.481				
DOC/ADD single	0.410	0.424	0.383	0.476	0.485	0.264	0.402	0.354	0.418	0.448	0.452				
DOC/BI single	0.389	0.428	0.416	0.445	0.473	0.219	0.403	0.400	0.467	0.421	0.457				
DOC/ADD joint	0.392	0.405	0.443	0.447	0.475	0.453	0.394	0.409	0.446	0.476	0.417				
DOC/BI joint	0.372	0.369	0.451	0.429	0.404	0.433	0.417	0.399	0.453	0.439	0.418				
$L2 \rightarrow en$															
MT System	0.448	0.469	0.486	0.358	0.481	0.463	0.460	0.374	0.486	0.404	0.441				
ADD single	0.380	0.337	0.446	0.293	0.357	0.295	0.327	0.235	0.293	0.355	0.375				
BI single	0.354	0.411	0.344	0.426	0.439	0.428	0.443	0.357	0.426	0.442	0.403				
DOC/ADD single	0.452	0.476	0.422	0.464	0.461	0.251	0.400	0.338	0.407	0.471	0.435				
DOC/BI single	0.406	0.442	0.365	0.479	0.460	0.235	0.393	0.380	0.426	0.467	0.477				
DOC/ADD joint	0.396	0.388	0.399	0.415	0.461	0.478	0.352	0.399	0.412	0.343	0.343				
DOC/BI joint	0.343	0.375	0.369	0.419	0.398	0.438	0.353	0.391	0.430	0.375	0.388				

- •MT baseline is often the best but other models not far behind
- •DOC model usually performs better
- •Joint model is not always the top-performer
- •ADD models outperform BI models in many cases

F1-scores for TED document classification task

Training	Test Language														
Language	Arabic	German	Spanish	French	Italian	Dutch	Polish	Pt-Br	Rom'n	Russian	Turkish				
Arabic		0.378	0.436	0.432	0.444	0.438	0.389	0.425	0.420	0.446	0.397				
German	0.368		0.474	0.460	0.464	0.440	0.375	0.417	0.447	0.458	0.443				
Spanish	0.353	0.355		0.420	0.439	0.435	0.415	0.390	0.424	0.427	0.382				
French	0.383	0.366	0.487		0.474	0.429	0.403	0.418	0.458	0.415	0.398				
Italian	0.398	0.405	0.461	0.466		0.393	0.339	0.347	0.376	0.382	0.352				
Dutch	0.377	0.354	0.463	0.464	0.460		0.405	0.386	0.415	0.407	0.395				
Polish	0.359	0.386	0.449	0.444	0.430	0.441		0.401	0.434	0.398	0.408				
Portuguese	0.391	0.392	0.476	0.447	0.486	0.458	0.403		0.457	0.431	0.431				
Romanian	0.416	0.320	0.473	0.476	0.460	0.434	0.416	0.433		0.444	0.402				
Russian	0.372	0.352	0.492	0.427	0.438	0.452	0.430	0.419	0.441		0.447				
Turkish	0.376	0.352	0.479	0.433	0.427	0.423	0.439	0.367	0.434	0.411					

F1-scores for TED document classification task

•*DOC/ADD* joint model from previous experiment

- •Classifier trained and tested on languages without parallel data
- •Non-English languages
- •Scores similar to previous table indicate embeddings for all languages are useful

•Classifier trained and evaluated on the same language

•Other embeddings trained on larger datasets

•Performs better with lower amount of data

Setting	Languages													
-	English	Arabic	German	Spanish	French	Italian	Dutch	Polish	Pt-Br	Roman.	Russian	Turkish		
Raw Data NB	0.481	0.469	0.471	0.526	0.532	0.524	0.522	0.415	0.465	0.509	0.465	0.513		
Senna Polyglot	0.400 0.382	0.416	0.270	0.418	0.361	0.332	0.228	0.323	0.194	0.300	0.402	0.295		
single Setting DOC/ADD DOC/BI ioint Setting	0.462 0.474	0.422 0.432	0.429 0.362	0.394 0.336	0.481 0.444	0.458 0.469	0.252 0.197	0.385 0.414	0.363 0.395	0.431 0.445	0.471 0.436	0.435 0.428		
Doc/ADD Doc/BI	0.475 0.378	0.371 0.329	0.386 0.358	0.472 0.472	0.451 0.454	0.398 0.399	0.439 0.409	0.304 0.340	0.394 0.431	0.453 0.379	0.402 0.395	0.441 0.435		

F1-scores for monolingual TED document classification task

Linguistic Analysis

•Linguistic similarity captured even without French-German parallel data

•English serves as pivot

•Separation between the genders

Opinions

•Simple model but possible to extend for advanced embedding models

•Main contribution – loss function and learn without word alignments

•Lot of experiments but high variability in results

•Strictly speaking, is it really compositional?

•No statistical significance but perhaps not presentable

Extensions

•A Multi-Task Approach to Learning Multilingual Representations – Singla et al. (2018)

•Approaches for languages with limited parallel corpora

- •Combine with machine translation task
- •Scale to more languages
- •Advanced composition functions
- •Domain adaptation

Questions?

Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond

Mikel Artetxe University of the Basque Country (UPV/EHU)* mikel.artetxe@ehu.eus Holger Schwenk Facebook AI Research schwenk@fb.com

Niels van der Heijden

Creating universal language agnostic sentence embeddings

- Input language agnostic
- NLP task agnostic
- Why?
- Benefit of joint training
- Zero-shot transfer learning
- Code-switching

Short recap of history

Sentence embeddings

- Skip-thought (Kiros et al. 2015)
- NLI (Conneau et al., 2017)
- Multi-task (Cer et al. 2018)

Multilingual representations

- Focused on word embeddings
- Parallel corpora (Gouws et al., 2015)
- Post-processing (Artetxe et al., 2018a)

Short recap of history

- Seq-to-seq models on parallel corpora (Hassan et al., 2018)
- N-way parallel corpora
- Shared or multiple encoders (Holcher, 2018a)
- Limited number of languages (8)

No work on encoding large amounts of languages into one space

Key contributions

- Single sentence encoder for 93 languages
- SOTA on XNLI, BUCC and MLDoc
- New test set for 122 languages
- Training strategy

The data: 223 mln sentences

Europarl

United Nations

OpenSubtitles2018

Global voices

Tanzil

Tatoeba

http://opus.nlpl.eu

THE MODEL

Encoder

Decoder

Byte Pair Encoding (Sennrich et al., 2016)

- Need for shared vocabulary
- Words != atomic unit →
 Abwasserbehandlungsanlange
- Iterative procedure
- General purpose

Byte Pair Encoding "collage system" **D** : $X_1 = \mathbf{A};$ T = ABABCDEBDEFABDEABCText: $X_2 = \mathbf{B};$ →G **GGCDEBDEFGDEGC** $X_3 = C;$ $X_4 = D;$ **GGCHBHFGHGC** $X_5 = \mathbf{E};$ $X_6 = \mathbf{F};$ **GIHBHFGHI** $X_7 = X_1 \cdot X_2;$

 $V_0 = V_1 \cdot V_7 \cdot$

Experiments - XNLI

- 15 languages, 2500 dev, 5000 test
- English sentences to 14 languages
- Two layer MLP classifier
- Standard NLI representation (h,|h-p|,h*p,p)

Zero-Shot Transfer, one NLI system for all languages			EN							$EN \rightarrow XX$							
			fr	es	de	el	bg	ru	tr	ar	vi	th	zh	hi	SW	ur	
Conneau et. al.	X-BiLSTM	73.7	67.7	68.7	67.7	68.9	67.9	65.4	64.2	64.8	66.4	64.1	65.8	64.1	55.7	58.4	
(2018c)	X-CBOW	64.5	60.3	60.7	61.0	60.5	60.4	57.8	58.7	57.6	58.8	56.9	58.8	56.3	50.4	52.2	
BERT uncased*	Transformer	81.4	-	74.3	70.5	-	-	_	-	62.1	-	_	63.8	-	-	58.3	
Proposed method	BiLSTM	74.7	72.3	73.2	72.5	72.7	73.4	71.1	69.8	70.5	71.9	69.2	71.4	66.0	62.1	61.8	

- Similarity search
- Cosine similarity
- 122 languages aligned with English
- Test set 1000 sentences per language

Experiments – Tatoeba

amh	am	Amharic	Ethopian	Ge'ez	88k	60.71	55.30	168	
ara	ar	Arabic	Arabic	Arabic	8.2M	8.30	7.80	1000	
aym	ay	Aymara	Aymaran	Latin	14k	n/a	n/a	-	
aze	az	Azerbaijani	Turkic	Latin; Cyrillic; Persian	254k	44.10	23.90	1000	
cus	eu	Basque	Isolate	Latin	1.2M	5.70	5.00	1000	
ben	bn	Bengali	Indo-Aryan	Eastern-Nagari	913k	10.80	10.00	1000	
ber	ber	Berber languages	Berber	Latin	62k	29.80	33.70	1000	
nob	nb	Bokmål Norwegian	Germanic	Latin	4.1M	1.30	1.10	1000	
bos	bs	Bosnian	Slavic	Latin	4.2M	3.95	3.11	354	
bre	br	Breton	Celtic	Latin	29k	83.50	84.90	1000	
bul	bg	Bulgarian	Slavic	Cyrillic	4.9M	4.50	5.40	1000	
cat	ca	Catalan	Romance	Latin	813k	4.00	4.20	1000	
cmn	zh	Chinese mandarin	Chinese	Chinese	8.5M	4.10	5.00	1000	
swh	sw	(Coastal) Swahili	Niger-Congo	Latin	173k	45.64	39.23	390	
hrv	hr	Croatian	Slavic	Latin	4.0M	2.80	2.70	1000	
ces	cs	Czech	Slavic	Latin	5.5M	3.10	3.80	1000	
dan	da	Danish	Germanic	Latin	7.9M	3.90	4.00	1000	
nid	nl	Dutch	Germanic	Latin	8.4M	3.10	4.30	1000	
eng	en	English	Germanic	Latin	2.6M	n/a	n/a	1000	
epo	eo	Esperanto	constructed	Latin	397K	2.70	2.80	1000	
est	et	Estonian	Uralic	Latin	5.3M	3.20	3.40	1000	
nn	n	Finnish	Uralic	Latin	7.9M	3.70	3.70	1000	
ITA	п	French	Romance	Latin	3.401	4.40	4.30	1000	
gig	gı	Galician	Komance	Latin	349K	4.00	4.40	1000	
kat	ka	Georgian	Kartvelian	Georgian	2906	0.00	67.83	740	
acu	uc	German	Uallania	Carab	6.704	5.20	1.00	1000	
cii	ci ba	United	A fro- A sintic	Latin: Ambie	1271	5.30	4.80	1000	
hab	ha	Habray	Samitic	Habrany	4.1M	8 10	7.60	1000	
him	HC bi	Henrew	Jode Arren	Deverageri	9.101	5.90	4.80	1000	
hun	hu	Hungarian	Uralic	Latin	5 3M	3.00	4.00	1000	
iel	ic	Icelandic	Germanic	Latin	2.0M	4.40	4.40	1000	
ind	id is	Indonacian	Malawa Polymarian	Latin	4.3M	5.20	5.80	1000	
THE C	DS DS	Iranian Persian (Farsi)	Iranian	Persian	4.9M	7.20	6.00	1000	
ita		Italian	Romance	Latin	8 3M	4.60	4.80	1000	
inn	ia	Jananese	Janonic	Kaniji	3.2M	3.90	5.40	1000	
kab		Kabyle	Berber	Latin (modified)	15k	39.10	44 70	1000	
kor	ka	Korean	Koreanic	Hangul	1.4M	10.60	11.50	1000	
kur	ku	Kurdish	Iranian	Latin: Persian	50k	80.24	85.37	410	
lys	lv	Latavian	Baltic	Latin	2.0M	4.50	4.70	1000	
lat	la	Latin	Romance	Latin	19k	41.60	41.50	1000	
lit	lt	Lithuanian	Baltic	Latin	3.2M	4.10	3.40	1000	
nds		Low German / Saxon	Germanic	Latin	12k	18.60	15.60	1000	
mkd	mk	Macedonian	Slavic	Cyrillic	4.2M	5.20	5.40	1000	
mlg	mg	Malagasy	Malayo-Polynesian	Latin	355k	n/a	n/a	-	
zsm	ms	Malay	Malayo-Polynesian	Latin	2.9M	3.40	3.80	1000	
mal	ml	Malayalam	Dravidian	Malayalam	373k	3.35	2.91	687	
div	dv	Maldivian (Divehi)	Indo-Aryan	Thaana	90k	n/a	n/a	-	
mar	mr	Marathi	Indo-Aryan	Devanagari	31k	9.00	8.00	1000	
pol	pl	Polish	Slavic	Latin	5.5M	2.00	2.40	1000	
por	pt	Portuguese	Romance	Latin	8.3M	4.70	4.90	1000	
ron	ro	Romanian; Moldavian	Romance	Latin	4.9M	2.50	2.70	1000	
rus	ru –	Russian	Slavic	Cyrillic	9.3M	4.90	5.90	1000	
srp	SF	Serbian	Slavic	Cyrillic; Latin	4.0M	4.30	5.00	1000	
snd	sd	Sindhi	Iranian	Persian; Devanagari	91k	n/a	n/a	-	
sin	si	Sinhala	Indo-Arvan	Sinhala	796k	n/a	n/a	-	

Experiments – Tatoeba

			Details		Training	Tatoeba l	Error [%]	Tatoeba
ISO3	ISO2	Name	Family	Script	- corpus size	$en \to xx$	$xx \to en$	test set size
arq		Algerian Arabic	Arabic	Arabic	none	58.62	62.46	911
ast		Asturian	Romance Ibero	Latin	none	12.60	14.96	127
awa		Awadhi	Indo-Aryan	Devanagari	none	63.20	64.50	231
ceb		Cebuano	Malayo-Polynesian	Latin	none	81.67	87.00	600
cha	ch	Chamorro	Malayo-Polynesian (branch)	Latin	none	64.23	77.37	137
arz		Egyptian Arabic	Arabic	Arabic	none	31.24	31.03	477
fao	fo	Faroese	Germanic	Latin	none	28.24	28.63	262
gla	gd	Gaelic; Scottish Gaelic	Celtic	Latin	none	95.66	96.98	829
jav	jv	Javanese	Malayo-Polynesian	Latin	none	73.66	80.49	205
csb	-	Kashubian	Slavic	Latin	none	54.55	58.89	253
mon	mn	Mongolian	Mongolic	Cyrillic	none	89.55	94.09	440
max		North Moluccan Malay	Malay Creole	Latin	none	48.24	50.00	284
nov		Novial	constructed	Latin	none	33.07	35.02	257
nno	nn	Nynorsk Norwegian	Germanic	Latin	none	13.40	10.00	1000
ang		Old English	Germanic	Latin	none	58.96	65.67	134
pam		Pampangan; Kapampangan	Philippine	Latin	none	93.10	95.00	1000
pms		Piemontese	Romance	Latin	none	50.86	49.90	525
orv		Russian old	Slavic	Cyrillic	none	68.26	75.45	835
dsb		Sorbian Lower	Slavic	Latin	none	48.64	55.32	479
hsb		Sorbian Upper	Slavic	Latin	none	42.44	48.65	483
swg		Swabian	Germanic	Latin	none	50.00	58.04	112
gsw		Swiss German	Germanic	Latin	none	52.99	58.12	117
tzl		Talossan	constructed	Latin	none	54.81	55.77	104
tuk	tk	Turkmen	Turkic	Latin	none	75.37	83.25	203
war		Waray	Malayo-Polynesian	Latin	none	84.20	88.60	1000
cym	cy	Welsh	Celtic	Latin-Welsch	none	89.74	93.04	575
fry	fy	Western Frisian	Germanic	Latin	none	46.24	50.29	173
xho	xh	Xhosa	Niger-Congo	Latin	none	90.85	92.25	142
yid	yi	Yiddish	Germanic	Hebrew	none	93.28	95.40	848

Experiments – Tatoeba

- 48 < 10%
- 55 < 20%
- |5 > 50%
- But: performance can still be good on completely unseen languages

- New SOTA on XNLI, MLDoc and BUCC
- New Tatoeba test set

Conclusion

- Overall well written
- Two completely novel contributions
- Elaborate appendix & ablation experiments
- Little analysis on generalization gap between XNLI and Tatoeba
- Train data not open-sourced
- No significance anywhere
- Simple BiLSTM encoder a bit naïve

- Replace LSTM encoder
- Word-level capabilities

Future research

	en	fr	es	de	el	bg	ru	tr	ar	vi	th	zh	hi	SW	ur Δ
Machine translation baselines (TRANSLATE-TRAIN)															
Devlin et al. (2018) XLM (MLM+TLM)	81.9 <u>85.0</u>	- <u>80.2</u>	77.8 <u>80.8</u>	75.9 <u>80.3</u>	- <u>78.1</u>	- <u>79.3</u>	- <u>78.1</u>	- <u>74.7</u>	70.7 <u>76.5</u>	- <u>76.6</u>	- <u>75.5</u>	76.6 <u>78.6</u>	- 72.3	- <u>70.9</u>	61.6 - 63.2 <u>76.7</u>
Machine translation baselines (TRANSLATE-TEST)															
Devlin et al. (2018) XLM (MLM+TLM)	81.4 <u>85.0</u>	- 79.0	74.9 79.5	74.4 78.1	- 77.8	- 77.6	- 75.5	- 73.7	70.4 73.7	- 70.8	- 70.4	70.1 73.6	- 69.0	- 64.7	62.1 - 65.1 74.2
Evaluation of cross-lingual set	ntence (encode	rs												
Conneau et al. (2018b) Devlin et al. (2018) Artetxe and Schwenk (2018) XLM (MLM) XLM (MLM+TLM)	73.7 81.4 73.9 83.2 <u>85.0</u>	67.7 - 71.9 76.5 78.7	68.7 74.3 72.9 76.3 78.9	67.7 70.5 72.6 74.2 77.8	68.9 73.1 73.1 76.6	67.9 74.2 74.0 77.4	65.4 71.5 73.1 75.3	64.2 69.7 67.8 72.5	64.8 62.1 71.4 68.5 73.1	66.4 72.0 71.2 76.1	64.1 69.2 69.2 73.2	65.8 63.8 71.4 71.9 76.5	64.1 65.5 65.7 69.6	55.7 62.2 64.6 68.4	58.4 65.6 58.3 - 61.0 70.2 63.4 71.5 67.3 75.1

XLM BERT (LAMPLE ET AL., 2019)

THANK YOU