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Plan of the presentation

● (Brief) intro to multi-task learning 

● Model architecture 

● Model training

● Results

● Closing thoughts



JMT models?

● Solving multiple learning tasks at the same time → 

→ exploiting commonalities and differences across tasks

● Improve performance through:

○ Data amplification

○ Representation bias

○ Attribute selection

○ Eavesdropping



Why this paper?

● POS + Chunking + Dependency + Relatedness + Entailment 

● Hard parameter sharing + Layer per task

● Word embeddings + character embeddings 

● Label embeddings



● POS + Chunking + Dependency + Relatedness + Entailment 

● Hard parameter sharing + Layer per task

○ Regularization (to avoid forgetting)

○ Hierarchical order of layers

● Word embeddings + character embeddings 

● Label embeddings

Why this paper?



Why this paper?

● POS + Chunking + Dependency + Relatedness + Entailment 

● Hard parameter sharing + Layer per task

● Word embeddings + character embeddings 

○ Shortcut connections

● Label embeddings



Architecture of the JMT model



Joint Many-Task architecture

Predict increasingly complex 
NLP tasks at successively 
deeper layers



Word and character 
representations

Word: skip-gram

Character: n-gram skip-gram

→ concatenated

example for “standing”



POS tagging

Input:
word embedding

Output: 
label embedding 



POS tagging + Chunking

Input:
word embedding

Output: 
label embedding 

Input:
word embedding + POS embedding 
+ POS hidden state 
Output: 
label embedding



Dependency parsing
Instead of building dependency trees, 

predict parent node for each word.

Note: double set of parameters
LSTM weights, DEP matching function weights

Zhang, X., Cheng, J., & Lapata, M. (2016). 
Dependency parsing as head selection. 
arXiv preprint arXiv:1606.01280.



Dependency parsing

Input: 
word embedding + POS embedding + 

CHUNK embedding + 

CHUNK hidden state

Output:
Label (greedy selection)



Relatedness + Entailment

Input: 
word embedding + POS embedding + 

CHUNK embedding + 

DEP hidden state

Max-pooling:

Feature vector:



Training the JMT model



Overview

Trained jointly over all datasets in full, 
in order of the tasks (complexity):

1. POS (POS tagging)
2. CHK (Chunking)
3. DEP (Dependency parsing)
4. REL (Semantic relatedness)
5. ENT (Textual Entailment)



Pre-training

Word embeddings are pre-trained using Skip-Gram (SG) with 
negative sampling

Similarly, character n-gram embeddings are trained using SG

These are finetuned further during model training



POS tagging

Set of model parameters:

Objective function:

 

Task objective

L2-norm regularization
(task-specific weight-decay)

Succesive regularization



POS tagging

Task objective

The probability that  the correct label (𝛼) is assigned to wt of 
sentence s



POS tagging

L2-norm regularization (task-specific weight-decay)

𝜆 is a hyperparameter



POS tagging

Successive regularization

● 𝛿 is a hyperparameter
● 𝜽

e
 are the embedding parameters of the current epoch

● 𝜽’
e
 are the embedding parameters after training of the 

last task on the previous epoch

Avoids forgetting information learned previously (the 
embedding parameters of the current epoch shouldn’t deviate 
too much from those of the previous epoch)



Chunking

Set of model parameters:

Objective function:

 



Dependency parsing

Set of model parameters:

Objective function:

 



Semantic Relatedness

Set of model parameters:

Objective function:

 



Semantic Relatedness

KL-divergence between:

● the true distribution over the relatedness scores
● the predicted distribution over the relatedness scores



Textual Entailment

Set of model parameters:

Objective function:

 



Experiments & Results



Experimental settings

Task Dataset Metric

POS Wall Street Journal (WSJ) portion of the 
Penn Treebank

Word-level accuracy

CHK WSJ F-measure

DEP WSJ Unlabeled Attachment Score (UAS) and 
Labeled Attachment Score (LAS)

REL SICK dataset MSE

ENT SICK dataset Accuracy



JMT model (variant) performance 
on the test sets

All results of the 5 tasks are improved upon with the JMT model

The model variants show that the JMT model improves both the 
high-level and low-level tasks



Comparison with published results: 
POS & CHK



Comparison with published results: 
DEP, REL & ENT



Analysis of model architectures

Takeaways:

● The “Shortcut” connections (SC) and the output label embeddings (LE) of 
the previous layers are important for model performance

● Having different layers for different tasks performs best
● Successive regularization mostly affects the chunking task (small dataset)
● Using the bi-LSTM hidden states of the previous layer (task) works 

better than just “stacking” the various bi-LSTM layers



Analysis of model architectures

Takeaways:

● The order of tasks during training is important for model performance
● Joint learning is more important than making the models deeper only for 

single tasks
● Using the n-gram character embeddings next to the word embeddings is 

helpful in improving model performance



Closing thoughts



Likes

● It introduces a powerful, novel model architecture for 

JTL problems

● It addresses ways of dealing with the issues of 

forgetting / interference

● Elaborate analysis of the model architectures



Dislikes

● Often-times quite confusing

● No statistical significances

● Lacks results on the training process and dynamics of 

model performance

● Little investigation into how the model benefits from 

the MTL setup 



Future research

● Exploring other training strategies (model convergence)
● Exploring using more tasks
● Exploring a different layer ordering (reversed, maybe?)
● Incorporate character-based embeddings into the JMT 

model
● Incorporating an attention mechanism to the 

dependency parsing
● Using the output of the dependency layer in further 

layers



Related work

POS + CHUNK + LM [1]
POS + CHUNK + CCG [2]
POS + DEP [3]
Entity detection + relation extraction [4]

[1] Godwin, J., Stenetorp, P., & Riedel, S. (2016). Deep semi-supervised learning with linguistically motivated sequence labeling task 
hierarchies. arXiv preprint arXiv:1612.09113.
[2] Søgaard, A., & Goldberg, Y. (2016). Deep multi-task learning with low level tasks supervised at lower layers. In Proceedings of the 
54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (Vol. 2, pp. 231-235).
[3] Zhang, Y., & Weiss, D. (2016). Stack-propagation: Improved representation learning for syntax. arXiv preprint arXiv:1603.06598.
[4] Miwa, M., & Bansal, M. (2016). End-to-end relation extraction using lstms on sequences and tree structures. arXiv preprint 
arXiv:1601.00770.



Questions and/or 
comments?



Appendix



Takeaway:

● The “Shortcut” connections (SC) 
and the output label embeddings 
(LE) of the previous layers are 
important for model performance

Results: Importance of “Shortcut” 
connections and label embeddings



“All-3” shows the results of using the 
“highest” (ie the 3rd layer) for all 3 tasks

Takeaway:

● Having different layers for 
different tasks performs best, also 
when the number of model 
parameters are equal

Results: Importance of different 
layers for different tasks



Takeaways: 

● Successive regularization mostly 
affects the chunking task

● Using the bi-LSTM hidden states of 
the previous layer (task) works 
better than just “stacking” the 
various bi-LSTM layers

Results: Importance of successive 
regularization & vertical connections



Takeaway: 

● The order of tasks during training 
is important for model 
performance!

Results: Importance of layer 
ordering



Takeaways: 

● Deeper is not always better
● Joint learning is more important 

than making the models complex 
only for single tasks

Results: Importance of depth



Takeaways: 

● Using the n-gram character 
embeddings next to the word 
embeddings is helpful in improving 
model performance!

Results: Importance of n-gram 
character embeddings



Faculty of Science

Presented by: Freddy de Greef

Detect Rumor and Stance Jointly by Neural Multi-task Learning
authors: Jing Ma, Wei Gao & Kam-Fai Wong



Faculty of Science

Rumor detection



Faculty of Science

Stance detection

[1]



Faculty of Science

Truthfulness related to stances



Faculty of Science

Multi-task learning on movie reviews
[2]

Related work



Faculty of Science

• Joint learning for rumor and stance detection
• Improvements on [2],

• Heterogeneous rumor related tasks
• Separate objectives of different tasks
• Usage of GRU

Key Contributions



Faculty of Science

• Twitter dataset from Lui et al for Rumor detection
• News articles from Fake News Challenge for stance classification
• Twitter dataset from Pheme dataset for stance classification

Data



Faculty of Science

Rumor detection



Faculty of Science

Stance detection



Faculty of Science

Model 1: Uniform Shared-Layer Architecture



Faculty of Science

Standard GRU



Faculty of Science

Shared layer

X uses vector representation with tf*idf values



Faculty of Science

Model 2: Enhanced Shared-Layer Architecture



Faculty of Science

Task specific layer



Faculty of Science

Multi task model

Training



Faculty of Science

Experiments

LIU: Data distribution conform real world



Faculty of Science

Results Rumor detection 

Results depending on dataset other task
Positive influence of task specific layer



Faculty of Science

Results Stance
Results dependending on dataset
Disagree stands out 



Faculty of Science

Layer behavior



Faculty of Science

Positive effect of joint learning with multi-task model
Dataset of the other task influences current task

Conclusion



Faculty of Science

Utilizing computational trust to identify rumor spreaders [3]
Rumor Detection on Twitter with Tree-structured Recursive NeuralNetworks
[4]

Future work Rumor Detection



Faculty of Science

From Stances’ Imbalance to Their Hierarchical Representation and Detection 
[5]

Future work Stance Classification



Faculty of Science

Real world problem
Implementation seemed very simple
Multi task learning with N tasks
Usage of Twitter data

My thoughts
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