
Joint Many-Task Model:
NN for multiple NLP tasks

Statistical Methods for Natural Language Semantics
Steven van de Graaf, Azamat Omuraliev

Plan of the presentation

● (Brief) intro to multi-task learning

● Model architecture

● Model training

● Results

● Closing thoughts

JMT models?

● Solving multiple learning tasks at the same time →

→ exploiting commonalities and differences across tasks

● Improve performance through:

○ Data amplification

○ Representation bias

○ Attribute selection

○ Eavesdropping

Why this paper?

● POS + Chunking + Dependency + Relatedness + Entailment

● Hard parameter sharing + Layer per task

● Word embeddings + character embeddings

● Label embeddings

● POS + Chunking + Dependency + Relatedness + Entailment

● Hard parameter sharing + Layer per task

○ Regularization (to avoid forgetting)

○ Hierarchical order of layers

● Word embeddings + character embeddings

● Label embeddings

Why this paper?

Why this paper?

● POS + Chunking + Dependency + Relatedness + Entailment

● Hard parameter sharing + Layer per task

● Word embeddings + character embeddings

○ Shortcut connections

● Label embeddings

Architecture of the JMT model

Joint Many-Task architecture

Predict increasingly complex
NLP tasks at successively
deeper layers

Word and character
representations

Word: skip-gram

Character: n-gram skip-gram

→ concatenated

example for “standing”

POS tagging

Input:
word embedding

Output:
label embedding

POS tagging + Chunking

Input:
word embedding

Output:
label embedding

Input:
word embedding + POS embedding
+ POS hidden state
Output:
label embedding

Dependency parsing
Instead of building dependency trees,

predict parent node for each word.

Note: double set of parameters
LSTM weights, DEP matching function weights

Zhang, X., Cheng, J., & Lapata, M. (2016).
Dependency parsing as head selection.
arXiv preprint arXiv:1606.01280.

Dependency parsing

Input:
word embedding + POS embedding +

CHUNK embedding +

CHUNK hidden state

Output:
Label (greedy selection)

Relatedness + Entailment

Input:
word embedding + POS embedding +

CHUNK embedding +

DEP hidden state

Max-pooling:

Feature vector:

Training the JMT model

Overview

Trained jointly over all datasets in full,
in order of the tasks (complexity):

1. POS (POS tagging)
2. CHK (Chunking)
3. DEP (Dependency parsing)
4. REL (Semantic relatedness)
5. ENT (Textual Entailment)

Pre-training

Word embeddings are pre-trained using Skip-Gram (SG) with
negative sampling

Similarly, character n-gram embeddings are trained using SG

These are finetuned further during model training

POS tagging

Set of model parameters:

Objective function:

Task objective

L2-norm regularization
(task-specific weight-decay)

Succesive regularization

POS tagging

Task objective

The probability that the correct label (𝛼) is assigned to wt of
sentence s

POS tagging

L2-norm regularization (task-specific weight-decay)

𝜆 is a hyperparameter

POS tagging

Successive regularization

● 𝛿 is a hyperparameter
● 𝜽

e
 are the embedding parameters of the current epoch

● 𝜽’
e
 are the embedding parameters after training of the

last task on the previous epoch

Avoids forgetting information learned previously (the
embedding parameters of the current epoch shouldn’t deviate
too much from those of the previous epoch)

Chunking

Set of model parameters:

Objective function:

Dependency parsing

Set of model parameters:

Objective function:

Semantic Relatedness

Set of model parameters:

Objective function:

Semantic Relatedness

KL-divergence between:

● the true distribution over the relatedness scores
● the predicted distribution over the relatedness scores

Textual Entailment

Set of model parameters:

Objective function:

Experiments & Results

Experimental settings

Task Dataset Metric

POS Wall Street Journal (WSJ) portion of the
Penn Treebank

Word-level accuracy

CHK WSJ F-measure

DEP WSJ Unlabeled Attachment Score (UAS) and
Labeled Attachment Score (LAS)

REL SICK dataset MSE

ENT SICK dataset Accuracy

JMT model (variant) performance
on the test sets

All results of the 5 tasks are improved upon with the JMT model

The model variants show that the JMT model improves both the
high-level and low-level tasks

Comparison with published results:
POS & CHK

Comparison with published results:
DEP, REL & ENT

Analysis of model architectures

Takeaways:

● The “Shortcut” connections (SC) and the output label embeddings (LE) of
the previous layers are important for model performance

● Having different layers for different tasks performs best
● Successive regularization mostly affects the chunking task (small dataset)
● Using the bi-LSTM hidden states of the previous layer (task) works

better than just “stacking” the various bi-LSTM layers

Analysis of model architectures

Takeaways:

● The order of tasks during training is important for model performance
● Joint learning is more important than making the models deeper only for

single tasks
● Using the n-gram character embeddings next to the word embeddings is

helpful in improving model performance

Closing thoughts

Likes

● It introduces a powerful, novel model architecture for

JTL problems

● It addresses ways of dealing with the issues of

forgetting / interference

● Elaborate analysis of the model architectures

Dislikes

● Often-times quite confusing

● No statistical significances

● Lacks results on the training process and dynamics of

model performance

● Little investigation into how the model benefits from

the MTL setup

Future research

● Exploring other training strategies (model convergence)
● Exploring using more tasks
● Exploring a different layer ordering (reversed, maybe?)
● Incorporate character-based embeddings into the JMT

model
● Incorporating an attention mechanism to the

dependency parsing
● Using the output of the dependency layer in further

layers

Related work

POS + CHUNK + LM [1]
POS + CHUNK + CCG [2]
POS + DEP [3]
Entity detection + relation extraction [4]

[1] Godwin, J., Stenetorp, P., & Riedel, S. (2016). Deep semi-supervised learning with linguistically motivated sequence labeling task
hierarchies. arXiv preprint arXiv:1612.09113.
[2] Søgaard, A., & Goldberg, Y. (2016). Deep multi-task learning with low level tasks supervised at lower layers. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers) (Vol. 2, pp. 231-235).
[3] Zhang, Y., & Weiss, D. (2016). Stack-propagation: Improved representation learning for syntax. arXiv preprint arXiv:1603.06598.
[4] Miwa, M., & Bansal, M. (2016). End-to-end relation extraction using lstms on sequences and tree structures. arXiv preprint
arXiv:1601.00770.

Questions and/or
comments?

Appendix

Takeaway:

● The “Shortcut” connections (SC)
and the output label embeddings
(LE) of the previous layers are
important for model performance

Results: Importance of “Shortcut”
connections and label embeddings

“All-3” shows the results of using the
“highest” (ie the 3rd layer) for all 3 tasks

Takeaway:

● Having different layers for
different tasks performs best, also
when the number of model
parameters are equal

Results: Importance of different
layers for different tasks

Takeaways:

● Successive regularization mostly
affects the chunking task

● Using the bi-LSTM hidden states of
the previous layer (task) works
better than just “stacking” the
various bi-LSTM layers

Results: Importance of successive
regularization & vertical connections

Takeaway:

● The order of tasks during training
is important for model
performance!

Results: Importance of layer
ordering

Takeaways:

● Deeper is not always better
● Joint learning is more important

than making the models complex
only for single tasks

Results: Importance of depth

Takeaways:

● Using the n-gram character
embeddings next to the word
embeddings is helpful in improving
model performance!

Results: Importance of n-gram
character embeddings

Faculty of Science

Presented by: Freddy de Greef

Detect Rumor and Stance Jointly by Neural Multi-task Learning
authors: Jing Ma, Wei Gao & Kam-Fai Wong

Faculty of Science

Rumor detection

Faculty of Science

Stance detection

[1]

Faculty of Science

Truthfulness related to stances

Faculty of Science

Multi-task learning on movie reviews
[2]

Related work

Faculty of Science

• Joint learning for rumor and stance detection
• Improvements on [2],

• Heterogeneous rumor related tasks
• Separate objectives of different tasks
• Usage of GRU

Key Contributions

Faculty of Science

• Twitter dataset from Lui et al for Rumor detection
• News articles from Fake News Challenge for stance classification
• Twitter dataset from Pheme dataset for stance classification

Data

Faculty of Science

Rumor detection

Faculty of Science

Stance detection

Faculty of Science

Model 1: Uniform Shared-Layer Architecture

Faculty of Science

Standard GRU

Faculty of Science

Shared layer

X uses vector representation with tf*idf values

Faculty of Science

Model 2: Enhanced Shared-Layer Architecture

Faculty of Science

Task specific layer

Faculty of Science

Multi task model

Training

Faculty of Science

Experiments

LIU: Data distribution conform real world

Faculty of Science

Results Rumor detection

Results depending on dataset other task
Positive influence of task specific layer

Faculty of Science

Results Stance
Results dependending on dataset
Disagree stands out

Faculty of Science

Layer behavior

Faculty of Science

Positive effect of joint learning with multi-task model
Dataset of the other task influences current task

Conclusion

Faculty of Science

Utilizing computational trust to identify rumor spreaders [3]
Rumor Detection on Twitter with Tree-structured Recursive NeuralNetworks
[4]

Future work Rumor Detection

Faculty of Science

From Stances’ Imbalance to Their Hierarchical Representation and Detection
[5]

Future work Stance Classification

Faculty of Science

Real world problem
Implementation seemed very simple
Multi task learning with N tasks
Usage of Twitter data

My thoughts

Faculty of Science

1. Abbott, R., Walker, M., Anand, P., Fox Tree, J. E., Bowmani, R., & King, J. (2011, June). How can you say
such things?!?: Recognizing disagreement in informal political argument. In Proceedings of the Workshop
on Languages in Social Media (pp. 2-11). Association for Computational Linguistics.

2. Liu, P., Qiu, X., & Huang, X. (2016). Recurrent neural network for text classification with multi-task
learning. arXiv preprint arXiv:1605.05101.

3. Rath, B., Gao, W., Ma, J., & Srivastava, J. (2018). Utilizing computational trust to identify rumor spreaders
on Twitter. Social Network Analysis and Mining, 8(1), 64.

4. Ma, J., Gao, W., & Wong, K. F. (2018, July). Rumor detection on twitter with tree-structured recursive
neural networks. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers) (pp. 1980-1989).

5. Zhang, Q., Liang, S., Lipani, A., Ren, Z., & Yilmaz, E. (2019, May). From Stances’ Imbalance to Their
Hierarchical Representation and Detection. In Companion Proceedings of the The Web Conference.

References

