Joint Many-Task Model: NN for multiple NLP tasks

Statistical Methods for Natural Language Semantics Steven van de Graaf, Azamat Omuraliev

Plan of the presentation

- (Brief) intro to multi-task learning
- Model architecture
- Model training
- Results
- Closing thoughts

JMT models?

• Solving multiple learning tasks at the same time \rightarrow

 \rightarrow exploiting commonalities and differences across tasks

- Improve performance through:
 - Data amplification
 - Representation bias
 - Attribute selection
 - Eavesdropping

Why this paper?

- POS + Chunking + Dependency + Relatedness + Entailment
- Hard parameter sharing + Layer per task
- Word embeddings + character embeddings
- Label embeddings

Why this paper?

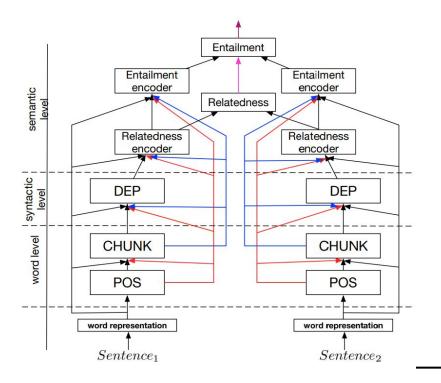
- POS + Chunking + Dependency + Relatedness + Entailment
- Hard parameter sharing + Layer per task
 - Regularization (to avoid forgetting)
 - Hierarchical order of layers
- Word embeddings + character embeddings
- Label embeddings

Why this paper?

- POS + Chunking + Dependency + Relatedness + Entailment
- Hard parameter sharing + Layer per task
- Word embeddings + character embeddings
 - Shortcut connections
- Label embeddings

Architecture of the JMT model

Joint Many-Task architecture



Predict increasingly complex NLP tasks at successively deeper layers

	Word and char	Only word
	leaning	stood
Embedding	kneeling	stands
	saluting	sit
	clinging	pillar
	railing	cross-legged
	warning	ladder
	waxing	rc6280
POS	dunking	bethle
	proving	warning
	tipping	f-a-18
	applauding	fight
	disdaining	favor
Chunking	pickin	pick
	readjusting	rejoin
	reclaiming	answer
	guaranteeing	patiently
	resting	hugging
Dependency	grounding	anxiously
	hanging	resting
	hugging	disappointment
	stood	stood
	stands	unchallenged
Relatedness	unchallenged	stands
	notwithstanding	beside
	judging	exists
	nudging	beside
	skirting	stands
Entailment	straddling	pillar
	contesting	swung
	footing	ovation

Word and character representations

Word: skip-gram

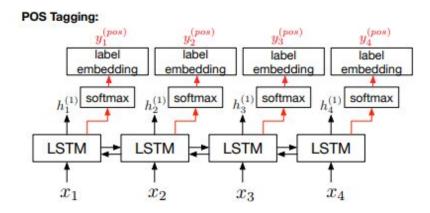
Character: n-gram skip-gram

 \rightarrow concatenated

example for "standing"

Input: word embedding Output:

label embedding



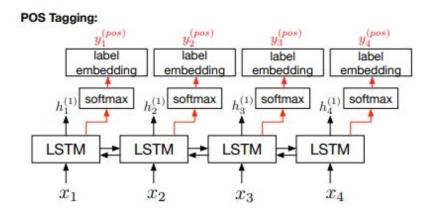
POS tagging + Chunking

Input:

word embedding

Output:

label embedding

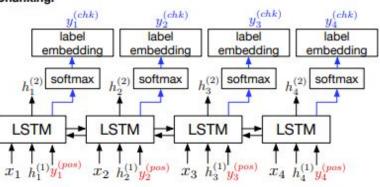


Input:

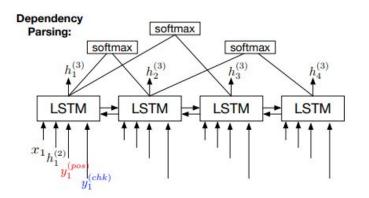
word embedding + POS embedding + POS hidden state Output: $h_t = [\overrightarrow{h}_t; \overleftarrow{h}_t]$

label embedding

Chunking:



Dependency parsing



Instead of building dependency trees, predict parent node for each word.

$$p(j|h_t^{(3)}) = \frac{\exp(m(t,j))}{\sum_{k=1,k\neq t}^{L+1}\exp(m(t,k))}$$

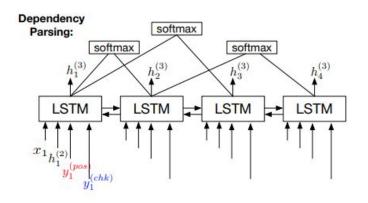
Note: double set of parameters

LSTM weights, DEP matching function weights

$$\theta_{\rm dep} = (W_{\rm dep}, b_{\rm dep}, W_d, r, E_{\rm POS}, E_{\rm chk}, \theta_e)$$

Zhang, X., Cheng, J., & Lapata, M. (2016). Dependency parsing as head selection. *arXiv preprint arXiv:1606.01280*.

Dependency parsing

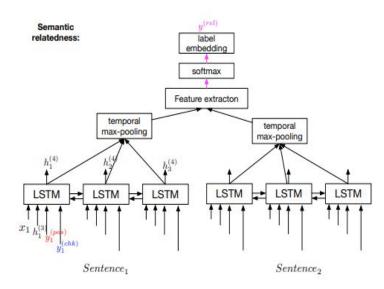


Input:

word embedding + POS embedding + CHUNK embedding + CHUNK hidden state

Output: Label (greedy selection)

Relatedness + Entailment



Input:

word embedding + POS embedding + CHUNK embedding +

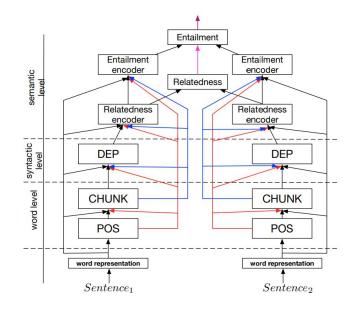
DEP hidden state

Max-pooling:
$$h_{\mathbf{s}}^{(4)} = \max\left(h_{1}^{(4)}, h_{2}^{(4)}, \dots, h_{L}^{(4)}\right)$$

Feature vector: $d_{1}(s, s') = \left[\left|h_{\mathbf{s}}^{(4)} - h_{\mathbf{s'}}^{(4)}\right|; h_{\mathbf{s}}^{(4)} \odot h_{\mathbf{s'}}^{(4)}\right]$

Training the JMT model

Overview



Trained **jointly** over **all** datasets in **full**, in **order** of the tasks (complexity):

- 1. POS (POS tagging)
- 2. CHK (Chunking)
- 3. DEP (Dependency parsing)
- 4. REL (Semantic relatedness)
- 5. ENT (Textual Entailment)

Pre-training

Word embeddings are pre-trained using Skip-Gram (SG) with negative sampling

Similarly, character *n*-gram embeddings are trained using SG

These are finetuned further during model training

Set of model parameters: $\theta_{POS} = (W_{POS}, b_{POS}, \theta_e)$

Objective function: $J_{1}(\theta_{POS}) = -\sum_{s} \sum_{t} \log p(y_{t}^{(1)} = \alpha | h_{t}^{(1)}) + \lambda \| W_{POS} \|^{2} + \delta \| \theta_{e} - \theta_{e}' \|^{2},$ (6) L2-norm regularization (task-specific weight-decay) Succesive regularization

Task objective

$$-\sum_{s}\sum_{t}\log p(y_{t}^{(1)} = \alpha | h_{t}^{(1)})$$

The probability that the correct label (α) is assigned to w_t of sentence s

$$p(y_t^{(1)} = \alpha | h_t^{(1)})$$

L2-norm regularization (task-specific weight-decay) $\lambda \| W_{\rm POS} \|^2$

 λ is a hyperparameter

Successive regularization $\delta \| heta_e - heta_e' \|^2$

- δ is a hyperparameter
- θ_{a} are the embedding parameters of the current epoch
- θ'_{e} are the embedding parameters after training of the last task on the previous epoch

Avoids forgetting information learned previously (the embedding parameters of the current epoch shouldn't deviate too much from those of the previous epoch)

Chunking

Set of model parameters: $\theta_{chk} = (W_{chk}, b_{chk}, E_{pos}, \theta_e)$ Objective function:

$$J_{2}(\theta_{\rm chk}) = -\sum_{s} \sum_{t} \log p(y_{t}^{(2)} = \alpha | h_{t}^{(2)}) + \lambda \| W_{\rm chk} \|^{2} + \delta \| \theta_{\rm POS} - \theta_{\rm POS}^{\prime} \|^{2},$$
(7)

Dependency parsing

Set of model parameters: $\theta_{dep} = (W_{dep}, b_{dep}, W_d, r, E_{POS}, E_{chk}, \theta_e)$

Objective function:

$$J_{3}(\theta_{dep}) = -\sum_{s} \sum_{t} \log p(\alpha | h_{t}^{(3)}) p(\beta | h_{t}^{(3)}, h_{\alpha}^{(3)}) + \lambda(||W_{dep}||^{2} + ||W_{d}||^{2}) + \delta ||\theta_{chk} - \theta_{chk}'||^{2},$$
(8)

Semantic Relatedness

Set of model parameters: $\theta_{rel} = (W_{rel}, b_{rel}, E_{POS}, E_{chk}, \theta_e)$

Objective function:

$$J_{4}(\theta_{\rm rel}) = \sum_{(s,s')} \operatorname{KL}\left(\hat{p}(s,s') \left\| p(h_{s}^{(4)}, h_{s'}^{(4)}) \right) + \lambda \| W_{\rm rel} \|^{2} + \delta \| \theta_{\rm dep} - \theta_{\rm dep}' \|^{2},$$
(9)

Semantic Relatedness

$$\operatorname{KL}\left(\hat{p}(s,s') \left\| p(h_s^{(4)}, h_{s'}^{(4)}) \right)$$

KL-divergence between:

- the true distribution over the relatedness scores
- the *predicted* distribution over the relatedness scores

Textual Entailment

Set of model parameters: $\theta_{ent} = (W_{ent}, b_{ent}, E_{POS}, E_{chk}, E_{rel}, \theta_e)$

Objective function:

$$J_{5}(\theta_{\text{ent}}) = -\sum_{(s,s')} \log p(y_{(s,s')}^{(5)} = \alpha |h_{s}^{(5)}, h_{s'}^{(5)}) + \lambda \|W_{\text{ent}}\|^{2} + \delta \|\theta_{\text{rel}} - \theta_{\text{rel}}'\|^{2},$$
(10)

Experiments & Results

Experimental settings

Task	Dataset	Metric
POS	Wall Street Journal (WSJ) portion of the Penn Treebank	Word-level accuracy
СНК	WSJ	F-measure
DEP	WSJ	Unlabeled Attachment Score (UAS) and Labeled Attachment Score (LAS)
REL	SICK dataset	MSE
ENT	SICK dataset	Accuracy

JMT model (variant) performance on the test sets

		Single	$\mathrm{JMT}_{\mathrm{all}}$	JMT _{AB}	$JMT_{\rm ABC}$	$JMT_{\rm DE}$	$\mathrm{JMT}_{\mathrm{CD}}$	$JMT_{\rm CE}$
A↑	POS	97.45	97.55	97.52	97.54	n/a	n/a	n/a
B ↑	Chunking	95.02	n/a	95.77	n/a	n/a	n/a	n/a
C ↑	Dependency UAS	93.35	94.67	n/a	94.71	n/a	93.53	93.57
C	Dependency LAS	91.42	92.90	n/a	92.92	n/a	91.62	91.69
D↓	Relatedness	0.247	0.233	n/a	n/a	0.238	0.251	n/a
E ↑	Entailment	81.8	86.2	n/a	n/a	86.8	n/a	82.4

Table 1: Test set results for the five tasks. In the relatedness task, the lower scores are better. All results of the 5 tasks are improved upon with the JMT model

The model variants show that the JMT model improves both the high-level and low-level tasks

Comparison with published results: POS & CHK

Method	Acc. ↑	Method	F1 ↑
JMT _{all}	97.55	JMT _{AB}	95.77
Ling et al. (2015)	97.78	Single	95.02
Kumar et al. (2016)	97.56	Søgaard and Goldberg (2016)	95.56
Ma and Hovy (2016)	97.55	Suzuki and Isozaki (2008)	95.15
Søgaard (2011)	97.50	Collobert et al. (2011)	94.32
Collobert et al. (2011)	97.29	Kudo and Matsumoto (2001)	93.91
Tsuruoka et al. (2011)	97.28	Tsuruoka et al. (2011)	93.81
Toutanova et al. (2003)	97.27	13uruoka et al. (2011)	75.01

Table 2: POS tagging results.

Table 3: Chunking results.

Comparison with published results: DEP, REL & ENT

Method	UAS ↑	LAS ↑
JMT _{all}	94.67	92.90
Single	93.35	91.42
Dozat and Manning (2017)	95.74	94.08
Andor et al. (2016)	94.61	92.79
Alberti et al. (2015)	94.23	92.36
Zhang et al. (2017)	94.10	91.90
Weiss et al. (2015)	93.99	92.05
Dyer et al. (2015)	93.10	90.90
Bohnet (2010)	92.88	90.71

Table 4: Dependency results.

Method	$MSE\downarrow$
JMT _{all}	0.233
JMT_{DE}	0.238
Zhou et al. (2016)	0.243
Tai et al. (2015)	0.253

Table 5:	Semantic	relatedness	results.
----------	----------	-------------	----------

Method	Acc. ↑
JMT _{all}	86.2
$\rm JMT_{\rm DE}$	86.8
Yin et al. (2016)	86.2
Lai and Hockenmaier (2014)	84.6

Table 6: Textual entailment results.

Analysis of model architectures

Takeaways:

- The "Shortcut" connections (SC) and the output label embeddings (LE) of the previous layers are important for model performance
- Having different layers for different tasks performs best
- *Successive* regularization mostly affects the chunking task (small dataset)
- Using the bi-LSTM hidden states of the previous layer (task) works better than just "stacking" the various bi-LSTM layers

Analysis of model architectures

Takeaways:

- The order of tasks during training is important for model performance
- Joint learning is more important than making the models deeper only for single tasks
- Using the *n*-gram character embeddings next to the word embeddings is helpful in improving model performance

Closing thoughts

Likes

- It introduces a powerful, novel model architecture for JTL problems
- It addresses ways of dealing with the issues of forgetting / interference
- Elaborate analysis of the model architectures

Dislikes

- Often-times quite confusing
- No statistical significances
- Lacks results on the training process and dynamics of model performance
- Little investigation into how the model benefits from the MTL setup

Future research

- Exploring other training strategies (model convergence)
- Exploring using more tasks
- Exploring a different layer ordering (reversed, maybe?)
- Incorporate character-based embeddings into the JMT model
- Incorporating an attention mechanism to the dependency parsing
- Using the output of the dependency layer in further layers

Related work

POS + CHUNK + LM [1] POS + CHUNK + CCG [2] POS + DEP [3] Entity detection + relation extraction [4]

[1] Godwin, J., Stenetorp, P., & Riedel, S. (2016). Deep semi-supervised learning with linguistically motivated sequence labeling task hierarchies. *arXiv preprint arXiv:1612.09113*.

[2] Søgaard, A., & Goldberg, Y. (2016). Deep multi-task learning with low level tasks supervised at lower layers. In *Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)* (Vol. 2, pp. 231-235).

[3] Zhang, Y., & Weiss, D. (2016). Stack-propagation: Improved representation learning for syntax. arXiv preprint arXiv:1603.06598.
 [4] Miwa, M., & Bansal, M. (2016). End-to-end relation extraction using lstms on sequences and tree structures. arXiv preprint arXiv:1601.00770.

Questions and/or comments?

Appendix

Results: Importance of "Shortcut" connections and label embeddings

	JMT _{all}	w/o SC	w/o LE	w/o SC&LE
POS	97.88	97.79	97.85	97.87
Chunking	97.59	97.08	97.40	97.33
Dependency UAS	94.51	94.52	94.09	94.04
Dependency LAS	92.60	92.62	92.14	92.03
Relatedness	0.236	0.698	0.261	0.765
Entailment	84.6	75.0	81.6	71.2

Table 7: Effectiveness of the Shortcut Connections (SC) and the Label Embeddings (LE).

Takeaway:

 The "Shortcut" connections (SC) and the output label embeddings (LE) of the previous layers are important for model performance

Results: Importance of different layers for different tasks

	JMT ABC	w/o SC&LE	All-3
POS	97.90	97.87	97.62
Chunking	97.80	97.41	96.52
Dependency UAS	94.52	94.13	93.59
Dependency LAS	92.61	92.16	91.47

Table 8: Effectiveness of using different layers for different tasks.

"All-3" shows the results of using the "highest" (ie the 3rd layer) for all 3 tasks

Takeaway:

 Having different layers for different tasks performs best, also when the number of model parameters are equal

Results: Importance of *successive* regularization & vertical connections

	JMT _{all}	w/o SR	w/o VC
POS	97.88	97.85	97.82
Chunking	97.59	97.13	97.45
Dependency UAS	94.51	94.46	94.38
Dependency LAS	92.60	92.57	92.48
Relatedness	0.236	0.239	0.241
Entailment	84.6	84.2	84.8

Table 9: Effectiveness of the Successive Regularization (SR) and the Vertical Connections (VC). Takeaways:

- Successive regularization mostly affects the chunking task
- Using the bi-LSTM hidden states of the previous layer (task) works better than just "stacking" the various bi-LSTM layers

Results: Importance of layer ordering

	JMT _{all}	Random
POS	97.88	97.83
Chunking	97.59	97.71
Dependency UAS	94.51	94.66
Dependency LAS	92.60	92.80
Relatedness	0.236	0.298
Entailment	84.6	83.2

Table 10: Effects of the order of training.

Takeaway:

• The order of tasks during training is important for model performance!

Results: Importance of depth

	Single	Single+
POS	97	7.52
Chunking	95.65	96.08
Dependency UAS	93.38	93.88
Dependency LAS	91.37	91.83
Relatedness	0.239	0.665
Entailment	83.8	66.4

Table 11: Effects of depth for the *single* tasks.

Takeaways:

- Deeper is not always better
- Joint learning is more important than making the models complex only for single tasks

Results: Importance of *n*-gram character embeddings

Single	W&C	Only W
POS	97.52	96.26
Chunking	95.65	94.92
Dependency UAS	93.38	92.90
Dependency LAS	91.37	90.44

Table 12: Effects of the character embeddings.

Takeaways:

• Using the *n*-gram character embeddings next to the word embeddings is helpful in improving model performance!

Detect Rumor and Stance Jointly by Neural Multi-task Learning

authors: Jing Ma, Wei Gao & Kam-Fai Wong

Presented by: Freddy de Greef

Rumor detection LOTTERY WINNER ARRESTED FOR DUMPING \$200,000 OF MANURE ON EX-BOSS' LAWN

Yes, Russian Trolls Helped Elect Trump

Social media lies have real-world consequences.

DOTAN EXPOSED: MUSICIAN ACCUSED OF MASTERMINDING FAKE FAN ACCOUNTS

UNIVERSITY OF AMSTERDAM Faculty of Science

Stance detection

		\otimes
Class	Very High Degree	Neutral
Insult or Attack	Well, you have proven yoruself to be a man with no brain, that is for sure. The definition that was given was the one that scientists use, not the layperson.	The empire you defend is tyrannical. They are responsible for the death of mil- lions.
	Is that what you said right be- fore they started banning assault weapons?Obviously, you're gullible. Since you're such a brainiac and all, why don't you visit the UN website and see what your beloved UN is up to?	Bad comparisons. A fair comparison would be comparing the total number of defensive gun uses to the total number of gun crimes (not just limiting it to gun homicides).
Sarcasm	My pursuit of happiness is denied by trees existing. Let's burn them down and destroy the environment. It's much bet- ter than me being unhappy.	An interesting analysis of that article you keep quoting from the World Net Daily [url]
	Like the crazy idea the Earth goes around the Sun.	Indeed there is no diffrence it is still a dead baby but throwing a baby in a trash can and leaving it for dead is far more cruel than abortion.

(Z)

S

(2)

(T

➁

 (\mathcal{O})

 (\mathbf{z})

2)

Z

()

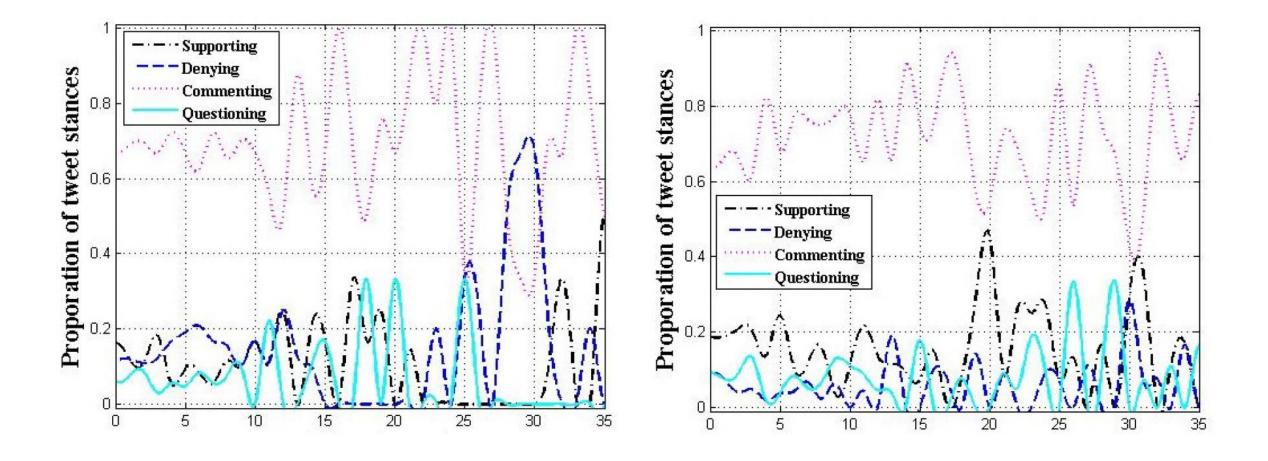
B

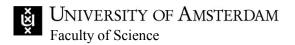
E

2

(7)

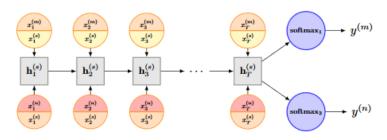
Truthfulness related to stances



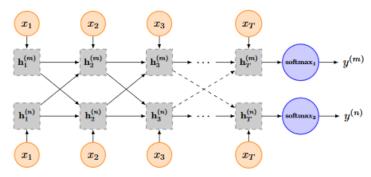


Related work

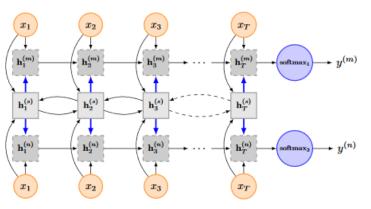
Multi-task learning on movie reviews [2]



(a) Model-I: Uniform-Layer Architecture



(b) Model-II: Coupled-Layer Architecture



(c) Model-III: Shared-Layer Architecture

Key Contributions

- Joint learning for rumor and stance detection
- Improvements on [2],
 - Heterogeneous rumor related tasks
 - Separate objectives of different tasks
 - Usage of GRU

Data

- Twitter dataset from Lui et al for Rumor detection
- News articles from Fake News Challenge for stance classification
- Twitter dataset from Pheme dataset for stance classification

Rumor detection

Claims { $C_1, C_2, ..., C_{|C|}$ } Where each claim $C_i = \{(x_{ij}, t_{ij})\}$ Many-to-one: $f: x_{i1}, x_{i2}, ..., x_{iT_i} \rightarrow Y_i$

Y = {Non-rumor, True rumor, False rumor, Unverified rumor}

Stance detection

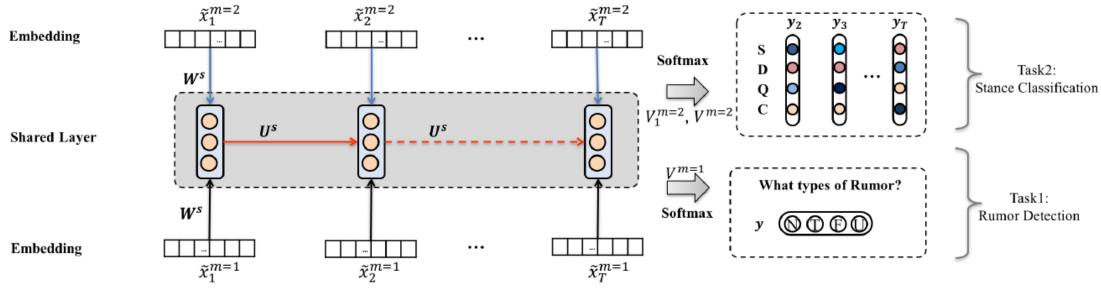
Claims { $C_1, C_2, ..., C_{|C|}$ } Where each claim $C_i = \{(x_{ij}, t_{ij})\}$ Many-to-many:

$$g: x_{i1}, x_{i2}, \dots, x_{iT_i} \to Y_{i1}, Y_{i2}, \dots, Y_{iT_i}$$

Y = {Supporting, Denying, Questioning, Commenting} or

Y = {Agree, Disagree, Discuss, Unrelated}

Model 1: Uniform Shared-Layer Architecture



(a) Uniform Shared-Layer Architecture

Standard GRU

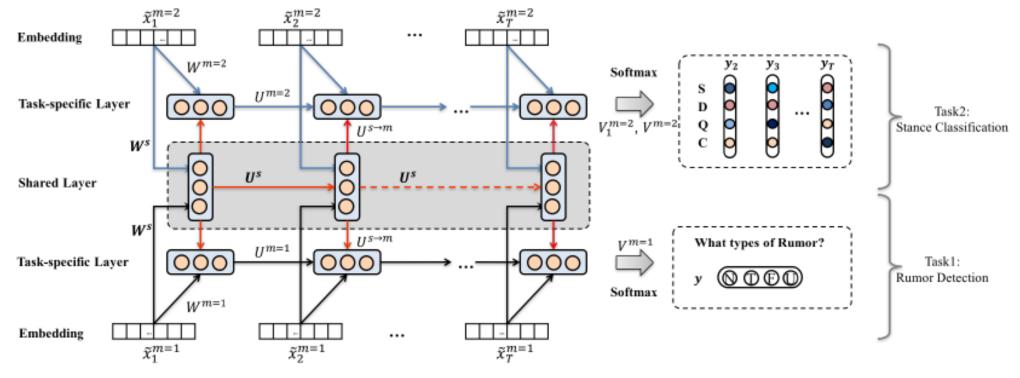
$$egin{aligned} & z_t = \sigmaig(x_t U^z + h_{t-1} W^zig) \ & r_t = \sigmaig(x_t U^r + h_{t-1} W^rig) \ & ilde{h}_t = anhig(x_t U^h + (r_t * h_{t-1}) W^hig) \ & h_t = (1-z_t) * h_{t-1} + z_t * ilde{h}_t \end{aligned}$$

Shared layer

$$\begin{split} \tilde{x}_t^m &= E^m x_t^m \\ r_t^m &= \sigma \left(W_r^s \tilde{x}_t^m + U_r^s h_{t-1}^m \right) \\ z_t^m &= \sigma \left(W_z^s \tilde{x}_t^m + U_z^s h_{t-1}^m \right) \\ \tilde{h}_t^m &= tanh \left(W_h^s \tilde{x}_t^m + U_h^s (h_{t-1}^m \odot r_t) \right) \\ h_t^m &= (1 - z_t^m) \odot h_{t-1}^m + z_t^m \odot \tilde{h}_t^m \end{split}$$

X uses vector representation with tf*idf values

Model 2: Enhanced Shared-Layer Architecture



(b) Enhanced Shared-Layer Architecture

UNIVERSITY OF AMSTERDAM Faculty of Science

Task specific layer

$$\begin{split} \tilde{x}_t^m &= E^m x_t^m \\ r_t^m &= \sigma \left(W_r^m \tilde{x}_t^m + U_r^m h_{t-1}^m + U_r^{s \to m} h_t^s \right) \\ z_t^m &= \sigma \left(W_z^m \tilde{x}_t^m + U_z^m h_{t-1}^m + U_z^{s \to m} h_t^s \right) \\ \tilde{h}_t^m &= tanh \left(W_h^m \tilde{x}_t^m + U_h^m (h_{t-1}^m \odot r_t^m) + U_h^{s \to m} h_t^s \right) \\ h_t^m &= (1 - z_t^m) \odot h_{t-1}^m + z_t^m \odot \tilde{h}_t^m \end{split}$$

Training

Multi task model

$$L = -\sum_t \sum_c g_t^c \log y_t^c + \lambda ||\Theta||_2^2$$

Input : A set of claims $\{C_1, C_2, \dots, C_{|C|}\}, \epsilon$ 1 Initialize model parameters $\Theta = \{W^s, U^s, E^m, W^m, U^m, U^{s \to m}, V_1^m, V^m, b^m\}$ randomly; 2 for *iteration from 0 to maxIter* do 3 | 1. Pick a task *m* randomly; 4 | 2. Pick random training sample(s) from task *m*; 5 | 3. Compute loss $L(\Theta)$ using Eq 5; 6 | 4. Compute gradient $\nabla(\Theta)$; 7 | 5. Update model: $\Theta \leftarrow \Theta - \epsilon \nabla(\Theta)$; 8 end

Experiments

LIU: Data distribution conform real world

(a) Rumor detection dataset

LIU+	N	Т	F	U
Claim #	2,280	99	498	123
Proportion	76.0%	3.3%	16.6%	4.1%
posts # / Claim	757	1,029	587	686
Users #	61,7374	6,5475	18,2459	5,5298

(b) Stance classification dataset

PHEME	Support	Deny	Question	Comment
Tweets #	891	335	353	2,855
Proportion	20.09%	7.56%	7.96%	64.39%
Users #	732	295	318	2,036
FNC	Agree	Disagree	Discuss	Unrelated
	1			
articles #	5,581	1,537	13,373	54,894
articles # Proportion	5,581 7.40%	1,537 2.03%	13,373 17.74%	54,894 72.81%

Results Rumor detection

Results depending on dataset other task Positive influence of task specific layer

Method			N	F	Т	U
Method	MicF1	MacF1	F_1	F_1	F_1	F_1
DTR [47]	0.734	0.338	0.856	0.349	0.071	0.076
SVM-RBF [45]	0.760	0.216	0.864	0.000	0.000	0.000
DTC [6]	0.793	0.357	0.883	0.528	0.018	0.000
SVM-TS [33]	0.786	0.361	0.879	0.506	0.037	0.014
RFC [23]	0.799	0.389	0.889	0.541	0.031	0.091
MT-single [32]	0.762	0.426	0.875	0.487	0.05	0.292
		LIU	+ & PHE	ME datas	sets	
MT-US	0.761	0.431	0.872	0.513	0.089	0.292
MT-ES	0.783	0.464	0.876	0.534	0.114	0.333
		LI	U+ & FN	IC datase	t	
MT-US	0.752	0.439	0.858	0.545	0.105	0.323
MT-ES	0.778	0.443	0.872	0.503	0.074	0.324



Results Stance

Results dependending on dataset Disagree stands out

(a) PHEME dataset (S: Support; D: Deny; Q: Question; C: Comment)

(b) FNC dataset (A: Agree; N: Disagree; D: Discuss; U: Unrelated)

Mathad			S	D	Q	С	Method			Α	N	D	U
Method	MicF1	MacF1	F_1	F_1	$\widetilde{F_1}$	F_1	Method	MicF1	MacF1	F_1	F_1	F_1	F_1
Majority Vote	0.641	0.195	0.000	0.000	0.000	0.781	Majority Vote	0.722	0.209	0.000	0.000	0.000	0.839
NB [38]	0.277	0.244	0.395	0.038	0.182	0.362	NB [38]	0.676	0.214	0.000	0.003	0.043	0.810
DT [18]	0.552	0.374	0.421	0.112	0.278	0.688	DT [18]	0.615	0.240	0.054	0.013	0.127	0.767
BOW [36]	0.652	0.344	0.273	0.108	0.206	0.790	BOW [36]	0.724	0.214	0.010	0.000	0.000	0.847
HP[30]	0.650	0.390	0.519	0.079	0.394	0.771	HP[30]	-	-	-	-	-	-
CNN [7]	0.642	0.324	0.301	0.08	0.178	0.739	CNN [7]	0.691	0.277	0.054	0.000	0.242	0.817
BiGRU [3]	0.605	0.373	0.299	0.158	0.286	0.751	BiGRU [3]	0.571	0.305	0.178	0.025	0.297	0.718
MT-single	0.583	0.344	0.212	0.154	0.272	0.737	MT-single	0.584	0.291	0.163	0.026	0.243	0.731
MT-US	0.635	0.400	0.355	0.116	0.337	0.776	MT-US	0.604	0.310	0.094	0.103	0.298	0.741
MT-ES	0.622	0.430	0.314	0.158	0.531	0.739	MT-ES	0.609	0.328	0.219	0.096	0.251	0.744

Layer behavior

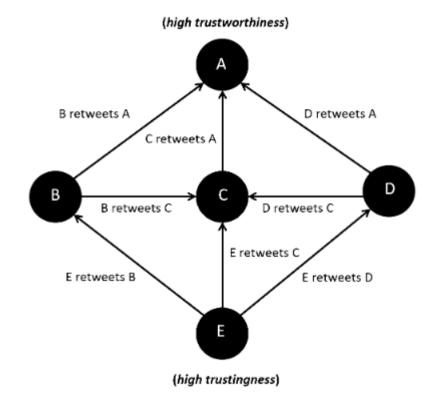
Model	Shared Layer	Rumor-specific	Stance-specific
	really?, what?	what?, really?	why?, what is
	not like, great, omg	is real/fact	what happened
MT-ES	disgusting, scary	totally false	no doubt, may
	I guess, probably	seriously wrong	not sure, really?
		what is, what?	no doubt
MT-single		seriously wrong	may be, not
	-	totally false	what happened
		is real, wtf?	what is, why

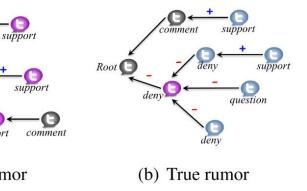
Conclusion

Positive effect of joint learning with multi-task model Dataset of the other task influences current task

Future work Rumor Detection

Utilizing computational trust to identify rumor spreaders [3] Rumor Detection on Twitter with Tree-structured Recursive NeuralNetworks [4]





nuestion

den

comment

support

(a) False rumor

Root

Future work Stance Classification

From Stances' Imbalance to Their Hierarchical Representation and Detection [5]

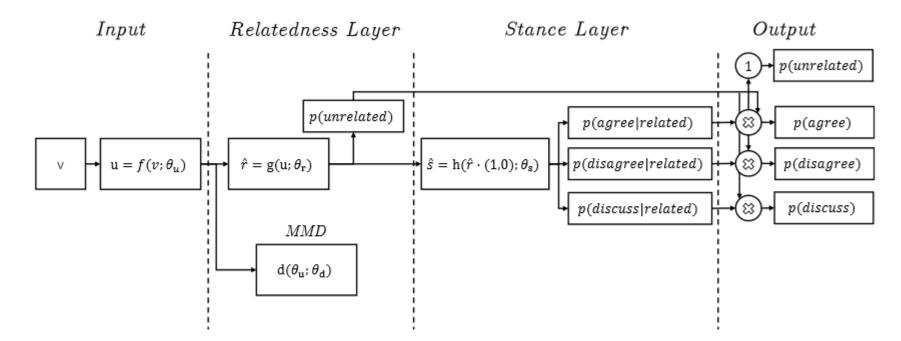


Figure 1: The architecture of our proposed two-layer neural network.

My thoughts

Real world problem Implementation seemed very simple Multi task learning with N tasks Usage of Twitter data

References

- 1. Abbott, R., Walker, M., Anand, P., Fox Tree, J. E., Bowmani, R., & King, J. (2011, June). How can you say such things?!?: Recognizing disagreement in informal political argument. In *Proceedings of the Workshop on Languages in Social Media* (pp. 2-11). Association for Computational Linguistics.
- 2. Liu, P., Qiu, X., & Huang, X. (2016). Recurrent neural network for text classification with multi-task learning. *arXiv preprint arXiv:1605.05101*.
- 3. Rath, B., Gao, W., Ma, J., & Srivastava, J. (2018). Utilizing computational trust to identify rumor spreaders on Twitter. *Social Network Analysis and Mining*, 8(1), 64.
- 4. Ma, J., Gao, W., & Wong, K. F. (2018, July). Rumor detection on twitter with tree-structured recursive neural networks. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)* (pp. 1980-1989).
- 5. Zhang, Q., Liang, S., Lipani, A., Ren, Z., & Yilmaz, E. (2019, May). From Stances' Imbalance to Their Hierarchical Representation and Detection. In *Companion Proceedings of the The Web Conference*.