
Learning sentence representations from natural

language inference data

SMNLS: Practical I

March 2019

1 Introduction

The first practical of the Statistical Methods for Natural Language Semantics
course concerns learning general-purpose sentence representations in the natural
language inference (NLI) task. The goal of this practical is threefold: to im-
plement three neural models to classify sentence pairs based on their relation,
to train these models using the Stanford Natural Language Inference (SNLI)
corpus [1] and evaluate the trained models using the SentEval framework [2].

NLI is the task of classifying entailment or contradiction relationships be-
tween premises and hypotheses, such as the following:

1. Premise Bob is in his room, but because of the thunder and lightning
outside, he cannot sleep.

2. Hypothesis 1 Bob is awake.
3. Hypothesis 2 It is sunny outside.

While the first hypothesis follows from the premise, indicated by the align-
ment of ‘cannot sleep’ and ‘awake’, the second hypothesis contradicts the premise,
as can be seen from the alignment of ‘sunny’ and ‘thunder and lightning’ and
recognizing their incompatibility.

2 SNLI corpus

The SNLI corpus (version 1.0) is a collection of 570k human-written English
sentence pairs manually labeled for balanced classification with the labels en-
tailment, contradiction, and neutral, supporting the task of natural language
inference (NLI), also known as recognizing textual entailment (RTE). Here you
can find all the information you need about this corpus:

https://nlp.stanford.edu/projects/snli/

1

https://nlp.stanford.edu/projects/snli/


3 Models

Your task in this assignment is to replicate some of the results reported by
Conneau et al. [3]. An overview of the architecture is shown in Figure 1.

Figure 1: General architecture for sentence classification

For the sentence encoder blocks, you need to implement these four different
models:

1. Baseline: averaging word embeddings to obtain sentence representations.
You should use the 300-dimensional GloVe embeddings trained on Com-
mon Crawl 840B: https://nlp.stanford.edu/projects/glove/;

2. Unidirectional LSTM, where the last hidden state is considered as sentence
representation (see Section 3.2.1);

3. Simple bidirectional (bi-) LSTM, where the last hidden state of forward
and backward layers are concatenated as the sentence representations;

4. Bidirectional LSTM with max pooling applied to the concatenation of final
hidden states from both directions to retrieve sentence representations (see
Section 3.2.2).

To achieve comparable results and avoid extensive hyperparameter search,
we advise you to use the hyperparameter settings as described in Section 3.3.

4 Evaluation

The SNLI dataset consists of three splits, (1) train: which you should use to
train your models, (2) dev: which you should use can use for hyperparameter
tuning, and (3) test: which you should use to evaluate the models. You should
evaluate your models on the SNLI task using macro and micro accuracy metrics
(see section 5 of the paper).

2

https://nlp.stanford.edu/projects/glove/


In addition, you need to use SentEval to evaluate the sentence represen-
tations obtained from each of the models. SentEval, the Facebook evaluation
toolkit for sentence embeddings, is a library for evaluating the quality of sen-
tence embeddings by applying them on a broad and diverse set of downstream
tasks called ”transfer” tasks. The reason they are called transfer tasks is that
the sentence embeddings are not explicitly optimized on them.

The link to the SentEval repository on github:

• https://github.com/facebookresearch/SentEval

A tutorial on how to install and use SentEval to evaluate GloVe, when GloVe
word vectors are averaged for the words in a sentence to compute the sentence
representation is available here:

• https://uva-slpl.github.io/ull/resources/practicals/practical3/
senteval example.ipynb

5 Practical Matters

1. You can either use tensorflow or pytorch for this assignment. You can and
are encouraged to use high level APIs for efficiency reasons.
Some usefull resources:

• https://www.tensorflow.org/tutorials

• https://pytorch.org/tutorials/

• https://paperswithcode.com/

• http://ruder.io/text-classification-tensorflow-estimators/

2. Use tensorboard to visualize and monitor the training process of your
models and include the plots from tensor board in your report.

• https://www.tensorflow.org/guide/summaries_and_tensorboard

• https://github.com/lanpa/tensorboardX

3. To download and preprocess the data, you can use the code available here:
https://github.com/brmson/dataset-sts/tree/master/data/rte/snli

4. If the original link for downloading the dataset doesn’t work use one of
these links:

• https://www.kaggle.com/stanfordu/stanford-natural-language-inference-corpus/

version/1

• http://www.cl.cam.ac.uk/~jm864/snli_1.0.zip

5. Prepare a tiny version of the dataset for debugging your implementations,
and make sure your implementations work fine before starting the training
process on the original dataset. Make sure you can over-fit your models
on the tiny dataset (As a debugging technique).

3

https://github.com/facebookresearch/SentEval
https://uva-slpl.github.io/ull/resources/practicals/practical3/senteval_example.ipynb
https://uva-slpl.github.io/ull/resources/practicals/practical3/senteval_example.ipynb
https://www.tensorflow.org/tutorials
https://pytorch.org/tutorials/
https://paperswithcode.com/
http://ruder.io/text-classification-tensorflow-estimators/
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://github.com/lanpa/tensorboardX
https://github.com/brmson/dataset-sts/tree/master/data/rte/snli
https://www.kaggle.com/stanfordu/stanford-natural-language-inference-corpus/version/1
https://www.kaggle.com/stanfordu/stanford-natural-language-inference-corpus/version/1
http://www.cl.cam.ac.uk/~jm864/snli_1.0.zip


6. Have separate modules for training and inference phases. You should have
an interface similar to this:
For training:

python train.py <model_type> <model_name> <checkpoint_path> <train_data_path>

For evaluation:

python eval.py <checkpoint_path> <eval_data_path>

For inference:

python infer.py <checkpoint_path> <input_file> <output_file>

7. Prepare a Jupyter notebook, where you can load a trained model and
demo how it works for different examples.

8. Do some error analysis.

5.1 Reading resources

Please, read these papers thoroughly before starting to work on the practical:

• A large annotated corpus for learning natural language inference [1]

• Supervised learning of universal sentence representations from natural lan-
guage inference data [3]

You are very much encouraged to have group discussions about these papers to
fully understand the task and the models.

In addition, if you are not familiar with neural network models for NLP you
can take a look at these blog posts:

• http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

• http://colah.github.io/posts/2015-08-Understanding-LSTMs/

• http://ruder.io/deep-learning-nlp-best-practices/

5.2 Report

Prepare a one page report on the results you get from each of the models you
implement. You shouldn’t write any explanations in this report. Just try to
find cool ways of visualizing your results!

4

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://ruder.io/deep-learning-nlp-best-practices/


5.3 Submission

You should do this practical individually and submit your report in a pdf on
Canvas with the title SMNLS-Practical1-FullName. Submission deadline
for the report is 23:59 on Friday, 19 April. In addition, upload your codes
on a github repository and put a link to the repository in your report. Also,
add the instructions on how to run your codes for each part of the practical to
the github ReadMe.

5.4 Grading

The delivery of the project will be in person where you demo your project. You
should show the general performance of the models in terms of numbers and
plots, and also show the output of your models for different examples. We will go
through your results and implementations together and ask a couple of questions
about your models and the results. You should be able to explain in detail how
each of the models work both from the theoretical and implementation point
of view. Also, you need to be able to compare the models in terms of their
performance on this task and make sound arguments about why you think one
is getting better or worse results than the other ones. You will be asked to
analyse the results and share your interesting insights with us.

References

[1] Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D
Manning. A large annotated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326, 2015.

[2] Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for uni-
versal sentence representations. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation (LREC-2018), 2018.

[3] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine
Bordes. Supervised learning of universal sentence representations from nat-
ural language inference data. arXiv preprint arXiv:1705.02364, 2017.

5

https://github.com/
https://guides.github.com/features/wikis/

	Introduction
	SNLI corpus
	Models
	Evaluation
	Practical Matters
	Reading resources
	Report
	Submission
	Grading


