Lecture 3

Multilingual modelling

Rochelle Choenni



Today’s topics

e Introduction
o What are multilingual models?
o Why do we need them?
e Earlier methods
o Language transfer and joint learning
o Word embeddings
e SOTA models and their limitations



INTRO: What are multilingual models?

A language model is called ‘multilingual’ when it can understand many (4+)
different languages

Goal: Create a single model that captures universal language structures such that it
can reason across all known languages



INTRO: In theory..

According to Noam Chomsky’s universal grammar theory:

Linguistic universals are patterns that occur systematically across natural languages. For example,

(almost) all languages make a distinction between nouns and verbs and distinguish function words from
content words.

b Multilingual models can automatically find such commonalities
between languages (on the lexical, syntactic and semantic level)
and exploit them i.e. capturing language-agnostic information



INTRO: In practice..

Goal: phrases with similar meaning should obtain similar representations (distributional hypothesis)
Constraints:

e This should be done irrespective of the language
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e And without affecting the monolingual semantic relations between the phrases within a language

Example: the word ‘table’ should appear close to its Italian translation ‘tavola’without losing the
proximity to ‘desk’ which should in turn be close to the Italian translation (Beinborn et al., 2020)



INTRO: Why do we need multilingual models?

There are over 7K languages spoken in the world today, we don’t want to train a model for
each one..
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e Supporting translation across just 4 languages requires 4*3=12 models
e Across all languages requires us to build .. ~ 49 million models



Social:

We want to extend the benefits of NLP technology to more language communities + capture
endangered languages
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Technical:

SOTA methods are data hungry!

For many languages there’s simply too little data
to train a monolingual model successfully

Transformer based models:

BERT: 13GB (3.4 billion word text corpora)
GPT2: 40GB...

RoBERTa: 160GB...

GPT-3:45TB...

Top 20 languages on Wikipedia

English T 3,970,192
German TN 1,419,954
French TN 1,259,482
Dutch N 1,048,107
Italian [N 930,032
Polish [N 201,960
Spanish [N 896,187
Russian [N 864,743
Japanese N 810,354
Portuguese NN 738,471
Chinese [N 477,610
Swedish TN 473,657 Number of

Vietnamese - I 414,608 articles available

Ukrainian [T 386,995 :
Catalan [N 376,445 in each language

Norwegian Wl 342,866
Finnish T 298,985
Czech WM 233,147

Hungarian [l 218,310
Korean 203,023

Data source: Wikipedia

Many languages are left behind!



INTRO: Some terminology

In the NLP community we talk about:
e High resource: languages for which we have ‘much’ data available

-> we can generally train good monolingual models

e Low resource: languages for which we have ‘oo little’ data available (most
languages)

Pay attention: each paper can use a different threshold to determine the categorisation!



Approaches: Two solutions to data-scarcity

e Language transfer (cross-lingual transfer):

Transfer from high-resource to low-resource languages, hence leveraging
information across languages

e Multilingual joint learning:

Jointly learn from annotations in multiple languages to leverage language
interdependencies

For further reading see Ponti et al., 2019



Approaches: Language transfer methods

To leverage useful information from a source language, it typically needs to be
manipulated to better suit the properties of the target language first (Ponti et al., 2019)

Earlier methods include:
- Data transfer -> facilitate homogeneous use of data
Annotation projection (Hwa et al., 2002)

o Model transfer -> directly transfer trained model

Delexicalization (zeman and Resnik, 2008)



Data transfer — Annotation projection

1. Parse high resource language

)
lexicalized

2. Extract word-alignments from parallel

corpora. a) Annotation projection label 1 /& i? Model j
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3. Use created data in the target language for Model J | 4By wan -

\

supervised training (Ganchev et al., 2009; Hwa et
al., 2005; Yarowsky et al., 2001)

Drawback: noise coming from two sources — parser and word-alignment method
Quite successful: 70% accuracy between English and Spanish

Image taken from Ponti et al., 2019



Model transfer — Delexicalization

label 2

1. Delexicalize data to solve for i T T A —
incompatible vocabularies gl il Wil A
2. Train model on delexicalized model (3) parse

pos2  posl pos3 pos4
trgl tg2 trgd trgd b)Modeltransfer

3. Directly apply this model to the
target language

label | label 3

label 2

Delexicalization: replace the words in a language by the corresponding POS tags
-> performance relies on the ability to find robust universal features

Image taken from Ponti et al 2019



Approaches: Limitations

e Doesn’t solve the problem -> methods remain inherently bilingual

e Doesn'’t solve the social problem -> methods rely on the assumption that high
quality resources exist at least for the source language.

Suppose you want to transfer between:
English -> Dutch
? -> Filipino

Most languages do not have a suitable high-resource language for transfer



Approaches: Joint learning methods

Learn information from multiple languages simultaneously such that they can learn to support each
other and thereby jointly enhance each others quality

For instance, French can benefit from Spanish, Italian etc.

Key strategy: Parameter sharing-> share (otherwise private) representations

This is still used in SOTA methods today as you will see in a bit!



Parameter sharing

Share (otherwise private) representations e.g., word embeddings (Guo et al., 2016), hidden layers (Duong
etal.,, 2015) or attention mechanisms (Pappas and Popescu-Belis, 2017) across languages
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parameters are shown as neurons with identical color. Image adapted from Fang and Cohn
(2017), representing multilingual PoS tagging for Bambara (left) and Warlpiri (right).

Soft parameter sharing: distance between parameters

Full parameter sharing: parameter
from different language-specific models is minimized

values are identical across languages

Left image from Ponti et al., 2019; right from Duong et al., 2015



Word embeddings: Different methods

1. Monolingual mapping:

Learn linear mapping between monolingual representations in different languages

2. Pseudo-cross-lingual:

Train a model on a corpus created by mixing contexts of different languages

3. Cross-lingual training:

Optimize a cross-lingual constraint between embeddings of different languages

4. Joint optimization:

Jointly optimise a combination of monolingual and cross-lingual losses

For further reading see Ruder et al., 2019a



Word embeddings: Mapping models

Linear projection
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Learn a transformation between languages? (Mikolov et al., 2013):

e Use 5K translations as bilingual dictionary
e Learn transformation matrix W using SGD by
minimising:

n
min 3 [Wa; — 2 .

1=1

Xi = monolingual representation of the source word wi

zi = monolingual representation of translation of wi



Word embeddings: Pseudo-cross-lingual

Random translation replacement (Gouws et al., 2015):

® Google Translate pairs of words in the source and target language
Concatenate + shuffle source and target corpus

® Replace each word with its translation with a probability of 50% e.g.:

‘build the house’ -> construire the house, build la maison etc.

INPUT PROJECTION OUTPUT

® Train CBOW on this corpus



Word embeddings: Cross-lingual training

Bilingual compositional sentence model (Hermann et al., 2013):

® Train two models to produce sentence representations of \ C:/'M /
parallel sentences in two languages
® Use the distance between the two sentence :
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representations as objective
®  Minimise the following loss: XXX
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where aroot and broot are the representations of two aligned
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Word embeddings: Joint optimization

Trans-g FAaM (Coulmance et al., 2015 ).

Train on a combination of monolingual and cross-lingual objectives

e 2 monolingual skip-gram losses: Je (English) and Jf(French)
e and 2 cross-lingual trans-gram losses: Qfe (French->English) and Qe,f(English->French)

sits, assisg

assisg
3 5!

7 PEC O g G ey TR I

[t‘ho cat _ on l.lw,\l lt]w cat sits on the u.ml(.l I le chat est assis sur le t;\])ist l('[lill est _ sur 1(‘f|




SOTA approaches: Cross-lingual Transfer

Monolingual Pre-training

Different domains

Same task;

Transc

transfer

luctive

learning

labeled data
only in source

domain

English —» Model 40 ——» English
Initialise
v
Swahili—»  Modelg0 » . Swahill

—» English
(catostrophic

Fine-tuning

forgetting?)

Transfer
learning

Different options:

Different tasks;
labeled data
in target

Different languages

Domain
adaptation

Cross-lingual

learning

Multi-task

Tasks learned
simultaneously

domain

Inductive

transfer

learning

Tasks learned

sequentially

learning

Sequential

Image adapted from Ruder 2019b

transfer learning

Pre-training on large dataset and Fine-tuning on large dataset (regular)
Pre-training on large dataset and Fine-tuning on small dataset (few-shot)
Pre-training on large dataset no Fine-tuning on the test language (zero-shot)




SOTA approaches: Multilingual joint learning

English English

Spanish Spanish

Italian Italian
—> Modeld —>

Swabhili Swalbhili

French French

Tagalog Tagalog

Train one single model on a mixture of data from multiple languages

e  Full parameter sharing

L4 COde SWItCh I ng ! . Spanglish Word/Phrase English Meaning Example Sentence
chilear to chill out Chilé! Il be there in a second!

cojelo con take it

) don't worry Cojelo con take it easy. You'll get the job.
easy/cojelo suave

. cereal (from "Cornflakes," but o~ .
conflei I'll just have some conflei for breakfast.
refers to all cereal)



SOTA approaches: Best practice

SOTA sentence encoders commonly use:

A combination of cross-lingual transfer and
multilingual joint learning

L

A monolingual or cross-lingual training objective
in combination with different architectures (e.g.
LSTMs or Transformers) + tokenization!

Multilingual Pre-training

English English
Spanish Spanish
Italian Italian
—> Model 40 >
Swalhili Swalhili
French French
Tagalog Tagalog
Initi'ahse
v
L-) Swahili

Sweabill —J’ Modelz6

Monolingual fine-tuning




SOTA approaches: Pre-training objectives

e Monolingual: Masked Language Modelling (MLM) and Next Sentence Prediction (NSP)
-> |[nexpensive, easier to expand the number of train languages
-> No cross-lingual signal

e  Cross-lingual: Machine Translation (MT) and Translation Masked Modelling (TLM)
-> Tasks designed to force the model to understand patterns across languages

-> Requires parallel corpora



SOTA approaches: Translation Language Modelling (TLM)

The model can leverage information from the context in either language to predict the words, thereby encouraging the alignment of
representations in both languages.

Translation Language - - - -
Modeling (TLM) pais e | bleus|

. A A
| Transformer |
A
embecaings |15 | [ e | [masio| [wasa| [owe| [s | [0 | [masia| fuceaws| [otaen] [waswa| [ pel |
» + + + + + + + + + + + +
emoecangs 10| 0] [2] [s] o] [a] [of [ [2] o] (o] [5]
+ + + + + + + + + + + +
ompeqangs Lo | [len | [en | [len | [en | [en | [ [ [ | [0 | [« ] [« ][]

‘build the house’ -> construire the house, build la maison etc.

Image taken from Conneau et al., 2019



Models: LASER

The first multilingual sentence encoder! (93 languages - 30 families, 28 scripts) (Artexte et al

Training objective: Machine translation

Encoder/decoder type: BiLSTM

Key: Encoder and decoder are jointly trained on parallel corpora (end-to-end)

"I like languages." —>»

"J'aime les langues." —>»
"Me gustan los idiomas." —>»
—>

Shared multilingual semantic
embedding space

Encoder

Decoder

The decoder functions as a feedback generator to the encoder

"J'aime les langues."

"Me gustan los idiomas."

"I like languages."

., 2019)

When training stabilizes, the decoder is discarded and the encoder can be used as multilingual model



Models: BERT-based models

Model | tokenization L dim H params V task languages
LASER | BPE 5 1024 - 52M 50K MT 93
M-BERT | WordPiece 12 768 12 172M 110K MLM+NSP 104
XLM BPE 12 1024 8 250M 95K MLM+TLM 15
XLM-R | SentencePiece 12 768 12 270M 250K MLM 100

Table 1: Summary statistics of the model architectures: tokenization method, number of
layers L, dimensionality of sentence representations dim, number of attention heads H,
number of model parameters, vocabulary size V' and pretraining tasks used.

e M-BERT = BERT + more diverse data (Devlin et al., 2018)
e XLM = BERT-based architecture - NSP + TLM + data from 15 languages (Conneau et al., 2019)
e XLM-R =RoBERTa - NSP + more diverse data (Conneau et al,. 2020)



SOTA LLMs: GPT-3, LLAMA, BLOOM, PALM..




SOTA models: Data collection

How to add data from e.g. 104 languages?

Exponentially smoothed weighting:
e P(en)->21% of data is English
e Exponentiate each prob by factor S -> re-normalize -> sample from new distribution
Under-sampled English, Oversample Icelandic:
Old: English sampled 1000x more than Icelandic

After smoothing it's only sampled 100x more!
In practice: data is still very skewed!

Shouldn’t this result in an exploding vocabulary size?
1 language BERT: ~30K Vocab -> 100 languages: ~3M vocab?



SOTA: Subword Tokenization

Split rare words into frequent subwords: e.g. “reconstructing” -> “re” - “construct” - “ing”

BERT: ~30K Vocab - 1 language -> M-BERT: only ~110K Vocab - 104 languages!

Byte Pair Encoding (BPE) (Sennrich et al., 2016):

1. Init base_vocab using unique symbols and characters + set vocab size V (hyperparameter)
2. Split each word into the base vocabulary characters e.g.: [(‘c’,’a’,’r’, 5), (‘¢’,’a’,’b’,’I’,’¢e’, 3), (‘w’,’a’,’t’,’c’,’h’, 2),
(ic!,!h!,!a!,,i!,!r!, 5)]
3.  While len(base_vocab) < V-
a. Count the occurrence of every symbol pair and pick the one with the highest frequency
b.  Add symbol pair to base_vocab + merge all occurences of the symbol pair

E.g.: The pair “ca” occurs 5 x in car + 3 x in cable = 8 occurrences
-> base_vocab += [‘ca”] + [(‘ca’,’r’, 5), (‘ca’,’b’,’I’,’e’, 3), (‘w’,’a’,’t’,’c’’h’, 2), (‘c’,’h’,a’,’i’,’r’, 5)]
The pair “ch” is occurs 2 x in watch and 5 x in chair = 7 occurrences

-> base_vocab += ["ch’] + [(‘ca’,’r’, 5), (‘ca’,’b’,’I’,’e’, 3), (‘w’,’a’,’t’,’ch’, 2), (‘ch’,’a’,’i’,’r’, 5)]



SOTA: Subword Tokenization

WordPiece (Schuster et al., 2012):

1. Init base_vocab using unique symbols and characters + set vocab size V (hyperparameter)

2. Train language model M on base vocab

3. While len(base vocab) < V.
a. Pick the pair that maximizes the likelihood of the train data

b. Add symbol pair to base_vocab + merge all occurences of the symbol pair

E.g.: Pick “ca” if p(ca)/p(c)p(a) > any other symbol pair in vocab



SOTA: Subword Tokenization

BPE and WordPiece are created for English-> Some languages do not split words by spaces (e.g. Chinese)!!
Solutions:

e WordPiece: add white space around characters and perform character tokenization for corner cases — Quick fix
e  SentencePiece (Kudo et al., 2018): does not treat space as a separator, it takes the string as input in its original raw format, i.e.
along with all spaces. It then uses e.g. BPE as its tokenizer to construct the vocabulary (size has grown to 250K)

In [20]: from transformers import AutoTokenizer

WordPiece = AutoTokenizer.from pretrained('bert-base-multilingual-cased’)
SentencePiece = AutoTokenizer.from pretrained('xlm-roberta-base')

zh = "{RiF | XE—1HI8
ja = "CAICBIR! ChiZfIXTT, '
ko = "QHdsthQ! Lt= OfjAl EF0IC."

for lang, tokenizer in itertools.product([zh, ja, ko], [WordPiece, SentencePiece]):
print(tokenizer.tokenize(lang))

) R, g, ', XL R, =, A, [T A, e '] e
Chinese ['_', [fpgr] 't', "RE—A], w, ->SP
[T, '##A' . "##IC', '##5', #Ht'] '), 'Chid', [|/'] 'X, 'T, T, . '] SWP
Japanese v 7 1, v, rohdt, e, 3, T Y ! ->SP
Korean  [[2F, '##37, "#3l, "##A', ##Q7 11, 'L, OT, ##All, "2, ##NOl, s, '] >WP
(o, 1T, O, O, A, 2, &, oldk, L' ssp

There is no language detection, in the multilingual setting the tokenizer can mix up languages



SOTA: Subword Tokenization

Tokenization gets little attention but:

1. It prevents the vocab and model size from exploding
2. OOV words are rare
3. Better equipped to handle minor misspellings

-> reconstuctin = re - construct - in

4. It allows for easy adaption of models to the multilingual setting



SOTA: Subword Tokenization

Linguistic pitfalls:

e Difficult pre-processing trade-offs: Lowercase?
Remove punctuation? Remove diacritics?

e  Still not suitable for some languages that do not
rely on word splitting e.g. Arabic:

<« k-t-b “write’” (root form) DIACRITICS
- = - €) acute accent ~ (W) breve
< Kataba “*he wrote y " -
» ~ ©) grave accent ~ (&) hacek

Q":{ kattaba “‘he made (someone) write™” ~ (8)  circumflex - (naive)  diaeresis
L a2 i - i - - (i) tilde v (glogg)  umlaut
&1 iktataba he signed up ) )

= - (0) macron R (c) cedilla

Table 1: Non-concatenative morphology in Arabic.’
When conjugating, letters are interleaved within
the root. The root is therefore not separable from
its inflection via any contiguous split.

Left example from Clark et al., 2022, also
good source for further reading



SOTA: Successful or not?

(RECAP) Approach:

1. Pretrain multilingual BERT (M-BERT) -> yields multilingual general-purpose representations

2. Fine-tune the general purpose model on a high-resource language for e.g. the task of
Part-of-speech tagging -> yields a task-specific model

3. Test the task-specific model on a different language -> zero-shot transfer

Test: does the model learn truly universal structures?



Results from Pires et al. 2020

SOTA: Successful or not?

Surprisingly good zero-shot results!

Fine-tuning \ Eval EN DE ES IT Fine-tuning \Eval EN DE ES IT

EN 96.82 8940 8591 91.60 EN 96.94 3831 5038 46.07
DE 83.99 9399 8632 88.39 DE 28.62 92.63 30.23 25.59
ES 8164 8887 9671 93.71 ES 28.78 46.15 9436 71.50
IT 86.79 87.82 91.28 98.11 IT 52.48 48.08 76.51 96.41

Table 8: POS accuracy on the UD test sets for a subset

Table 2: POS subset of UD | S.
avle B A angtiages VS of European languages using EN-BERT.

Fine-tuning \ Eval EN DE NL ES Fine-tuning \Eval EN DE NL ES

EN 9070 6974 7736 73.59 EN 91.07 2438 40.62 49.99
DE 73.83 82.00 7625 70.03 DE 55.36 73.32 5484 50.80
NL 6546 65.68 89.86 72.10 NL 59.36 27.57 8423  53.15
ES 6538 59.40 6439 87.18 s 20 268 9Bl BLM

Table 7: NER results on the CoNLL test sets for

Table 1: NER F1 results on the CoNLL data.
EN-BERT.



SOTA: Successful or not?

WOW:
\
HI UR EN BG JA
HI 97.1 859 EN 968 R87.1 494
UR 91.1 93.8 BG 822 989 51.6
JA 574 67.2 96.5

Table 4: POS accuracy on the UD test set for languages
with different scripts. Row=fine-tuning, column=eval.

It gets more difficult when transferring between ‘less similar’ languages

But how can we define similarity?

Results from Pires et al. 2020



Defining language similarity

Different approaches e.g. lexical overlap: writing systems, vocabulary overlap (e.g. shared WordPieces)

ees Multilingual BERT
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Figure 1: Zero-shot NER F1 score versus entity word
piece overlap among 16 languages. While performance
using EN-BERT depends directly on word piece over-
lap, M-BERT’s performance is largely independent of
overlap, indicating that it learns multilingual represen-
tations deeper than simple vocabulary memorization.

Transferability not dependent on lexical overlap.
: o
Other possible explanations? Results from Pires et al. 2020



Defining language similarity

Linguistic Typology studies, categorizes and documents the variation in the world’s languages through systematic cross-linguistic
comparisons (Croft, 2002)
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Feature 81A: Order of Subject, Object and Verb Values
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[ o I | R, SR p— ° sov 564
This feature is described in the text of chapter 81| Order of Subject, Object and Verb | by Matthew S. | SUbJ ect Verb 0 I.)] ect ° 0 i
You may combine this feature with another one. Start typing the feature name or number in the field belc VSO s
% %‘b?ec?radn%' g Subject — 7S VoS 25
SOV: : the dog the cat chased L4 oS 1
R e * osv 4
Subject Object Verb No dominant order 189

Legend~ Iconsizew [7] Show/hide Labels GeoJSON

°
e
. )

Japanese is a SOV language, Bulgarian and English are SVO -> maybe that’s why transfer is easier between the latter?



SOTA: Successful or not?

Surprisingly good results!

... but does it really create universal representations?

¥ @ en(A) chiot 5 .'ﬂ%ﬁ‘]/l\a’ﬂ
- mignon @
Ve W cute puppy
th (C) m
.0 @ :zh(A) ,
2ig) HRS
»i - 2]
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0 p Fr
04 —02 00 02 04 . 7h weather
Result: sentence representations from M-BERT are Original goal: cluster sentences with similar

clustered by language meaning together irrespective of language
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Model | tokenization L dim H params V task languages
LASER BPE 5 1024 - 52M 50K |MT I 93
M-BERT | WordPiece 12 768 12 172M 110K MLM+ 104
XLM BPE 12 1024 8 250M 95K MLM-Q‘TLM 15
XLM-R | SentencePiece 12 768 12 270M 250K MLM 100

Table 1: Summary statistics of the model architectures: tokenization method, number of
layers L, dimensionality of sentence representations dim, number of attention heads H,
number of model parameters, vocabulary size V' and pretraining tasks used.

Cross-lingual pre-training seems to result in
more universal representations?

For further reading see Choenni & Shutova 2022



Cross-lingual pre-training seems to result in more
universal representations?

Zero-shot performance on XNLI

Model | en ar  bg  de el es fr hi ru  swth tr ur vi zh | avg

Cross-lingual zero-shot transfer (models fine-tune on English data only)

mBERT 808 643 680 700 653 735 734 589 678 497 541 609 572 693 678 | 654
| XLM 828 66.0 719 727 704 755 743 625 699 581 655 664 598 707 702 | 69.1 |
XLM-R 887 772 830 825 808 837 822 756 791 712 774 780 717 793 782 | 792

... but in practice not worth the extra cost?

Results taken from Xue et al. 2021



SOTA: Successful or not?

Problems with evaluation:

1. We actually only know performance on a handful of languages
2. The languages for which we can measure performance tend to be typologically similar

= XTREME-UP = XTREME-R XTREME XGLUE

#Num Languages
2

Figure 1: We report the datasets included in each benchmark along with the number of languages that they cover.
The datasets are color-coded by type of task: classification, retrieval, question answering, or structured prediction.
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i ° XWinograd
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a
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Diversity score

Figure 2: Number of test languages for each task and the
average typological diversity score between them com-
puted as the average cosine similarity between URIEL
features of each language pair.



Problems: Balance

Multilingual models need to:

1. To generalize over many different languages by finding ‘universal’
representations (language-agnostic information)

2. Yet at the same time still capture enough subtle nuances of each individual
language (language-specific information)

Finding a perfect balance is hard!



Problems: Conflict of interests

The curse of multilinguality: Languages will start fighting for model capacity

-> When performance improves for some languages others start to suffer

Accuracy
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Figure 2: The  transfer-
interference trade-off: Low-
resource languages benefit from
scaling to more languages, until
dilution (interference) kicks in

and degrades overall performance.
Figure from Conneau et al. 2020



Problems: Conflict of interests

Negative interference: Performance on high resource languages for which we normally obtain good
results deteriorate
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Figure 1: Comparing monolingual vs multilingual mod-

els on NER. Lower performance of multilingual mod-
els is likely an indicator of negative interference.

Figure from Wang et al. 2020



New directions: Modular deep learning

e Modularity definition:

The correspondence between strongly interconnected components of a system (i.e., modules)
and the functions they perform (Baldwin & Clark, 2000; Ulrich, 1995).

e Each module is specialised for a unique purpose, for which it is reused consistently

e Solution to the curse of multilinguality: disentangle fully shared models using specialised
modules for individual languages

e Common approaches: adapter modules and sparse fine-tuning with subnetworks



New directions: Adapters

e Introduced by Houlsby et al. 2019 for more efficient transfer

e Instead of updating all weights during fine-tuning a few trainable parameters are added per task

e Traditional fine-tuning: add a new layer to fit the targets specified in the downstream task, and train the new layer together with
the pretrained weights

e  Adapter tuning strategy: inject new layers (randomly initialized) into the original network. Parameter sharing between tasks is
supported by keeping the pretrained model parameters frozen
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New directions: Sparse fine-tuning with subnetworks
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e This framework relies on the notion that the knowledge for different languages is
somehow localizable in specific sets of model parameters

e , and that those parameters can individually be fine-tuned in an autonomous and
parameter-efficient manner



Questions?
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