
Learning sentence representations from natural

language inference data

University of Amsterdam, ATCS: Practical I

April 2025

1 Introduction

The first practical of the Advanced Topics in Computational Semantics course concerns learning
general-purpose sentence representations in the natural language inference (NLI) task. The goal
of this practical is threefold:

• to implement four neural models to classify sentence pairs based on their relation;
• to train these models using the Stanford Natural Language Inference (SNLI) corpus (Bowman
et al., 2015);

• and to evaluate the trained models using the SentEval framework (Conneau and Kiela, 2018).

NLI is the task of classifying entailment or contradiction relationships between premises and
hypotheses, such as the following:

Premise Bob is in his room, but because of the thunder and lightning outside, he cannot sleep.
Hypothesis 1 Bob is awake.
Hypothesis 2 It is sunny outside.
Hypothesis 3 Bob is lying in his bed.

While the first hypothesis follows from the premise, indicated by the alignment of ‘cannot sleep’
and ‘awake’, the second hypothesis contradicts the premise, as can be seen from the alignment of
‘sunny’ and ‘thunder and lightning’ and recognizing their incompatibility. The third hypothesis is
not necessarily entailed by the premise, and neither is contradicted. Therefore, its relation to the
premise is considered to be neutral.

For a model to recognize textual entailments, it has to reason about semantic relationships
within sentences. Hence, a thorough understanding of natural language is required which can be
transferred to other tasks involving natural language. In this assignment, we focus on pretraining
a sentence encoder on NLI, and afterwards evaluate its sentence embeddings on a variety of natural
language tasks.

2 Assignment task

Your task in this assignment is to replicate some of the results reported by Conneau et al. (2017).
In the following, we will first introduce the dataset, the model architectures and evaluation to use.

2.1 SNLI corpus

Throughout this assignment, we will use the SNLI corpus.1 This corpus (version 1.0) is a collection
of 570k human-written English sentence pairs manually labeled for balanced classification with the
labels entailment, contradiction, and neutral, supporting the task of NLI that is also known as
recognizing textual entailment.

1https://nlp.stanford.edu/projects/snli/

1

https://nlp.stanford.edu/projects/snli/

ATCS: Practical 1 Learning sentence representation from NLI data April 2025

2.2 Model architectures

The general architecture proposed by Conneau et al. (2017) consists of a sentence encoder and a
classifier. The premise and hypothesis are embedded by the same sentence encoder into a fixed
sized feature vector, u and v respectively. The two feature vectors are combined by concatenating
both additionally with their absolute difference |u − v| and element-wise product u ∗ v. The
resulting features are processed by a small MLP with a final classification layer for distinguishing
the entailment relationships. An overview of the architecture is shown in Figure 1.

embeddings in a supervised way. That is, we aim
to demonstrate that sentence encoders trained on
natural language inference are able to learn sen-
tence representations that capture universally use-
ful features.

sentence encoder
with hypothesis input

sentence encoder
with premise input

3-way softmax

u v

fully-connected layers

(u, v, |u− v|, u ∗ v)

Figure 1: Generic NLI training scheme.

Models can be trained on SNLI in two differ-
ent ways: (i) sentence encoding-based models that
explicitly separate the encoding of the individual
sentences and (ii) joint methods that allow to use
encoding of both sentences (to use cross-features
or attention from one sentence to the other).

Since our goal is to train a generic sentence en-
coder, we adopt the first setting. As illustrated in
Figure 1, a typical architecture of this kind uses a
shared sentence encoder that outputs a representa-
tion for the premise u and the hypothesis v. Once
the sentence vectors are generated, 3 matching
methods are applied to extract relations between
u and v : (i) concatenation of the two representa-
tions (u, v); (ii) element-wise product u ∗ v; and
(iii) absolute element-wise difference |u− v|. The
resulting vector, which captures information from
both the premise and the hypothesis, is fed into
a 3-class classifier consisting of multiple fully-
connected layers culminating in a softmax layer.

3.2 Sentence encoder architectures

A wide variety of neural networks for encod-
ing sentences into fixed-size representations ex-
ists, and it is not yet clear which one best cap-
tures generically useful information. We com-
pare 7 different architectures: standard recurrent
encoders with either Long Short-Term Memory
(LSTM) or Gated Recurrent Units (GRU), con-
catenation of last hidden states of forward and
backward GRU, Bi-directional LSTMs (BiLSTM)
with either mean or max pooling, self-attentive

network and hierarchical convolutional networks.

3.2.1 LSTM and GRU
Our first, and simplest, encoders apply re-
current neural networks using either LSTM
(Hochreiter and Schmidhuber, 1997) or GRU
(Cho et al., 2014) modules, as in sequence to se-
quence encoders (Sutskever et al., 2014). For
a sequence of T words (w1, . . . , wT), the net-
work computes a set of T hidden representations
h1, . . . , hT , with ht =

−−−−→
LSTM(w1, . . . , wT) (or

using GRU units instead). A sentence is repre-
sented by the last hidden vector, hT .

We also consider a model BiGRU-last that con-
catenates the last hidden state of a forward GRU,
and the last hidden state of a backward GRU to
have the same architecture as for SkipThought
vectors.

3.2.2 BiLSTM with mean/max pooling
For a sequence of T words {wt}t=1,...,T , a bidirec-
tional LSTM computes a set of T vectors {ht}t.
For t ∈ [1, . . . , T], ht, is the concatenation of a
forward LSTM and a backward LSTM that read
the sentences in two opposite directions:

−→
ht =

−−−−→
LSTMt(w1, . . . , wT)

←−
ht =

←−−−−
LSTMt(w1, . . . , wT)

ht = [
−→
ht ,
←−
ht]

We experiment with two ways of combining the
varying number of {ht}t to form a fixed-size vec-
tor, either by selecting the maximum value over
each dimension of the hidden units (max pool-
ing) (Collobert and Weston, 2008) or by consider-
ing the average of the representations (mean pool-
ing).

The movie was great

←−
h1

←−
h2

←−
h3

←−
h4

−→
h4

−→
h3

−→
h2

−→
h1

w1 w2 w3 w4

x

x

x

x

x x x x

max-pooling

… …u :

Figure 2: Bi-LSTM max-pooling network.

Figure 1: General architecture for sentence classification Conneau et al. (2017)

For the sentence encoder blocks, your task is to implement the following four models:

1. Baseline: averaging word embeddings to obtain sentence representations.

2. Unidirectional LSTM applied on the word embeddings, where the last hidden state is con-
sidered as sentence representation (see Section 3.2.1 of the paper);

3. Simple bidirectional LSTM (BiLSTM), where the last hidden state of forward and backward
layers are concatenated as the sentence representations;

4. BiLSTM with max pooling applied to the concatenation of word-level hidden states from
both directions to retrieve sentence representations (see Section 3.2.2).

A visualization of the four models can be found below. For details, see Section 3.2 of Conneau
et al. (2017).

NLP is !fun

Word
embeddings

Sentence
representations

Averaging Mean

(a) Word embeddings

LSTM

NLP is !fun

Word
embeddings

Sentence
representations

LSTM LSTM LSTM

(b) Unidirectional LSTM

LSTM

NLP is !fun

Word
embeddings

Sentence representations

LSTM LSTM LSTM

(c) Bidirectional LSTM

LSTM

NLP is !fun

Word
embeddings

Sentence
representations

LSTM LSTM LSTM
Max pool

over features

(d) Bidirectional LSTM with max pooling

Figure 2: Visualization of the four sentence encoders.

2

ATCS: Practical 1 Learning sentence representation from NLI data April 2025

For each of the models, you should use the 300-dimensional GloVe2 word embeddings trained on
Common Crawl 840B. The word embeddings should be fixed during training. To achieve compa-
rable results and avoid extensive hyperparameter search, we advise you to use the hyperparameter
settings as described in Section 3.3 of Conneau et al. (2017).

Note
In Section 3.3 of Conneau et al. (2017), a weight decay of 0.99 is reported. However, this
should not be interpreted as the classical weight decay for regularization, but is a learning
rate decay which is applied after each epoch.

2.3 Evaluation

The SNLI dataset consists of three splits, (1) train: which you should use to train your models, (2)
dev : which you can use for hyperparameter tuning, and (3) test : which you should use to evaluate
the models. You should evaluate your models on the SNLI task and report the accuracy on the
validation and test set.

In addition, you need to use SentEval3 (Conneau and Kiela, 2018) to evaluate the sentence
representations obtained from each of the models. SentEval, the Facebook evaluation toolkit for
sentence embeddings, is a library for evaluating the quality of sentence embeddings by applying
them on a broad and diverse set of downstream tasks called ‘transfer’ tasks. Report both the
macro and micro accuracy metrics as in Table 3 in Section 5 of the paper. See the first paragraph
of Section 5 for an explanation of the two metrics.

3 Practical Matters

3.1 Recommended Reading

Before starting to work on the practical, read these papers thoroughly:

• ‘A large annotated corpus for learning natural language inference’ of Bowman et al. (2015)

• ‘Supervised learning of universal sentence representations from natural language inference
data’ of Conneau et al. (2017)

You are very much encouraged to have group discussions about these papers to fully understand
the task and the models.

3.2 Implementation Tips

In this assignment, we ask you to implement the training framework in Pytorch. Below, we have
summarized a few good practices that you can use:

1. Loading the SNLI corpus can be done either from file4 or from HuggingFace5. As preprocess-
ing steps, apply lowercasing and tokenization. You can choose the tokenizer of your choice,
but we recommend to use spaCy or nltk.word tokenize.

2. Be careful to initialize your nn.Embedding module after aligning the GloVe vocabulary with
the dataset, using the dataset’s vocabulary. You are free to align the vocabulary with either
the SNLI corpus or a concatenation with some of the datasets used in SentEval. However,
you are encouraged to think about this design choice and report on the motivation for your
selection.

2GloVe embeddings: https://nlp.stanford.edu/projects/glove/.
3SentEval’s Github repository: https://github.com/facebookresearch/SentEval.
4SNLI https://nlp.stanford.edu/projects/snli/
5HuggingFace datasets https://huggingface.co/datasets/snli

3

https://nlp.stanford.edu/projects/glove/
https://github.com/facebookresearch/SentEval
https://nlp.stanford.edu/projects/snli/
https://huggingface.co/datasets/snli

ATCS: Practical 1 Learning sentence representation from NLI data April 2025

3. Use tensorboard to visualize and monitor the training process of your models. Tensorboard
support is integrated into PyTorch.6

4. You are allowed to use PyTorch Lightning7 if you are already familiar with it. Lightning
reduces the necessary code for logging, saving/loading a model, and more.

5. We recommend using a small portion of the data for debugging the framework. Ensure that
the implementation works using this subset before training on the original dataset.

6. Try to build up your code as modular as possible so that it is easy to be extended to new
models and/or tasks. For instance, you should have at least two separate modules for training
and inference. The interface for training can look similar to:

python train.py <model_type> <checkpoint_path> ...

Additional arguments could include hyperparameters, e.g. the learning rate. The evaluation
in this assignment includes testing a trained model on the SNLI test dataset and evaluating
its sentence encodings with SentEval. A possible interface is as follows:

python eval.py <checkpoint_path> ...

7. Online, we share a SentEval tutorial in which GloVe word vectors are averaged to form
sentence representations.8 There are examples on the SentEval repository as well.9

8. Take care of handling padding symbols in all models. For LSTM-based encoders, the func-
tions torch.nn.utils.rnn.pad packed sequence and torch.nn.utils.rnn.pack padded sequence

can be helpful.

9. Use the Lisa cluster to train your model. Try to run your training early, as your jobs might
not start instantaneously due to queues, and your accounts have a limited number of jobs
that can be run in parallel. However, sufficient hardware support should be provided to train
all of the models in a reasonably short time.

10. Some general advice on debugging can be found on the site of the Deep Learning course10.

Note
The code of Conneau et al. (2017) is available through Github: https://github.com/ihsgnef/
InferSent-1. While you are allowed to look at it for inspiration and implementation details,
we strongly encourage you to implement your own training framework. Note that the standard
plagiarism rules of UvA apply for this assignment.

3.3 Deliverables

Your submission should consist of the following components:

Code Please include all python files in your submission which are necessary to train and evaluate
any of the models described in Section 2.

6A tutorial can be found at https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html
7PyTorch Lightning is taught in the Deep Learning course, with a short tutorial here: https:

//uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial5/Inception_ResNet_DenseNet.

html#PyTorch-Lightning
8Tutorial: https://uva-slpl.github.io/ull/resources/practicals/practical3/senteval_example.ipynb.
9https://github.com/facebookresearch/SentEval/tree/main/examples

10https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/guide3/Debugging_PyTorch.

html

4

https://github.com/ihsgnef/InferSent-1
https://github.com/ihsgnef/InferSent-1
https://student.uva.nl/en/content/az/plagiarism-and-fraud/plagiarism-and-fraud.html?1584908650136
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial5/Inception_ResNet_DenseNet.html#PyTorch-Lightning
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial5/Inception_ResNet_DenseNet.html#PyTorch-Lightning
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial5/Inception_ResNet_DenseNet.html#PyTorch-Lightning
https://uva-slpl.github.io/ull/resources/practicals/practical3/senteval_example.ipynb
https://github.com/facebookresearch/SentEval/tree/main/examples
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/guide3/Debugging_PyTorch.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/guide3/Debugging_PyTorch.html

ATCS: Practical 1 Learning sentence representation from NLI data April 2025

Documentation Provide a github ReadMe file describing the package/installation requirements,
a guide to train and evaluate a model, and the structure of your code.

Pretrained models Upload the final checkpoint file (i.e. checkpoint which was used for testing)
and Tensorboard of the training run for each model to a (free) file sharing service such as
GoogleDrive, and include the download links in your ReadMe. Please do not include the
pretrained models in your zip file submitted to Canvas, as this causes issue during upload
and download. Additionally, make sure to not include the GloVe embedding vectors in the
checkpoints, as it significantly increases the file size.

Results and error analysis Prepare a Jupyter notebook & a separate report (1-2 pages). In
the notebook you load a trained model and demonstrate how it works for different examples.
For instance, it should be possible to specify a new premise and hypothesis as strings, and
predict their entailment with one of your pretrained models. In the report, you should in-
clude an overview of your results (both SNLI and the per-task SentEval scores), and draw
conclusions based on the error analysis done in the notebook. You can look at questions like:
Why is model A performing better than model B? Where do the models fail? What informa-
tion does the sentence embedding represent, and what information might be lost? Additional
points will be awarded for further research questions that you identify and answer yourself.
In particular, we are looking for a clear motivation of your research questions, novelty and
clarity of presentation. You can also include screenshots from tensorboard if suitable. Try to
find good ways to visualize and present your findings. In the report, you should also present
an answer to the following question: Given two examples,

Premise - “Two men sitting in the sun”
Hypothesis - “Nobody is sitting in the shade”
Label - Neutral (likely predicts contradiction)

Premise - “A man is walking a dog”
Hypothesis - “No cat is outside”
Label - Neutral (likely predicts contradiction)

Can you think of a possible reason why the model would fail in such cases?

You should do this practical individually and submit a compressed zip of the deliverables with
the title ATCS-Practical1-FullName to Canvas. The submission deadline for this assignment
is 23:59 on Tuesday, 22 April.

References

S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. A large annotated corpus for learning
natural language inference. arXiv preprint arXiv:1508.05326, 2015.

A. Conneau and D. Kiela. Senteval: An evaluation toolkit for universal sentence representations.
In Proceedings of the Eleventh International Conference on Language Resources and Evaluation
(LREC-2018), 2018.

A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes. Supervised learning of univer-
sal sentence representations from natural language inference data. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pages 670–680, Copenhagen,
Denmark, September 2017. Association for Computational Linguistics.

5

https://guides.github.com/features/wikis/

	Introduction
	Assignment task
	SNLI corpus
	Model architectures
	Evaluation

	Practical Matters
	Recommended Reading
	Implementation Tips
	Deliverables

