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Advanced Topics in Computational Semantics

Overview of the course

Overview of the course

I Focus on language understanding and modelling meaning
I Methods for learning meaning representations from

linguistic data
I Analysis of meaning representations learnt
I Applications

I This is a research seminar
I Focus on recent progress in the field
I Lectures
I You will present and critique research papers
I and conduct a research project
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Overview of the course

Overview of the topics

Focus on deep learning, joint learning and modularity

I Different neural architectures (e.g. LSTMs, attention,
transformers)

I Language models: BERT, GPT and recent LLMs

I Modularity: subnetworks, adapters etc.

I Multilingual joint learning

I Learning from multiple modalities (language and vision)

I Instruction-tuning and in-context learning

I LLM alignment
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Overview of the course

Interdisciplinary topics and applications

I Interpretability of deep learning models

I Cross-cultural NLP

I Social bias and stereotypes in NLP
models
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Overview of the course

Assessment

I Presentation and participation (25%)
I Present 1 paper in class
I Read and discuss other papers

I Practical assignment (25%)
1. Implement a model of sentence meaning
2. Evaluate it in a set of NLP tasks
3. Mini-report submission deadline: 19 April 2024

I Research project (50%)

No exam!

More information at the first lab session on Wednesday, 3 April.
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Overview of the course

Research project

I Goal: Investigate a new research question
I Apply the models discussed in the course
I Perform experiments and analyse results
I Write a research paper
I Present the results at the poster session (24 May)

I Organisation
I Work in groups of 5
I We will propose projects on several topics – you choose
I Deadline: 27 May 2024
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Overview of the course

It gets even better...

Best Poster Award
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Overview of the course

Also note:

Course materials and more info:
https://cl-illc.github.io/semantics-2024

Slack for discussions: see the sign up link on Canvas

Contact

I Assignments: Alina, Vera, Alberto and Sara
I Paper presentations: Katia

Sign up to groups on Canvas by Friday, 5 April.
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Semantics in wider NLP

Natural Language Processing

Many popular applications

...and the emerging ones
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Semantics in wider NLP

Why is NLP difficult?

Similar strings mean different things, different strings mean the
same thing.

I Synonymy: different strings can mean the same thing
The King’s speech gave the much needed reassurance to his people.
His majesty’s address reassured the crowds.

I Ambiguity: same strings can mean different things
His majesty’s address reassured the crowds.
His majesty’s address is Buckingham Palace, London SW1A 1AA.
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Semantics in wider NLP

Computational semantics

Computational semantics = Natural language understanding (NLU)

an area of NLP concerned with language interpretation and
modelling meaning

1. Lexical semantics: modelling the meaning of words

2. Compositional semantics: modelling the meaning of sentences

3. Discourse processing: modelling larger text passages

4. Pragmatics: modelling meaning in wider situational context (e.g.
social meaning)
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Statistical semantics and representation learning

Statistical semantics
Distributional semantics

I The meaning of a word can
be defined by its use

I as a distribution of contexts

I extracted from a text corpus

N: dog N: car
248 bark 493 drive
197 eat 428 park
193 take 317 steal
110 walk 248 stop
101 run 102 break
... ...
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Statistical semantics and representation learning

Statistical semantics in pre-deep learning era

I Vector space models (dimensionality reduction, SVD etc.)
I Information theoretic approaches
I Supervised learning with hand-engineered features

I a range of classifiers (SVM, decision trees etc.)
I features based on lexico-syntactic patterns
I or lexical resources (such as WordNet)

I Unsupervised learning
I Clustering
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Statistical semantics and representation learning

Paradigm shift: representation learning
Deep learning

I dominates the field since ≈2014

I led to performance improvements in many tasks

Is This a Revolution?

• Move from symbolic to 
statistical NLP (1990s) 
certainly was a paradigm shift


• Neural models certainly 
dominant in 2018


• Will neural models prove as 
successful for text as they 
have for vision and speech?
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Statistical semantics and representation learning

Paradigm shift: representation learning

But why?

I Neural networks have been around for decades.

I What has changed in the way they are applied in NLP?

I Key conceptual innovation:

learning intermediate meaning representations in
the process of end-to-end training for a particular task.
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Statistical semantics and representation learning

Example: sentiment analysis

Components of an End-to-End 
(Sentiment Analysis) System

This film is n’t great

+ —
-VE

binary classifier
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Statistical semantics and representation learning

Example: sentiment analysis

Word representations

Word Embeddings

• Random initialization, learn as 
part of task objective


• External initialization (eg 
Word2Vec), update as part of 
task objective


• External initialization, keep 
fixed This film is n’t great
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Statistical semantics and representation learning

Example: sentiment analysis

Sentence representations

Sentence Embeddings

• Recurrent neural network 
(RNN, LSTM, Tree RNN) 
combines the word vectors


• Could use a convolutional 
neural network (CNN), or a 
combination of RNN, CNN

This film is n’t great
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Word representations

General-purpose word representations

Mikolov et. al. 2013. Efficient
Estimation of Word
Representations in Vector Space.

Skip-gram model:

I Given a word

I predict its neighboring words

I learn word representations in
the process
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Word representations

Word embeddings in NLP tasks

I Random initialization,
learn as part of task
objective

I External initialization (e.g.
skip-gram), update as
part of task objective

I External initialization,
keep fixed

Word Embeddings

• Random initialization, learn as 
part of task objective


• External initialization (eg 
Word2Vec), update as part of 
task objective


• External initialization, keep 
fixed This film is n’t great
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Sentence representations

Learning sentence representations

(Long-term?) goal:

I a general-purpose neural
network sentence encoder

I which can be applied across
diverse NLP tasks.

A general-purpose sentence encoder

Input Text

Reusable Encoder

Task Model

Task Output

Representation 
for Each Sentence
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Sentence representations

Why is this useful?

1. Improve performance
I produce rich semantic representations for downstream

NLP tasks

2. Improve data efficiency
I provide a model of sentence representation for language

understanding tasks which lack training data
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Sentence representations

What can we expect this model to capture?

I Lexical semantics and meaning disambiguation in context
I Word order
I Some syntactic structure
I Semantic composition
I Idiomatic/non-compositional phrase meanings
I Connotation and social meaning.
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Sentence representations

Sentence representation models

Unsupervised training on single sentences:

I Sequence autoencoders (Dai and Le, 2015)
I Paragraph vector (Le and Mikolov, 2015)

Unsupervised training on running text:

I SkipThought (Kiros et al., 2015)
I Quick Thoughts (Logeswaran and Lee, 2018)
I BERT (Devlin et al., 2019)
I Generative LMs: GPT{2,3,4} (Radford et al., 2019)

We will look at these models later in the course.
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Sentence representations

Sentence representation models

Supervised training on large corpora:

I Dictionaries (Hill et al. 2015)
I Natural language inference data (Conneau et al. 2017)
I DisSent – discourse connectives (Nie et al. 2019)
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Sentence representations

Learning from dictionary definitions
Hill et al., 2016. Learning to Understand Phrases by Embedding the
Dictionary

3/31/2019 Deep Learning for Language Processing | Felix Hill

https://fh295.github.io/teaching.html 1/2

Felix Hill

Research Scientist, DeepMind, London

View My GitHub Profile

Deep Learning for Language Processing

This course was first taught for MPhil Students at Cambridge University Computer
Lab in 2018, by Stephen Clark and Felix Hill with guest lectures from the brilliant Ed
Grefenstette and Chris Dyer.

The course gave a basic introduction to artificial neural networks, including the
sometimes overlooked question of why these are appropriate models for language
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Sentence representations

DisSent: Predicting discourse connectives
Nie et al., 2019. DisSent: Sentence Representation Learning from
Explicit Discourse Relations

S1 marker S2

Her eyes flew up to his face. and Suddenly she realized why he looked so different.
The concept is simple. but The execution will be incredibly dangerous.
You used to feel pride. because You defended innocent people.
Ill tell you about it. if You give me your number.
Belter was still hard at work. when Drade and barney strolled in.
We plugged bulky headsets into the dashboard. so We could hear each other when we spoke into the microphones.
It was mere minutes or hours. before He finally fell into unconsciousness.
And then the cloudy darkness lifted. though The lifeboat did not slow down.

Table 3: Example pairs from our Books 8 dataset.

S1 because S2
[I wore a jacket]S1 because [it was cold outside]S2.

advcl

mark

S1because S2
Because [it was cold outside]S2, [I wore a jacket]S1.

advclmark

Figure 1: Dependency patters for extraction: While
the relative order of a discourse marker (e.g. because)
and its connected sentences is flexible, the dependency
relations between these components within the overall
sentence remains constant. See Appendix A.1 for de-
pendency patterns for other discourse markers.

Manning, 2016) to extract the appropriate pairs of
sentences (or sentence-like EDUs) for a discourse
marker, in the appropriate conceptual order. Each
discourse marker, when it is used to link two state-
ments, is parsed by the dependency parser in a
systematic way, though different discourse mark-
ers may have different corresponding dependency
patterns linking them to their statement pairs.1

Within the dependency parse, we search for the
governor phrase (which we call “S2”) of the dis-
course marker and check for the appropriate de-
pendency relation. If we find no such phrase,
we reject the example entirely (thus filtering out
polysemous usages, like “that’s so cool!” for
the discourse marker so). If we find such an
S2, we search for “S1” within the same sentence
(SS). Searching for this relation allows us to cap-
ture pairs where the discourse marker starts the
sentence and connects the following two clauses
(e.g. “Because [it was cold outside]S2, [I wore a
jacket]S1.”). If a sentence in the corpus contains
only a discourse marker and S2, we assume the
discourse marker links to the immediately previ-
1 See Appendix A.1 for more details on dependency-based
extraction.

ous sentence (IPS), which we label S1.
For some markers, we further filter based on the

order of the sentences in the original text. For ex-
ample, the discourse marker then always appears
in the order ”S1, then S2”, unlike because, which
can also appear in the order ”Because S2, S1”. Ex-
cluding proposed extractions in an incorrect order
makes our method more robust to incorrect depen-
dency parses.

4.3 Training Dataset
Using these methods, we curated a dataset of
4,706,292 pairs of sentences for 15 discourse
markers. Examples are shown in Table 3. We ran-
domly divide the dataset into train/validation/test
set with 0.9, 0.05, 0.05 split. The dataset is in-
herently unbalanced, but the model is still able to
learn rarer classes quite well (see Appendix A.4
for more details on the effects of class frequen-
cies). Our data are publicly available2.

5 Related Work

Current state of the art models either rely on
completely supervised learning through high-level
classification tasks or unsupervised learning.

Supervised learning has been shown to yield
general-purpose representations of meaning, train-
ing on semantic relation tasks like Stanford Nat-
ural Language Inference (SNLI) and MultiNLI
(Bowman et al., 2015; Williams et al., 2018; Con-
neau et al., 2017). Large scale joint supervised
training has also been explored by Subramanian
et al. (2018), who trained a sentence encoding
model on five language-related tasks. These super-
vised learning tasks often require human annota-
tions on a large amount of data which are costly to
obtain. Our discourse prediction approach extends
these results in that we train on semantic relations,
but we use dependency patterns to automatically
2 https://github.com/windweller/DisExtract
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Sentence representations

Natural language inference task
Bowman et al, 2015. A large annotated corpus for learning natural
language inference

I Stanford Natural Language Inference (SNLI) corpus

I 570k sentence pairs

I labeled for entailment, contradiction, and semantic
independence

Natural Language Inference (NLI)
also known as recognizing textual entailment (RTE)

 James Byron Dean refused to move without blue jeans

{entails, contradicts, neither}

James Dean didn’t dance without pants

Example: MacCartney thesis ‘09
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Sentence representations

More NLI examples

A black race car starts up in front of a crowd of people.

A man is driving down a lonely road.

CONTRADICTION

A soccer game with multiple males playing.

Some men are playing a sport.

ENTAILMENT
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Sentence representations
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Sentence representations

General architecture for NLI

Conneau et al, 2017. Supervised
Learning of Universal Sentence
Representations from Natural
Language Inference Data

InferSent model

I Siamese architecture (same
encoder to represent premise
and hypothesis)

I 3-way classification (entails,
contradicts, neither )

embeddings in a supervised way. That is, we aim
to demonstrate that sentence encoders trained on
natural language inference are able to learn sen-
tence representations that capture universally use-
ful features.

sentence encoder
with hypothesis input

sentence encoder
with premise input

3-way softmax

u v

fully-connected layers

(u, v, |u − v|, u ∗ v)

Figure 1: Generic NLI training scheme.

Models can be trained on SNLI in two differ-
ent ways: (i) sentence encoding-based models that
explicitly separate the encoding of the individual
sentences and (ii) joint methods that allow to use
encoding of both sentences (to use cross-features
or attention from one sentence to the other).

Since our goal is to train a generic sentence en-
coder, we adopt the first setting. As illustrated in
Figure 1, a typical architecture of this kind uses a
shared sentence encoder that outputs a representa-
tion for the premise u and the hypothesis v. Once
the sentence vectors are generated, 3 matching
methods are applied to extract relations between
u and v : (i) concatenation of the two representa-
tions (u, v); (ii) element-wise product u ∗ v; and
(iii) absolute element-wise difference |u− v|. The
resulting vector, which captures information from
both the premise and the hypothesis, is fed into
a 3-class classifier consisting of multiple fully-
connected layers culminating in a softmax layer.

3.2 Sentence encoder architectures

A wide variety of neural networks for encod-
ing sentences into fixed-size representations ex-
ists, and it is not yet clear which one best cap-
tures generically useful information. We com-
pare 7 different architectures: standard recurrent
encoders with either Long Short-Term Memory
(LSTM) or Gated Recurrent Units (GRU), con-
catenation of last hidden states of forward and
backward GRU, Bi-directional LSTMs (BiLSTM)
with either mean or max pooling, self-attentive

network and hierarchical convolutional networks.

3.2.1 LSTM and GRU
Our first, and simplest, encoders apply re-
current neural networks using either LSTM
(Hochreiter and Schmidhuber, 1997) or GRU
(Cho et al., 2014) modules, as in sequence to se-
quence encoders (Sutskever et al., 2014). For
a sequence of T words (w1, . . . , wT ), the net-
work computes a set of T hidden representations
h1, . . . , hT , with ht =

−−−−→
LSTM(w1, . . . , wT ) (or

using GRU units instead). A sentence is repre-
sented by the last hidden vector, hT .

We also consider a model BiGRU-last that con-
catenates the last hidden state of a forward GRU,
and the last hidden state of a backward GRU to
have the same architecture as for SkipThought
vectors.

3.2.2 BiLSTM with mean/max pooling
For a sequence of T words {wt}t=1,...,T , a bidirec-
tional LSTM computes a set of T vectors {ht}t.
For t ∈ [1, . . . , T ], ht, is the concatenation of a
forward LSTM and a backward LSTM that read
the sentences in two opposite directions:

−→
ht =

−−−−→
LSTMt(w1, . . . , wT )

←−
ht =

←−−−−
LSTMt(w1, . . . , wT )

ht = [
−→
ht ,
←−
ht ]

We experiment with two ways of combining the
varying number of {ht}t to form a fixed-size vec-
tor, either by selecting the maximum value over
each dimension of the hidden units (max pool-
ing) (Collobert and Weston, 2008) or by consider-
ing the average of the representations (mean pool-
ing).

The movie was great

←−
h1

←−
h2

←−
h3

←−
h4

−→
h4

−→
h3

−→
h2

−→
h1

w1 w2 w3 w4

x

x
x

x

x x x x

max-pooling

… …u :

Figure 2: Bi-LSTM max-pooling network.
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Sentence representations

InferSent encoder: BiLSTM with max pooling
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3.2 Sentence encoder architectures

A wide variety of neural networks for encod-
ing sentences into fixed-size representations ex-
ists, and it is not yet clear which one best cap-
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pare 7 different architectures: standard recurrent
encoders with either Long Short-Term Memory
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catenation of last hidden states of forward and
backward GRU, Bi-directional LSTMs (BiLSTM)
with either mean or max pooling, self-attentive

network and hierarchical convolutional networks.

3.2.1 LSTM and GRU
Our first, and simplest, encoders apply re-
current neural networks using either LSTM
(Hochreiter and Schmidhuber, 1997) or GRU
(Cho et al., 2014) modules, as in sequence to se-
quence encoders (Sutskever et al., 2014). For
a sequence of T words (w1, . . . , wT ), the net-
work computes a set of T hidden representations
h1, . . . , hT , with ht =
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LSTM(w1, . . . , wT ) (or

using GRU units instead). A sentence is repre-
sented by the last hidden vector, hT .

We also consider a model BiGRU-last that con-
catenates the last hidden state of a forward GRU,
and the last hidden state of a backward GRU to
have the same architecture as for SkipThought
vectors.
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←−
h1

←−
h2

←−
h3
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−→
h4

−→
h3

−→
h2

−→
h1

w1 w2 w3 w4

x

x
x

x

x x x x
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Sentence representations

NLI and language understanding

To perform well at NLI, your representations of meaning must
handle with the full complexity of compositional semantics...

I Lexical entailment (cat vs. animal, cat vs. dog)
I Lexical ambiguity (e.g. bank, run)
I Quantification (all, most, fewer than eight etc.)
I Modality (might, should, etc.)
I Common sense background knowledge
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Sentence representations

Evaluation framework: SentEval

Conneau and Kiela, 2018. SentEval: An Evaluation Toolkit for
Universal Sentence Representations

I Formalised an evaluation standard for sentence
representations

I Suite of ten tasks
I Software package automatically trains and evaluates

per-task classifiers using supplied representations.
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Sentence representations

SentEval tasks

I Classification tasks:
I sentiment analysis / opinion polarity
I subjectivity vs. objectivity
I question type (e.g. for question answering)

I Natural language inference:
I several datasets

I Semantic similarity tasks:
I sentence similarity
I paraphrasing
I image caption retrieval
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Sentence representations

Practical 1
Learning general-purpose sentence representations

I supervised training

I SNLI task

I Implement three variants of the InferSent model:

1. Unidirectional LSTM encoder
2. Bidirectional (Bi-) LSTM encoder
3. BiLSTM encoder with max pooling

I Compare to a baseline averaging word embeddings

I Evaluate using SentEval

Submit a mini-report containing your results and your code
Deadline: 19 April
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Sentence representations

Research project topics

I Multilingual representation learning

I Model pruning and subnetworks

I Prompting, instruction-tuning and
in-context learning

I Bias and stereotypes in NLP models

Detailed project descriptions soon available on Canvas
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Sentence representations

Coming next...

Tomorrow:

I Lab: Start SNLI practical

Friday:

I Lecture: Attention and Transformers

Next Tuesday:

I Seminar: The BERT model
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Sentence representations

Acknowledgement
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