Katia Shutova

ILLC University of Amsterdam

2 April 2024

ヘロト ヘポト ヘヨト ヘヨト

э

1/40

Taught by...

Katia Shutova

Alina Leidinger

Vera Neplenbroek

Sara Rajaee

Alberto Testoni

Lecture 1: Introduction

Overview of the course

Semantics in wider NLP

Statistical semantics and representation learning

Word representations

Sentence representations

Overview of the course

- Focus on language understanding and modelling meaning
 - Methods for learning meaning representations from linguistic data
 - Analysis of meaning representations learnt
 - Applications
- This is a research seminar
 - Focus on recent progress in the field
 - Lectures
 - You will present and critique research papers
 - and conduct a research project

Overview of the topics

Focus on deep learning, joint learning and modularity

- Different neural architectures (e.g. LSTMs, attention, transformers)
- Language models: BERT, GPT and recent LLMs
- Modularity: subnetworks, adapters etc.
- Multilingual joint learning
- Learning from multiple modalities (language and vision)
- Instruction-tuning and in-context learning
- LLM alignment

Interdisciplinary topics and applications

- Interpretability of deep learning models
- Cross-cultural NLP
- Social bias and stereotypes in NLP models

Assessment

- Presentation and participation (25%)
 - Present 1 paper in class
 - Read and discuss other papers
- Practical assignment (25%)
 - 1. Implement a model of sentence meaning
 - 2. Evaluate it in a set of NLP tasks
 - 3. Mini-report submission deadline: 19 April 2024
- Research project (50%)

No exam!

More information at the first lab session on Wednesday, 3 April.

Research project

Goal: Investigate a new research question

- Apply the models discussed in the course
- Perform experiments and analyse results
- Write a research paper
- Present the results at the poster session (24 May)

Organisation

- Work in groups of 5
- We will propose projects on several topics you choose
- Deadline: 27 May 2024

-Overview of the course

It gets even better...

Best Poster Award

Also note:

Course materials and more info:

https://cl-illc.github.io/semantics-2024

Slack for discussions: see the sign up link on Canvas

Contact

- Assignments: Alina, Vera, Alberto and Sara
- Paper presentations: Katia

Sign up to groups on Canvas by Friday, 5 April.

Natural Language Processing

Many popular applications

...and the emerging ones

Why is NLP difficult?

Similar strings mean different things, different strings mean the same thing.

- Synonymy: different strings can mean the same thing
 The King's speech gave the much needed reassurance to his people.
 His majesty's address reassured the crowds.
- Ambiguity: same strings can mean different things

His majesty's address reassured the crowds. His majesty's address is Buckingham Palace, London SW1A 1AA.

Why is NLP difficult?

Similar strings mean different things, different strings mean the same thing.

- Synonymy: different strings can mean the same thing
 The King's speech gave the much needed reassurance to his people.
 His majesty's address reassured the crowds.
- Ambiguity: same strings can mean different things

His majesty's address reassured the crowds. *His majesty's address* is Buckingham Palace, London SW1A 1AA.

Why is NLP difficult?

Similar strings mean different things, different strings mean the same thing.

Synonymy: different strings can mean the same thing
 The King's speech gave the much needed reassurance to his people.
 His majesty's address reassured the crowds.

Ambiguity: same strings can mean different things

His majesty's address reassured the crowds. His majesty's address is Buckingham Palace, London SW1A 1AA.

Why is NLP difficult?

Similar strings mean different things, different strings mean the same thing.

Synonymy: different strings can mean the same thing
 The King's speech gave the much needed reassurance to his people.
 His majesty's address reassured the crowds.

Ambiguity: same strings can mean different things
 His majesty's address reassured the crowds.
 His majesty's address is Buckingham Palace, London SW1A 1AA.

Why is NLP difficult?

Similar strings mean different things, different strings mean the same thing.

Synonymy: different strings can mean the same thing
 The King's speech gave the much needed reassurance to his people.
 His majesty's address reassured the crowds.

Ambiguity: same strings can mean different things
 His majesty's address reassured the crowds.
 His majesty's address is Buckingham Palace, London SW1A 1AA.

Computational semantics

Computational semantics = Natural language understanding (NLU)

an area of NLP concerned with language interpretation and modelling meaning

- 1. Lexical semantics: modelling the meaning of words
- 2. Compositional semantics: modelling the meaning of sentences
- 3. Discourse processing: modelling larger text passages
- 4. Pragmatics: modelling meaning in wider situational context (e.g. social meaning)

- Statistical semantics and representation learning

Statistical semantics

Distributional semantics

- The meaning of a word can be defined by its use
- as a distribution of contexts
- extracted from a text corpus

N: dog	N: car
248 bark	493 drive
197 eat	428 park
193 take	317 steal
110 walk	248 stop
101 run	102 break

- Statistical semantics and representation learning

Statistical semantics in pre-deep learning era

- Vector space models (dimensionality reduction, SVD etc.)
- Information theoretic approaches
- Supervised learning with hand-engineered features
 - a range of classifiers (SVM, decision trees etc.)
 - features based on lexico-syntactic patterns
 - or lexical resources (such as WordNet)
- Unsupervised learning
 - Clustering

- Statistical semantics and representation learning

Paradigm shift: representation learning Deep learning

- ▶ dominates the field since ≈2014
- led to performance improvements in many tasks

-Statistical semantics and representation learning

Paradigm shift: representation learning

But why?

- Neural networks have been around for decades.
- What has changed in the way they are applied in NLP?
- Key conceptual innovation:

learning **intermediate meaning representations** in the process of end-to-end training for a particular task.

-Statistical semantics and representation learning

Paradigm shift: representation learning

But why?

- Neural networks have been around for decades.
- What has changed in the way they are applied in NLP?
- Key conceptual innovation:

learning **intermediate meaning representations** in the process of end-to-end training for a particular task.

- Statistical semantics and representation learning

Example: sentiment analysis

- Statistical semantics and representation learning

Example: sentiment analysis

Word representations

- Statistical semantics and representation learning

Example: sentiment analysis

Sentence representations

-Word representations

General-purpose word representations

Mikolov et. al. 2013. *Efficient Estimation of Word Representations in Vector Space*.

Skip-gram model:

- Given a word
- predict its neighboring words
- learn word representations in the process

-Word representations

Word embeddings in NLP tasks

- Random initialization, learn as part of task objective
- External initialization (e.g. skip-gram), update as part of task objective
- External initialization, keep fixed

Learning sentence representations

Task Output

(Long-term?) goal:

- a general-purpose neural network sentence encoder
- which can be applied across diverse NLP tasks.

Task Model

Representation for Each Sentence

Input Text

-Sentence representations

Why is this useful?

- 1. Improve performance
 - produce rich semantic representations for downstream NLP tasks
- 2. Improve data efficiency
 - provide a model of sentence representation for language understanding tasks which lack training data

What can we expect this model to capture?

- Lexical semantics and meaning disambiguation in context
- Word order
- Some syntactic structure
- Semantic composition
- Idiomatic/non-compositional phrase meanings
- Connotation and social meaning.

Sentence representation models

Unsupervised training on single sentences:

- Sequence autoencoders (Dai and Le, 2015)
- Paragraph vector (Le and Mikolov, 2015)

Unsupervised training on running text:

- SkipThought (Kiros et al., 2015)
- Quick Thoughts (Logeswaran and Lee, 2018)
- BERT (Devlin et al., 2019)
- Generative LMs: GPT{2,3,4} (Radford et al., 2019)

We will look at these models later in the course.

Sentence representation models

Supervised training on large corpora:

- Dictionaries (Hill et al. 2015)
- Natural language inference data (Conneau et al. 2017)
- DisSent discourse connectives (Nie et al. 2019)

Learning from dictionary definitions

Hill et al., 2016. *Learning to Understand Phrases by Embedding the Dictionary*

28/40

one's legs

DisSent: Predicting discourse connectives

Nie et al., 2019. *DisSent: Sentence Representation Learning from Explicit Discourse Relations*

Natural language inference task

Bowman et al, 2015. A large annotated corpus for learning natural language inference

- Stanford Natural Language Inference (SNLI) corpus
- 570k sentence pairs
- labeled for entailment, contradiction, and semantic independence

James Byron Dean refused to move without blue jeans {entails, contradicts, neither}

James Dean didn't dance without pants

More NLI examples

A black race car starts up in front of a crowd of people. A man is driving down a lonely road.

More NLI examples

A black race car starts up in front of a crowd of people. A man is driving down a lonely road.

CONTRADICTION

More NLI examples

A black race car starts up in front of a crowd of people. A man is driving down a lonely road.

CONTRADICTION

A soccer game with multiple males playing.

Some men are playing a sport.

More NLI examples

A black race car starts up in front of a crowd of people. A man is driving down a lonely road.

CONTRADICTION

A soccer game with multiple males playing.

Some men are playing a sport.

ENTAILMENT

< 日 > < 同 > < 回 > < 回 > < □ > <

31/40

General architecture for NLI

Conneau et al, 2017. Supervised Learning of Universal Sentence Representations from Natural Language Inference Data

InferSent model

- Siamese architecture (same encoder to represent premise and hypothesis)
- 3-way classification (*entails*, contradicts, neither)

InferSent encoder: BiLSTM with max pooling

NLI and language understanding

To perform well at NLI, your representations of meaning must handle with the full complexity of compositional semantics...

- Lexical entailment (cat vs. animal, cat vs. dog)
- Lexical ambiguity (e.g. bank, run)
- Quantification (all, most, fewer than eight etc.)
- Modality (*might, should*, etc.)
- Common sense background knowledge

Evaluation framework: SentEval

Conneau and Kiela, 2018. *SentEval: An Evaluation Toolkit for Universal Sentence Representations*

- Formalised an evaluation standard for sentence representations
- Suite of ten tasks
- Software package automatically trains and evaluates per-task classifiers using supplied representations.

-Sentence representations

SentEval tasks

- Classification tasks:
 - sentiment analysis / opinion polarity
 - subjectivity vs. objectivity
 - question type (e.g. for question answering)
- Natural language inference:
 - several datasets
- Semantic similarity tasks:
 - sentence similarity
 - paraphrasing
 - image caption retrieval

- Sentence representations

Practical 1

Learning general-purpose sentence representations

- supervised training
- SNLI task
- Implement three variants of the InferSent model:
 - 1. Unidirectional LSTM encoder
 - 2. Bidirectional (Bi-) LSTM encoder
 - 3. BiLSTM encoder with max pooling
- Compare to a baseline averaging word embeddings
- Evaluate using SentEval

Submit a mini-report containing your results and your code Deadline: 19 April

Research project topics

- Multilingual representation learning
- Model pruning and subnetworks
- Prompting, instruction-tuning and in-context learning
- Bias and stereotypes in NLP models

Detailed project descriptions soon available on Canvas

Sentence representations

Coming next...

Tomorrow:

Lab: Start SNLI practical

Friday:

Lecture: Attention and Transformers

39/40

Next Tuesday:

Seminar: The BERT model

Sentence representations

Acknowledgement

Some images were adapted from Sam Bowman and Steve Clark