Learning sentence representations from natural
language inference data

University of Amsterdam, ATCS: Practical I

April 2024

1 Introduction

The first practical of the Advanced Topics in Computational Semantics course concerns learning
general-purpose sentence representations in the natural language inference (NLI) task. The goal
of this practical is threefold:

e to implement four neural models to classify sentence pairs based on their relation;

e to train these models using the Stanford Natural Language Inference (SNLI) corpus (Bowman
et al., 2015);

e and to evaluate the trained models using the SentEval framework (Conneau and Kiela, 2018).

NLI is the task of classifying entailment or contradiction relationships between premises and
hypotheses, such as the following:

Premise Bob is in his room, but because of the thunder and lightning outside, he cannot sleep.
Hypothesis 1 Bob is awake.

Hypothesis 2 It is sunny outside.

Hypothesis 3 Bob is lying in his bed.

While the first hypothesis follows from the premise, indicated by the alignment of ‘cannot sleep’
and ‘awake’, the second hypothesis contradicts the premise, as can be seen from the alignment of
‘sunny’ and ‘thunder and lightning’ and recognizing their incompatibility. The third hypothesis is
not necessarily entailed by the premise, and neither is contradicted. Therefore, its relation to the
premise is considered to be neutral.

For a model to recognize textual entailments, it has to reason about semantic relationships
within sentences. Hence, a thorough understanding of natural language is required which can be
transferred to other tasks involving natural language. In this assignment, we focus on pretraining
a sentence encoder on NLI, and afterwards evaluate its sentence embeddings on a variety of natural
language tasks.

2 Assignment task

Your task in this assignment is to replicate some of the results reported by Conneau et al. (2017).
In the following, we will first introduce the dataset, the model architectures and evaluation to use.

2.1 SNLI corpus

Throughout this assighment, we will use the SNLI corpus.! This corpus (version 1.0) is a collection
of 570k human-written English sentence pairs manually labeled for balanced classification with the
labels entailment, contradiction, and neutral, supporting the task of NLI that is also known as
recognizing textual entailment.

Thttps://nlp.stanford.edu/projects/snli/

https://nlp.stanford.edu/projects/snli/

ATCS: Practical 1 Learning sentence representation from NLI data April 2024

2.2 Model architectures

The general architecture proposed by Conneau et al. (2017) consists of a sentence encoder and a
classifier. The premise and hypothesis are embedded by the same sentence encoder into a fixed
sized feature vector, u and v respectively. The two feature vectors are combined by concatenating
both additionally with their absolute difference |u — v| and element-wise product u * v. The
resulting features are processed by a small MLP with a final classification layer for distinguishing
the entailment relationships. An overview of the architecture is shown in Figure 1.

*
*
(u, v, [u = |, u*v)

U]
sentence encoder sentence encoder
with premise input with hypothesis input

Figure 1: General architecture for sentence classification Conneau et al. (2017)

For the sentence encoder blocks, your task is to implement the following four models:

1. Baseline: averaging word embeddings to obtain sentence representations.

2. Unidirectional LSTM applied on the word embeddings, where the last hidden state is con-
sidered as sentence representation (see Section 3.2.1 of the paper);

3. Simple bidirectional LSTM (BiLSTM), where the last hidden state of forward and backward
layers are concatenated as the sentence representations;

4. BiLSTM with max pooling applied to the concatenation of word-level hidden states from
both directions to retrieve sentence representations (see Section 3.2.2).

A visualization of the four models can be found below. For details, see Section 3.2 of Conneau
et al. (2017).

Sentence
representations

Sentence
representations

Averaging

Word
embeddings

Word
embeddings

NLP is fun ! NLP is fun !

(a) Word embeddings (b) Unidirectional LSTM

| Sentence
i | representations

Max pool
over features

Word
embeddings

Word
embeddings

NLP is fun !

(c) Bidirectional LSTM (d) Bidirectional LSTM with max pooling

Figure 2: Visualization of the four sentence encoders.

ATCS: Practical 1 Learning sentence representation from NLI data April 2024

For each of the models, you should use the 300-dimensional GloVe? word embeddings trained on
Common Crawl 840B. The word embeddings should be fixed during training. To achieve compa-
rable results and avoid extensive hyperparameter search, we advise you to use the hyperparameter
settings as described in Section 3.3 of Conneau et al. (2017).

Note

In Section 3.3 of Conneau et al. (2017), a weight decay of 0.99 is reported. However, this
should not be interpreted as the classical weight decay for regularization, but is a learning
rate decay which is applied after each epoch.

2.3 Evaluation

The SNLI dataset consists of three splits, (1) ¢rain: which you should use to train your models, (2)
dev: which you can use for hyperparameter tuning, and (3) test: which you should use to evaluate
the models. You should evaluate your models on the SNLI task and report the accuracy on the
validation and test set.

In addition, you need to use SentEval® (Conneau and Kiela, 2018) to evaluate the sentence
representations obtained from each of the models. SentEval, the Facebook evaluation toolkit for
sentence embeddings, is a library for evaluating the quality of sentence embeddings by applying
them on a broad and diverse set of downstream tasks called ‘transfer’ tasks. Report both the
macro and micro accuracy metrics as in Table 3 in Section 5 of the paper. See the first paragraph
of Section 5 for an explanation of the two metrics.

3 Practical Matters

3.1 Recommended Reading

Before starting to work on the practical, read these papers thoroughly:

e ‘A large annotated corpus for learning natural language inference’ of Bowman et al. (2015)

e ‘Supervised learning of universal sentence representations from natural language inference
data’ of Conneau et al. (2017)

You are very much encouraged to have group discussions about these papers to fully understand
the task and the models.

3.2 Implementation Tips

In this assignment, we ask you to implement the training framework in Pytorch. Below, we have
summarized a few good practices that you can use:

1. Loading the SNLI corpus can be done either from file* or from HuggingFace®. As preprocess-
ing steps, apply lowercasing and tokenization. You can choose the tokenizer of your choice,
but we recommend to use spaCy or nltk.word_tokenize.

2. Be careful to initialize your nn.Embedding module after aligning the GloVe vocabulary with
the dataset, using the dataset’s vocabulary. You are free to align the vocabulary with either
the SNLI corpus or a concatenation with some of the datasets used in SentEval. However,
you are encouraged to think about this design choice and report on the motivation for your
selection.

2GloVe embeddings: https://nlp.stanford.edu/projects/glove/.

3SentEval’s Github repository: https://github.com/facebookresearch/SentEval.
4SNLI https://nlp.stanford.edu/projects/snli/

5HuggingFace datasets https://huggingface.co/datasets/snli

https://nlp.stanford.edu/projects/glove/
https://github.com/facebookresearch/SentEval
https://nlp.stanford.edu/projects/snli/
https://huggingface.co/datasets/snli

ATCS: Practical 1 Learning sentence representation from NLI data April 2024

3. Use tensorboard to visualize and monitor the training process of your models. Tensorboard
support is integrated into PyTorch.%

4. You are allowed to use PyTorch Lightning” if you are already familiar with it. Lightning
reduces the necessary code for logging, saving/loading a model, and more.

5. We recommend using a small portion of the data for debugging the framework. Ensure that
the implementation works using this subset before training on the original dataset.

6. Try to build up your code as modular as possible so that it is easy to be extended to new
models and /or tasks. For instance, you should have at least two separate modules for training
and inference. The interface for training can look similar to:

python train.py <model_type> <checkpoint_path>

Additional arguments could include hyperparameters, e.g. the learning rate. The evaluation
in this assignment includes testing a trained model on the SNLI test dataset and evaluating
its sentence encodings with SentEval. A possible interface is as follows:

python eval.py <checkpoint_path>

7. Online, we share a SentEval tutorial in which GloVe word vectors are averaged to form
sentence representations.® There are examples on the SentEval repository as well.”

8. Take care of handling padding symbols in all models. For LSTM-based encoders, the func-
tions torch.nn.utils.rnn.pad_packed_sequence and torch.nn.utils.rnn.pack_padded_sequence
can be helpful.

9. Use the Lisa cluster to train your model. Try to run your training early, as your jobs might
not start instantaneously due to queues, and your accounts have a limited number of jobs
that can be run in parallel. However, sufficient hardware support should be provided to train
all of the models in a reasonably short time.

10. Some general advice on debugging can be found on the site of the Deep Learning course'?.

Note

The code of Conneau et al. (2017) is available through Github: https://github.com/ihsgnef/
InferSent-1. While you are allowed to look at it for inspiration and implementation details,
we strongly encourage you to implement your own training framework. Note that the standard
plagiarism rules of UvA apply for this assignment.

3.3 Deliverables
Your submission should consist of the following components:

Code Please include all python files in your submission which are necessary to train and evaluate
any of the models described in Section 2.

Documentation Provide a github ReadMe file describing the package/installation requirements,
a guide to train and evaluate a model, and the structure of your code.

6 A tutorial can be found at https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html

"PyTorch Lightning is taught in the Deep Learning course, with a short tutorial here: https:
//uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial5/Inception_ResNet_DenseNet.
html#PyTorch-Lightning

8Tutorial: https://uva-slpl.github.io/ull/resources/practicals/practical3/senteval_example.ipynb.

9mttps://github.com/facebookresearch/SentEval/tree/main/examples

Ohttps://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/guide3/Debugging_PyTorch.

html

https://github.com/ihsgnef/InferSent-1
https://github.com/ihsgnef/InferSent-1
https://student.uva.nl/en/content/az/plagiarism-and-fraud/plagiarism-and-fraud.html?1584908650136
https://guides.github.com/features/wikis/
https://pytorch.org/tutorials/intermediate/tensorboard_tutorial.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial5/Inception_ResNet_DenseNet.html#PyTorch-Lightning
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial5/Inception_ResNet_DenseNet.html#PyTorch-Lightning
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial5/Inception_ResNet_DenseNet.html#PyTorch-Lightning
https://uva-slpl.github.io/ull/resources/practicals/practical3/senteval_example.ipynb
https://github.com/facebookresearch/SentEval/tree/main/examples
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/guide3/Debugging_PyTorch.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/guide3/Debugging_PyTorch.html

ATCS: Practical 1 Learning sentence representation from NLI data April 2024

Pretrained models Upload the final checkpoint file (i.e. checkpoint which was used for testing)
and Tensorboard of the training run for each model to a (free) file sharing service such as
GoogleDrive, and include the download links in your ReadMe. Please do not include the
pretrained models in your zip file submitted to Canvas, as this causes issue during upload
and download. Additionally, make sure to not include the GloVe embedding vectors in the
checkpoints, as it significantly increases the file size.

Results and error analysis Prepare a Jupyter notebook & a separate report (1-2 pages). In the
notebook you load a trained model and demonstrate how it works for different examples. For
instance, it should be possible to specify a new premise and hypothesis as strings, and predict
their entailment with one of your pretrained models. In the report, you should include an
overview of your results (both SNLI and the per-task SentEval scores), and draw conclusions
based on the error analysis done in the notebook. You can look at questions like: Why is
model A performing better than model B? Where do the models fail? What information
does the sentence embedding represent, and what information might be lost? Additional
points will be awarded for further research questions that you identify and answer yourself.
In particular, we are looking for a clear motivation of your research questions, novelty and
clarity of presentation. You can also include screenshots from tensorboard if suitable. Try to
find good ways to visualize and present your findings. In the report, you should also present
an answer to the following question: Given two examples,

Premise - “T'wo men sitting in the sun”
Hypothesis - “Nobody is sitting in the shade”
Label - Neutral (likely predicts contradiction)

Premise - “A man is walking a dog”
Hypothesis - “No cat is outside”
Label - Neutral (likely predicts contradiction)

Can you think of a possible reason why the model would fail in such cases?

You should do this practical individually and submit a compressed zip of the deliverables with
the title ATCS-Practicall-FullName to Canvas. The submission deadline for this assignment

is 23:59 on Friday;19-April Monday, 22 April.
References

S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. A large annotated corpus for learning
natural language inference. arXiv preprint arXiv:1508.05326, 2015.

A. Conneau and D. Kiela. Senteval: An evaluation toolkit for universal sentence representations.
In Proceedings of the Eleventh International Conference on Language Resources and Evaluation

(LREC-2018), 2018.

A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes. Supervised learning of univer-
sal sentence representations from natural language inference data. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pages 670-680, Copenhagen,
Denmark, September 2017. Association for Computational Linguistics.

	Introduction
	Assignment task
	SNLI corpus
	Model architectures
	Evaluation

	Practical Matters
	Recommended Reading
	Implementation Tips
	Deliverables

