This is the page of the course Advanced Topics in Computational Semantics offered at the University of Amsterdam
Course coordinator: Ekaterina Shutova
Teaching assistants: Alina Leidinger, Vera Neplenbroek, Sara Rajaee and Alberto Testoni
Goals
- Learn to apply representation learning methods to natural language data
- Gain experience with natural language processing techniques
- Learn about the state-of-the-art in representation learning for NLP
Content
The field of computational semantics is concerned with automatic interpretation of natural language. This course will provide an overview of state-of-the-art approaches to language understanding tasks. This is an advanced research seminar aiming to introduce students to recent developments in this field. The course will consist of a set of lectures and seminar sessions, where the students will present and discuss recent research papers. This year we will focus on representation learning for NLP, considering different levels of language analysis: words, sentences and longer discourse fragments. We will also look at the recently proposed contextualised word representation models (such as ELMo and BERT), joint learning methods (including multilingual joint learning and multimodal learning) and recent advances in generative AI.
An important component of the course is a research project, in which the students will have the opportunity to implement a number of NLP models, perform experiments addressing a new research question and write a research paper.
Assessment
The course has no exam. The grade is based on participation, including presentations of literature that the students give (25%) and a series of practical assignments, culminating in a research report that the students submit at the end (75%).
- Presentation and participation: 25%
- Practical 1: Learning general-purpose sentence representations: 25%
- Research project (group work): 50% (10% for the presentation; 40% for the research paper)
Deadlines
- Paper presentations (throughout the course, assigned by email)
- Practical 1 - Assignment submission:
19 April 202422 April 2024 - Research project presentation: 24 May 2024
- Research project report:
27 May 202431 May 2024
Recommended reading
Since the course focuses on the recent advances in the field of NLP, there is no text book. The students will be referred to research papers throughout the course.
Recommended prior knowledge
Machine Learning 1, Deep Learning and Natural Language Processing 1
For those of you who have not attended NLP1 please check the course website and reading materials.