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D  INTRODUCTION

Why do we perform multitask learning (MTL) ?

D MTL APPROACH

Which MTL architectures exist and how do we train them?

D  TASKS TO COMBINE

Which main and auxiliary tasks can be combined?



Introduction Motivation

4 IMPROVE MAIN TASK THROUGH AUXILIARY TASKS

E.g. Improve dependency parsing through POS labelling.

4 MOVE TOWARDS A UNIFIED
NLP ARCHITECTURE

E.g. Frame any NLP task as question answering task
- DecaNLP model of McCann et al. (2018).
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Introduction Motivation

4 IMPROVE MAIN TASK THROUGH AUXILIARY TASKS

E.g. Improve dependency parsing through POS labelling.

Examples
4 ™
Question Context Answer
What is a major {mpqrtgnce . ...Southern California is a major major economic
MOVE TOWAR DS A UNIFIED of Southern California in relation  economic center for the state cErder
to California and the US? of California and the US.... -
What is the translation Most of the planet is Der Grofdteil der
from English to German? ocean water. Erde ist Meerwasser
Eg Frame any NLP ta“Sk as questlon answerlng ta“Sk What is the Harry Potter star Daniel Harry Potter star
~ summary? Radcliffe gains access to a Daniel Radcliffe gets
DecaNLP model of McCann et al. (2018)' reported £320 million fortune... £320M fortune...
Hypothesis: Product and geography Premise: Conceptually cream
are what make cream skimming skimming has two basic Entailment
work. Entailment, neutral, dimensions — product and geography.

or contradiction?
A stirring, funny and finally

transporting re-imagining of
Beauty and the Beast and
1930s horror film.

Is this sentence
positive or negative?

positive




Introduction Inductive Biases

How can MTL improve performance on the main task (Caruana, 1993)?

1 DATA AMPLIFICATION

Introducing an auxiliary task means adding data and introducing regularisation.

2 REPRESENTATION BIAS

Introducing an auxiliary task may lead to finding different local minima, i.e. lead to finding different

representations in the hypothesis space.

3 ATTRIBUTE SELECTION

Introducing the auxiliary task can help the main task focus on the most relevant input features.

4 EAVESDROPPING

Features useful for both tasks may be easier to learn on the auxiliary task.
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Introduction Inductive Biases

1 DATA AMPLIFICATION & REPRESENTATION BIAS

E.g. language modelling and autoencoding (Rei, 2017).

2 ATTRIBUTE SELECTION

E.g. use gaze prediction (auxiliary task) to allow other NLP tasks to focus on relevant input words (Barrett et al., 2018).

3 EAVESDROPPING

E.g. Cheng et al. (2015) perform name error detection (main task)

and include sentence-level name detection (auxiliary task).

Reference my name is captain rodriguez
Hypothesis my name is captain road radios
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Approach

4 NETWORK ARCHITECTURE

Develop network based on the task hierarchys;

Select hard or soft parameter sharing.

4 TASK PRIORITISATION

Prioritisation in parameter update frequencies;

Prioritisation through task weighting.



Approach Network Architecture
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Approach Network Architecture
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) HARD SHARING

Changpinyo et al. (2018) share

Shared
Decoder CRF
A

both encoder and decoder, but

introduce task embeddings.

Shared
Encoder RNN
A

Task Token T




Approach Network Architecture

Question

Context

Alignment

Independent
Encoding
= I

218
O

@ |

"

&
o

@ |\

T

& C
O

Q
| —
' ™,
&
e
@ |

T 3

@ Ty
O
& -
@ A
Or
6\ /‘_i‘\
Or-

@/ —
S

-

Coattention

Self-Attention

p.

Output Distribution

4

MultiHead

i

= - r ™ ™ I
: tion
Question Ques
Q 5 \7_/1 Attention Pointer
= - (2
It | - — T - - - — i
. (o) — Do mmtim
D = _
\ = /_t\‘ I
| ‘ Context
4 I % g % J kk_// Pointer
N Y 'd N i e I
| | gl
J =
— \ / M
n — | \H* — =] :I"' m —— " E
! ) f W \E < f \ Sapaes Recurrent
aontex
=8 Context
— — 2t Attention
' Intermediate
,/j "o J A L Y, @ Decoder
Final State
Compression Encoding t \

S

Answer

9 /32

©00

:

Vocabulary
Distribution

——

HARD SHARING

DecaNLP (McCann etal.,2018)



Approach Network Architecture

P.(clX) Sim(Xy, X2) P.(R|P, H) Rel(Q, 4) D HARD SHARING

(e.g., probability of (e.g., semantic (e.g., probability of (e.g., relevance score
labeling text X by c) similarity between X; logic relationship R of candidate answer A
and X, ) between P and H) given query Q) ] ]
Task specific f f f f Liu et al. (2019) combine transfer
layers : :

Single-Sentence Pairwise Text Pairwise Text Pairwise learning with BERT and

Classification Similarity Classification Ranking It k1 . .
(e.g., ColA, SST-2) (e.g., STS-B) (e.g., RTE, MINLI, (e.g., QNLI) multitas earmng to 1Improve

WNLI, QQP, MRPC)
performance on GLUE.

1 I [ !

[,: context embedding vectors, one for each token.

i

Transformer Encoder (contextual embedding layers)

Shared | T
layers

l1: input embedding vectors, one each token.

i

Lexicon Encoder (word, position and segment)

[

X: asentence or a pair of sentences




Approach Network Architecture

Entailmeni
P P HIERARCHICAL SHARING
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O encoder encoder Joint del of
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Approach Network Architecture

IE : D SOFT SHARING
3 Sluice network of Ruder et al. (2019)
P uses cross-stitch units, skip

XA XBA
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connections and orthogonality

constraints on subspaces of recurrent

layers.
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Approach Network Architecture

— D SOFT LAYER SHARING
_TE D) Stance
Tweet embedding + 9] Yn (5,D,Q,C)
Tweet Feature Embedding -~ Liet al. (2019)
(TE + FE) @
FE .

Stance detection
LSTM layer

A

P 1
, O
Shared LSTM layer © Rumor type
(simplified) : (true, false, unverified)
Ll
. i
1€ | @ Rumor verification
Tweet embedding + O LSTM layer
User Info Embedding
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Approach Task Prioritisation

1 RANDOMISED TRAINING

(a) Uniform Task Selection (Segaard and Goldberg, 2016).
(b) Proportional Task Selection (Sahn et al., 2018).

2 PERIODIC TASK ALTERNATIONS

Dong et al. (2015) use periodic task alternations with equal training ratios for every task.
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Approach Task Prioritisation

3 CONSECUTIVE TRAINING (HASHIMOTO ET AL., 2017)

In one epoch, iterate over the datasets in order of complexity;

Introduce successive regularisation to avoid catastrophic forgetting. | ————— |

Entailment Entailment
encoder encoder
Relatedness

semantic
leyvel

task obiective

5 (5 ) Relatedness Relatedness
e]_’l't E logp y( — alhg ); hS" ) encoder encoder
(5,8 53 DEP DEP
2 ro2 £8
-+ Bt |
task welght decay  successive reqularisation 5
S

Sentencey Sentences
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Approach Task Prioritisation

4 CURRICULUM LEARNING (BENGIO ET AL., 2009)

Start with easier subtasks and gradually increase the difficulty level.

Motivation from humans and animals who learn better when trained with a

curriculum-like strategy.

© ANTI-CURRICULUM LEARNING

However, curriculum learning does not always work best: models converge faster on easier tasks.

McCann et al. (2018) of DecaNLP start with difficult tasks in phase 1 and add easy tasks in phase 2.
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Approach Task Prioritisation

Task 1 Task 1
© ALTERNATIVE TEACHER DISTILLATION Nb@l]__A \ Labels
Task 2 Multi-Task Eéfkf
Teaching distillation from teachter (STL architectures) Modle! Model SDCAE
to student (MTL architecture) (Clark et al., 2019). : S BEEH :
Task k Task k
Model Labels

T ALTERNATIVE TRANSDUCTIVE AUXILIARY TASK SELF-LEARNING

Bjerva etal. (2019) use the auxiliary task to train a STL model, which generates labels on the main task dataset.

Subsequently, they train a MTL model on both tasks.
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Approach Task Weights

1 HUMAN SUPERVISION

Fixed curriculum through human supervision by introducing per-task weights in the loss function.

2 SELF-PACED LEARNING

Dynamical adjustment of task weights according to normalisation requirements
- e.g. GradNorm by Chen et al. (2018).

3 PROGRESS-SIGNAL BASED CURRICULUM

Reinforcement learning inspired - e.g. dynamic task prioritisation by Guo et al. (2018).
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Tasks to combine

) STUDY 1

Bingel and Segaard (2017) research sequence labelling tasks' beneficiality pairwise.

) STUDY 2

Changpinyo et al. (2018) present similar research, but move beyond pairwise comparisons.



Task Relations Study (1)

Bingel and Segaard (2017) research when and why MTL works for task pairs:

4 10 SEQUENCE LABELLING TASKS

D  HARD SHARING MODEL

GloVe embeddings, hard shared Bi-LSTM and task-specific output layers.

4 RANDOM SELECTION TRAINING STRATEGY
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Task Relations Study (1)

CCG CHU COM FNT POS HYP

Logical type tagging (CCG) CCG 14
Chunking (CHU) CHU -0.052

Sentence compression (COM) com 5 1.3
Semantic frames (FNT) FNT 58 -1
POS tagging (POS) POS 49 29

Hyperlink prediction (HYP) HYP ‘ 4
Keyphrase detection (KEY) KEY 5.7 3.2
MWE detection (MWE)

O© 00 I O O & W N =

Super-sense tagging 1 (SEM)  sem 5

10 Super-sense tagging 2 (STR)  sr -1.7 15

045 058 18 0.24

-0.15 -0.12 -0.45 -0.5

13 -14 -24
6.1 94 57
1.9 0.9 -0.85

-11 9.2

-1 043 -1.3 -2.6

MWE Jks! il /4 55 16 -38

-0.76 -1.2 -0.81 -0.85 -1.3

-0.26 -0.72 0.037 -1.5
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48 082 -3 -0.63

36 94 -3 -0.68

026 1.3 34 29
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4.7 059 0.69
-5.8 IGaN 8.6
-0.83 -1.1 -1.7
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F1 for including
auxiliary tasks
(columns) with main

tasks (rows).



Task Relations Study (1)

Most beneficial auxiliary task:
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Task Relations Study (1)

CCG CHU COM FNT POS HYP

Tasks that benefit most:
1 Logical type tagging (CCGQG) CCG 14
2 Chunking (CHU) CHU -0.052
3 Sentence compression (COM) com 5 13
4 Semantic frames (FNT) FNT 58 -1
5 POS tagging (POS) POS 4.9 29
6 Hyperlink prediction (HYP)  Hw ‘ 4
T Keyphrase detection (KEY) KEY 5.7 3.2
8 MWE detection (MWE)
O Super-sense tagging 1 (SEM) sem 5

10 Super-sense tagging 2 (STR)  sr -1.7 15

045 058 18 0.24

-0.15 -0.12 -0.45 -0.5

13 -14 -24
6.1 94 57
1.9 0.9 -0.85

-11 9.2

-1 043 -1.3 -2.6

MWE Jks! il /4 55 16 -38

-0.76 -1.2 -0.81 -0.85 -1.3

-0.26 -0.72 0.037 -1.5
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Task Relations Study (1)

CCG CHU COM FNT POS HYP

Symbiotic relations:
1 Logical type tagging (CCQG) CCG 14
2 Chunking (CHU) CHU -0.052
3 Sentence compression (COM) com 5 13
4 Semantic frames (FNT) FNT 58 -1
5 POS tagging (POS) POS 49 2.9
6 Hyperlink prediction (HYP)  Hvw E 4
T Keyphrase detection (KEY) KEY 5.7 3.2
8 MWE detection (MWE)
O Super-sense tagging 1 (SEM) sem 5
10 Super-sense tagging 2 (STR) s’ -1.7 15

045 058 18 0.24

-0.15 -0.12 -0.45 -0.5

13 -14 -24
6.1 94 57
19 0S5 -0.85

-11 9.2

-1 043 -1.3 -2.6

MWE et ol /4 55 16 -3.8

-0.76 -1.2 -0.81 -0.85 -1.3

-0.26 -0.72 0.037 -1.5
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Task Relations Study (1)

Using logistic regression, they predict MTL gains and losses from dataset statistics (e.g. size or label

distribution entropy) and STL model characteristics (e.g. loss curve values).

4 GOOD PREDICTOR: LOSS PLATEAU

MTL gains are more likely for main tasks that quickly plateau with non-plateauing auxiliary tasks.

4 GOOD PREDICTOR: LABEL ENTROPY AUXILIARY TASK

4 BAD PREDICTOR: DATASET SIZES
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Task Relations Study (2)

Changpinyo et al. (2018) move beyond pairwise comparisons:

4 11 SEQUENCE LABELLING TASKS

P  HARD SHARING MODELS

(1) Hard sharing with task-specific output layers.
(2) Hard sharing of all layers, but with task embeddings.

4 UNIFORM TRAINING STRATEGY
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Task Relations Study (2)

} Pairwise MTL relations,

§ - green is beneficial,
1 POS tagging (UPOS, XPOS) % N éo red is harming.
2 Chunking (CHUNK) dotted is asymmetric.
3 Named Entity Recognition (NER) FR“M@
4 MWE identification (MWE)
5 Super-sense tagging (SEM, SUPSENSE)CO N
6 Semantic trait tagging (SEMTR)
T Sentence compression (COM)
8 Semantic frame prediction (FRAME) %QQ%("Q
9

Hyperlink detection (HYP)
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Task Relations Study (2)

Main tasks that benefit: ” ) Pairwise MTL relations,
. % & green is beneficial,
1 POS tagging (UPOS, XPOS) % A§° red is harming,

2 Chunking (CHUNK) dotted is asymmetric.
3 Named Entity Recognition (NER) FR“M@

4 MWE identification (MWE)

5 Super-sense tagging (SEM, SUPSENSE)CO N

6 Semantic trait tagging (SEMTR)

T Sentence compression (COM)

8 Semantic frame prediction (FRAME) %0{3’6

9

Hyperlink detection (HYP)
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Task Relations Study (2)

Auxiliary tasks that are beneficial: . ) Pairwise MTL relations,
| % & green is beneficial,
1 POStagging (UPOS, XPOS) %, A§O red is harming,

2 Chunking (CHUNK) dotted is asymmetric.
3 Named Entity Recognition (NER) FR“‘M@

4 MWE identification (MWE)

5 Super-sense tagging (SEM, SUPSENSE)CO N

6 Semantic trait tagging (SEMTR)

T Sentence compression (COM)

8 Semantic frame prediction (FRAME) %0{5’%

9

Hyperlink detection (HYP)
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Task Relations Study (2)

Harmful task: ” ) Pairwise MTL relations,
. % & green is beneficial,
1 POS tagging (UPOS, XPOS) % A§° red is harming,

2 Chunking (CHUNK) dotted is asymmetric.
3 Named Entity Recognition (NER) FR“‘M@

4 MWE identification (MWE)

5 Super-sense tagging (SEM, SUPSENSE)CO N

6 Semantic trait tagging (SEMTR)

T Sentence compression (COM)

8 Semantic frame prediction (FRAME) %0{5’%

9

Hyperlink detection (HYP)
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Task Relations Study (2)

Compare Oracle (only beneficial tasks) to pairwise, STL and all:

STL P } Relative gains and losses
940 Oracle for all experimental
) ORACLE »>= STL 0% — Al setups.
+ One Task

5%

D  ORACLE > PAIRWISE

0%

Relative Improvement

-5%

D  ORACLE > ALL

20% S
CE D EHF & &L
¢ P L E T S
& TP & <
2

T

&
®$

Tasks
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Task Relations Study (2)

The authors visualise task embeddings learnt in hard-shared setup with task embeddings:

4

4
4

SYNTACTIC VS. SEMANTIC

DATASET NOT INDICATIVE

LABEL ENTROPY NOT INDICATIVE

SUPSENSE

SEMTRHYP

FRAME

SEM
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} t-SNE visualisation of
task embeddings.
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