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Overview
Key Motivations

● “Seek a representation that captures semantic and syntactic similarities 

between words.”

● Distributional Hypothesis: Words in similar contexts have similar meanings.

Key Research Questions

● How best to define context?

● Can syntactic contexts produce more focused embeddings?



Overview
Key Contributions

● Generalize Skip-Gram model from linear contexts to “arbitrary” contexts

● Experiment with syntactic contexts derived from dependency parse-trees

● Demonstrate introspection method for exploring learned contexts

● Conclude that dependency-based embeddings are less topical and more 

functional than the original linear-based embeddings



Methods: Skip-Gram Model with Negative Sampling

Objective: To predict probability 
that (word, context) pair occurs in 
the data

Training: Increase similarity 
between positive pairs and 
decrease similarity between 
negative pairs

Image Credit: Jurafsky and Martin



Linear Contexts
● Defined as the “words that precede and follow the target word, typically in a 

window of k tokens to each side”
● Bag-of-Words
● Larger k         more topical embeddings
● Smaller k         more functional embeddings

Example (BoW k=2)
“Australian scientist discovers star with telescope”
[Australian, scientist, star, with]



Dependency-based Syntactic Contexts
● Created from dependency-based parse-trees
● Not limited by distance from target word - able to identify dependencies 

between words that are far from each other in text
● Filter out nearby words that are not directly related to target word

Example
“Australian scientist discovers star with telescope”
[scientist/nsubj, star/dobj, telescope/prep_with]

If target word = star
[discovers/dobj−1]



Experimental Setup

● Dataset: English Wikipedia
● Model: Word2Vec (modified) 
● Contexts: BoW (k=5), BoW (k=2), Dependency-based
● Negative sampling parameter: 15 negative contexts per positive context
● Embedding dimension size: 300
● Preprocessing: lowercase tokens, filtered infrequent words and tokens (< 100)

Dependency-based contexts:
● Parsed using Stanford tagger
● 175,000 words and 900,000 contexts



Qualitative Results

● Relatedness: Topical Similarity

● Similarity: Functional Similarity

● BoW contexts produce more 

related pairs (particularly with 

larger contexts)

● Dependency-based contexts 

produce more similar pairs

Target Word BoW (k=5) Dependency

batman nightwing 
aquaman 
catwoman 
superman 

superman 
superboy 
supergirl 
catwoman

hogwarts dumbledore 
hallows 
half-blood
malfoy

sunnydale 
collinwood 
calarts 
greendale

turing nondeterministic 
non-deterministic 
computability 
deterministic

pauling 
hotelling
heting
lessing

Most similar words by cosine similarity



Quantitative Results

● WordSim353 Dataset (a)
● Chiarello et al. Dataset (b)
● Pairs ranked using cosine               

similarity of embeddings
● Results are reversed when              

ranking ‘related’ pairs above 
‘similar’ pairs

Chart Credit: Omer Levy and Yoav Goldberg

Task: Rank ‘similar’ pairs above ‘related’ pairs



Model Introspection

● Model tries to maximize             for 
positive (word, context) pairs and 
minimize it for negative pairs

● Keep context embeddings to 
compute             for a specific target 
word with the context matrix 

● Highest values indicate “most 
activated” contexts, which are the 
most discriminative contexts for 
target word              

Target Word Top Deps Contexts

batman

(superheroes)

superman/conj−1

spider-man/conj−1

superman/conj
spider-man/conj

hogwarts

(schools)

students/prep_at−1

educated/prep_at−1

student/prep_at−1

stay/prep_at−1

turing

(scientists)

machine/nn−1

test/nn−1

theorem/poss−1

machines/nn−1

Top syntactic contexts for target word (with 
category of top similar words from slide 8)



Ideas for Future Research

● Skip-Gram with different variations of contexts
● Determine why different grammatical relations appeared to be more important 

than others (compare introspection results with different categories of target 
words)

● Filter context for certain grammatical relation types and compare results
● Experiment with weighting scheme for contexts with different grammatical 

relation types
● Perform model introspection with a more structured approach (as to which 

words are tested)



Opinion

Overall: 

● A detailed and well explained paper
● Logical extension of the Skip-Gram model

Critiques: 

● Does not specify exact dataset used
● Use ‘dot product’ and ‘cosine similarity’ terms interchangeably
● Minimal testing of model introspection method
● Provided little intuition regarding choice of dependency-tree parser
● Lacked examples of tasks where functional similarity is preferred
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Introduction

I We will talk about the paper Retrofitting Word Vectors to

Semantic Lexicons (Faruqui et al, 2015)

I In this paper, the authors provide a fast, embedding-agnostic
and high performing way of incorporating semantic lexicon
information into word embeddings

I Code for this paper is available at
https://github.com/mfaruqui/retrofitting
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Motivation (1)

I Distributional word embeddings are among the most
popular approaches in computational semantics
I Data-driven, statistical-based vectors
I ”Similar words appear in similar contexts”

I Word2Vec, GloVe...

I Another way to represent meaning is through semantic
lexicons:
I Network of semantic relations
I Hyponymy, antonymy, synonymy...

I WordNet, FrameNet...
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Motivation (2)

How can we combine these two approaches?
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Key Contributions

I Method to incorporate semantic lexicon information into
word embeddings
I Encourage linked words to have similar vector

representation

I This method is independent of how the input vectors were
constructed

I Fast post-processing of pre-trained word embeddings
I On a set of standard evaluation tasks:

I Improves the input word embeddings
I Outperforms prior incorporation approaches

Oliviero Nardi
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Retrofitting: Main Idea

I We want to refine pre-trained word embeddings to
incorporate semantic relations

I Assumptions:
I They should be similar to the original word embeddings
I Linked words should have a similar representation

I Post-processing word vectors: retrofitting

Oliviero Nardi
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Problem statement

Note: V = {w1, ...,wn} is the vocabulary.

I Input:
I A matrix Q̂ = (q̂1, ..., q̂n) of word embeddings
I A graph ⌦ = (V ,E ) representing semantic relations between

words

I Output:
I A new matrix Q = (q1, ..., qn) of word embeddings
I Q is obtained by updating Q̂ with the information contained in

⌦.

Notice we assumed nothing about how Q̂ was constructed.
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Understanding retrofitting (1)

I Recall : we want Q to be close to Q̂ (1) and to respect
semantic relations (2):
(1) qi should be similar to q̂i

(2) qi should be similar to the embeddings of adjacent words qj
I Similarity is captured by euclidean distance
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Understanding retrofitting (2)

I This yields the optimization objective

 (Q) =
nX

i=1

[↵i ||qi � q̂i ||2 +
X

(i ,j)2E

�ij ||qi � qj ||2] (1)

where ↵ and � tune the relative strength of associations.
I By optimizing  (Q) we update our word embeddings
I  is convex and the solution can be found by solving a

system of linear equations:

qi =

P
j :(i ,j)2E �ijqj + ↵i q̂iP

j :(i ,j)2E �ij + ↵i
(2)

I This can be done quickly in an iterative way (5 seconds for a
graph of 100000 words and vector size 300)
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Retrofitting vs Older approaches

I In prior approaches, the learning objective of the word
embeddings is altered

I A prior distribution is added to encourage linked words to
have similar vectors:

p(Q) / exp(��
nX

i=1

X

j :(i ,j)2E

�ij ||qi � qj ||2) (3)

I Can be seen as a regularization of the embeddings (MAP
estimation)

I However, this method is not independent of the input
vectors and has no closed form solution

Oliviero Nardi

Retrofitting Word Vectors to Semantic Lexicons



Outline

I Motivation and Contributions

I Method

I Experiments

I Conclusion

Oliviero Nardi

Retrofitting Word Vectors to Semantic Lexicons



Experimental setup: Input data

I Word Embeddings:
I GloVe (Glove)
I SkipGram (SG)
I Global Context Vectors (GC)
I Multilingual Vectors (Multi)

I Semantic Lexicons:
I Paraphrase DataBase (PPDB)
I WordNet (WNsyn and WNall)
I FrameNet (FN)
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Experimental setup: Tasks

I Word Similarity: Cosine similarity against human-annotated
corpora: MEN-3k, RG-65 and WS-353.

I Syntactic Relations (SYN-REL): Find d such that ”a is to
b what c is to d”. For example: ”king is to queen what actor
is to?”

I Synonym Selection (TOEFL): Given a target word t and
four possible synonyms {s1, s2, s3, s4}, find the closest si to t.

I Sentiment Analysis (SA): Train a binary classifier on movie
reviews using Q.
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Experimental setup: Experiments

I Each of the word embeddings was retrofitted using each of
the semantic lexicons.

I The authors tested:
I The improvement gained by doing retrofitting
I Performance against prior methods
I Generalization over new languages
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Results: Improvements of Retrofitting
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Results: Performance against prior methods (1)
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Results: Generalization over new languages
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Findings Summary

I Retrofitting often improves the performance of embeddings
on a variety of tasks

I It is competitive against prior methods, while also being
indepedent of the embeddings and fast.

I Finally, it works well also in other languages

Oliviero Nardi
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My Opinion

I Besides the pratical advantages, retrofitting is simple to
understand and elegant

I Its modular approach conceptually decouples the problem of
semantic lexicon integration from the training of the
embeddings

I The mathematics are easy and the equations it yields are
well-behaved

I However, as seen in SYN-REL, performance in syntactic
tasks may be significantly worse

Oliviero Nardi
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Future Work

I Antonymy
I How well does retrofitting capture antonymy?
I How can we explicitly model antonymy?

I Richer ways to incorporate graph information
I Node similarity
I Edge types

I Address the loss of performance in the SYN-REL task
I Test whether this is true for other ”syntactic” tasks
I Find ways to prevent this downgrade
I Does this improve performance overall?

Oliviero Nardi
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Questions?

Thank you for your attention!
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Motivation

• distributional word embeddings are general purpose

• "genuine" similarity and associative similarity (relatedness)

I similarity: car-bike, chair-seat

I relatedness: car-petrol, chair-table

• capture both quite well but perfect at neither - mutually

incompatible

• explore specialising embeddings in similarity and relatedness
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Approach

• assumption: embeddings can be nudged by including

additional semantic information

I raw text from English Wikipedia and newswire

I synonyms from MyThes Thesaurus (similarity)

I associated words from USF Assocation Norms (relatedness)

• three specialisation methods

I joint learning

I Graph-Based retrofitting

I Skip-Gram retrofitting



Specialising Method: Joint Learning

• introduce additional semantic information to standard

skip-gram objective

• sampling condition: include an additional context sampled

uniformly

1

T

TX

t=1

�
J(wt) + [wa ⇠ UAwt

] log p(wa|wt)
�

• all condition: include all additional contexts

1

T

TX

t=1

0

@J(wt) +
X

wa2Awt

log p(wa|wt)

1

A



Specialising Method: Graph-Based Retrofitting

• Faruqui et al. 2015

• first stage, train standard skip-gram

1

T

TX

t=1

X

�cjc

log p(wt+j |wt)

• second stage, update using semantic relation graph

TX

t=1

0

@↵t ||qt � q̂t ||2 +
X

(t,j)2E

�tj ||qt � qj ||2
1

A



Specialising Method: Skip-Gram Retrofitting

• first stage, train standard skip-gram

1

T

TX

t=1

X

�cjc

log p(wt+j |wt)

• second stage, update with additional context

1

T

TX

t=1

X

wa2Awt

log p(wa|wt)



Overview of Methods

• joint learning with sampled context

• joint learning with all contexts

• Graph-Based retrofitting

• Skip-Gram retrofitting



Evaluation

• intrinsic evaluations

I SimLex-999 for similarity

I MEN for relatedness

• extrinsic evaluations

I TOEFL synonym selection task

I document topic classification task
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Results: Intrinsic Evaluation

Method SimLex-999 MEN

Skip-gram 0.31 0.68

Joint-Thesaurus-Sampled 0.38 0.69

Joint-Thesaurus-All 0.44 0.60

Joint-Norms-Sampled 0.43 0.72

Joint-Norms-All 0.42 0.67

GB-Retrofit-Thesaurus 0.38 0.68

GB-Retrofit-Norms 0.32 0.71

SG-Retrofit-Thesaurus 0.47 0.69

SG-Retrofit-Norms 0.35 0.71

Table 1: Spearman ⇢ on a genuine similarity (SimLex-999) and

relatedness (MEN) dataset (one training iteration).



Results: Extrinsic Evaluation

Method TOEFL Doc

Skip-gram 77.50 83.96

Joint-Thesaurus-Sampled 81.25 83.90

Joint-Thesaurus-All 80.00 83.56

Joint-Norms-Sampled 78.75 84.46

Joint-Norms-All 66.25 84.82

GB-Retrofit-Thesaurus 83.75 80.24

GB-Retrofit-Norms 80.00 80.58

SG-Retrofit-Thesaurus 88.75 84.55

SG-Retrofit-Norms 80.00 84.56

Table 2: TOEFL synonym selection and document classification accuracy

(percentage of correctly answered questions/correctly classified

documents).



Results: Observations

• similarity-specialised better on SimLex-999 and TOEFL

task

• relatedness-specialised better on MEN and classification

task

• SG-retrofit matches or outperforms GB-retrofit

• generally outperform standard general-purpose

embeddings

• observation of curriculum learning for similarity



Results: Curriculum Learning

Method SimLex-999

Skip-gram 0.31

Fit-Thesaurus 0.26

Joint-Thesaurus-Sampled 0.38

Joint-Thesaurus-All 0.44

GB-Retrofit-Thesaurus 0.38

SG-Retrofit-Thesaurus 0.47

Table 3: Spearman ⇢ on a genuine similarity (SimLex-999) dataset (one

training iteration).
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Summary

• introduce methods of specialising embeddings

• compare different approaches on intrinsic and extrinsic tasks

• highlight ‘shortcoming’ of general-purpose embeddings

• demonstrate the advantages of specialised embeddings



My Opinion

• clear empirical evidence

• many papers specialising for different context types

• different best method for similarity and relatedness

• similarity is more difficult to learn (Hill et al., 2015)



Future Research

• fall in performance when using GB-retrofit

• different (richer) semantic information for GB/SG-retrofit

• performance of ‘universal’ representation of specialised

embeddings



Questions?



Thanks for your attention!



Number of Iterations for Retrofit

Figure 1: Varying the number of iterations when retrofitting


