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Meta-learning and its applications to NLP

L Introduction to meta-learning

Deep learning in NLP

Deep learning models have achieved much success in NLP,
but...

» using large datasets for training

» the resulting models are not easily adaptive

» unrealistic to have such large datasets for every possible task,
application scenario, domain or language

We need models that are adaptive and can learn from a few
examples.
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LIntroduction to meta-learning

Self-supervised pre-training

» general-purpose word and sentence encoding models
» with self-supervised pre-training (e.g. BERT, GPT-2)

» provide a good starting point for task-specific fine-tuning
and yet...

» to perform well in a given task

» need to fine-tune on a large task-specific dataset

Do not enable few-shot learning or model adaptation.
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Meta-learning

Meta-learning, aka "learning to learn"

» a framework to train models to perform fast adaptation from a
few examples

» a different learning paradigm: episodic learning
» many promising results in computer vision

» still relatively new to NLP (but we have some initial positive
results already!)
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LIntroduction to meta-learning

Episodic learning

Learning from a collection of few-shot tasks, called episodes
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» training set = support set
» test set = query set
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Meta-training and meta-test sets
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Meta-learning methods

1. Metric-based

» embed examples in each episode using a neural network

» compute probability distribution over labels for all query
examples

» based on their similarity with the support examples.

2. Model-based

» achieve rapid learning directly through their architectures.
3. Optimisation-based

» explicitly include generalizability in their objective function.
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Metric-based method: Prototypical networks

Snell et al 2017. Prototypical Networks for Few-shot Learning. NIPS.

» use an embedding function f, to
encode each input into a vector

» compute a prototype feature vector
for every class k

» as the mean vector of the embedded
support examples in this class.

1
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Prototypical networks
For a given query input x:

» compute the distance between its embedding and each of the
prototype vectors
» pass through a softmax

» to get the distribution over classes

P(y = k|x) = softmax(—dy(fy(x), ck)) = exp(—dy (fy(X), ¢k))

- Xk exp(—dy(f(x), &)
where d, is the distance function

» Snell et al. use squared Euclidean distance

» The loss function is the negative log-likelihood.
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Optimisation-based method: Model-agnostic
meta-learning

Finn et al. 2017. Model-Agnostic Meta-Learning for Fast Adaptation
of Deep Networks. ICML.

— meta-learning
---- learning/adaptation

» General and model-agnostic method

VL3
» applicable to any learning problem Wgz ,
. VL N\ 3

» and any model architecture ! R

(trainable with gradient descent) 0" o
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Model-agnostic meta-learning (MAML)

Key intuition:
» learn a good parameter initialisation
» such that the model has maximal performance on a new task
» after the parameters have been updated in a few gradient steps

» computed with a small amount of data from that new task.

Essentially, the goal is to learn internal representations that are
broadly suitable for many tasks.
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MAML overview

The learner model fy, parametrized by 6

» e.g. a sentence encoder, such as an LSTM or Transformer.

The meta-learning algorithm

1. Adapt to a new task 7;, given the task objective
» computing the loss on the support set

2. Perform meta-optimisation over a batch of tasks (episodes)
» computing the loss on the query sets.
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MAML algorithm

1. Adapt to a new task 7j;, given the task objective:
» compute updated parameters ¢; using the support set

0; =0 — aVoLr(fy)
2. Perform meta-optimisation over a batch of tasks (episodes)

» minimise meta-objective across tasks, on the query sets:

min Yo Lrlf)= D Lrlfocavers i)
Ti~p(T) Ti~p(T)

» perform a meta-update of shared parameters 6

0+ 0—8Ve > Lr(fy)
Ti~p(T)
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MAML algorithm

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: «, 3: step size hyperparameters
1: randomly initialize 6
2: while not done do
3:  Sample batch of tasks 7; ~ p(T)

4:  for all 7; do

5: Evaluate Vo L7, (fp) with respect to K examples

6 Compute adapted parameters with gradient de-
scent: 0, = 0 — aVoLrT (fo)

7:  end for

8 Update 0 < 0 — Vo > 1) L7 (for)

9: end while
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First-order approximation of MAML

» Computing second-order gradients is computationally expensive

» Finn et al. proposed a first order approximation of MAML

» compute the gradients with respect to the updated parameters 6;
rather than the initial parameters 6

0 0-BVy > Lr(fy)
Ti~p(T)
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Hybrid method: ProtoMAML

Triantafillou et al. 2020. Meta-Dataset: A Dataset of Datasets for
Learning to Learn from Few Examples. ICLR.

» Prototypical networks with Euclidean distance are equivalent to
a linear model with a particular parameterization

—||f.9(X) — CkH2 = —fg(X)Tfe(X) + ZCkag(X) - CkTCk
fa(x)Tfy(x) is constant with respect to class k
2¢k Tfp(x) — ok ek = Wi fy(X) + by

wi and by are the weights and biases for the output unit
corresponding to class k.
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ProtoMAML

Key idea:
» initialise the final layer of the learner classifier in each episode
» with prototypical network-equivalent weights and biases

» and continue to learn with MAML.
Benefits:

» combines the strength of prototypical networks and MAML

» extends MAML beyond N-way, K-shot scenario.
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Meta-learning in NLP

1. Address one NLP task (e.g. focus on learning new classes)

» Tasks addressed: relation classification, entity typing, text
classification, word sense disambiguation

2. Apply meta-learning across multiple NLP tasks
» Bansal et al. 2019 — to be discussed later in this session
3. Apply meta-learning across languages

» machine translation for low-resource languages
» NLI and question answering (Nooralahzadeh et al. 2020)
— to be discussed next Thursday

18/24



Meta-learning and its applications to NLP

LIntroduction to meta-learning

Meta-learning in NLP: Methods

» Model architectures:

feed-forward networks

graph convolutional networks
recurrent networks (LSTM, GRU)
transformers

vV vy vVvYy

» Meta-learning methods:

First-order MAML (the most popular)
several extensions thereof proposed
Prototypical networks

ProtoMAML

vV vy vy
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Meta-learning for word sense disambiguation

Holla et al. 2020. Learning to Learn to Disambiguate: Meta-Learning
for Few-Shot Word Sense Disambiguation. ArXiv.

WSD task: determine the sense of a word (e.g. WordNet sense)

The children ran to the store

Service runs all the way to Cranbury

She is running a relief operation in Sudan
the story or argument runs as follows
Does this old car still run well?

Who'’s running for treasurer this year?

Our goal: learn new word senses from a few examples
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Challenges in WSD

» The nature of the learning problem

» WSD exhibits inter-word dependencies within sentences
» has a large number of classes
» and dramatic class imbalances.

» Existing supervised approaches

» learn a model per word
» require very large training datasets
» that are impossible to produce at a realistic scale.

A problem desperately in need of a few-shot learning approach!

But also presents new challenges compared to the controlled setup in
most current meta-learning approaches (N-way, K-shot classification).
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Task definition and episode generation

» Classify word use with respect to a predefined sense inventory
» typically treated as a sequence labelling task

» convert it to a "word in context" classification task.

She is running a relief operation in Sudan.
» Divide words into meta-training and meta-test splits
» Meta-training: 4 words per episode (with multiple senses)

» Meta-test: 1 word per episode (with multiple senses)

» experiment with support sets of 8, 16 and 32.

22/24



Meta-learning and its applications to NLP

LIn'rroduction to meta-learning

Methods

» Model architectures:

» Glove + GRU
» ELMo + MLP
» fine-tuning BERT base.

» Meta-learning methods:

» First- and second-order MAML
» Prototypical networks
» ProtoMAML (and its second-order variant)
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Results

Embedding/ Average macro F1 score
Encoder Method 15| =8 1] = 1| =32

- MajoritySenseBaseline  0.259 0.264 0.261
NearestNeighbor - - -
NE-Baseline 0.507 £0.005  0.479 +0.004 0.451 £ 0.009
EF-ProtoNet 0.539 £0.009 0.538 +0.003  0.562 % 0.005

GloVe+GRU  EF-FOMAML 0.341 £0.002  0.321 +£0.004  0.303 + 0.005
EF-ProtoFOMAML 0.529 £0.010  0.540 +0.004  0.553 4 0.009
ProtoNet 0.601 £ 0.003  0.633 = 0.008  0.654 + 0.004
FOMAML 0418 £0.005 0.392+0.007  0.375 4 0.005
ProtoFOMAML 0.599 £0.005 0.617 +0.004  0.627 & 0.004
NearestNeighbor 0.641 0.645 0.654
NE-Baseline 0.640 £0.012  0.633 £0.001 0.614 £ 0.008
EF-ProtoNet 0.635 £ 0.004 0.661 +0.004 0.683 + 0.003

ELMo+MLP EF-FOMAML 0.414 £0.006 0.383 +0.003  0.352 + 0.003
EF-ProtoFOMAML 0.621 £0.004  0.623 +0.008 0.611 + 0.005
ProtoNet 0.688 + 0.004  0.709 & 0.006  0.731 + 0.006
FOMAML 0.589 £ 0.010 0.587 +0.012 0.575 £ 0.016
ProtoFOMAML 0.689 + 0.007 0.711 + 0.004  0.726 + 0.004
NearestNeighbor 0.704 0.716 0.741
NE-Baseline 0.599 £0.023  0.539 +0.025 0.473 +0.015
EF-ProtoNet 0.655 £ 0.004  0.682 4 0.005 0.721 & 0.009

BERT EF-FOMAML 0.522£0.007  0.450 +0.008  0.393 & 0.002
EF-ProtoFOMAML 0.662 £ 0.006  0.654 +0.009  0.665 & 0.009
ProtoNet 0.750 £ 0.008  0.755 & 0.002  0.766 + 0.003
FOMAML 0.550 £ 0.011  0.476 +0.010  0.436 4 0.014
ProtoFOMAML 0.731 £0.004  0.739 +0.008  0.744 % 0.005
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Few-Shot Learn Across Diverse
NLP Classification Tasks

Authors: Trapit Bansal, Rishikesh Jha, Andrew McCallum
Presented by: Aman Hussain & Albert Harkema



Limitations of MAML

Requires fixed number of classes across different tasks

— meta-learning

9 ---- learning/adaptation
Ve <. O
VL, &
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LEOPARD

e Parameter Generator:
Initializes task-dependent softmax parameters

e Parameter Efficient Training:
Adapt efficiently across diverse tasks




LEOPARD architecture

Parameter Generator
N-way task conditioned for on meta-training data
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LEOPARD architecture

Parameter Efficient Training
1.
2.

Task agnostic
Task specific

SN = "= = = = = == == -
Before inner loop
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Experiment Setup

Per-layer learning rate for inner loop
Pre-trained BERT
Hyperparameter: task specific no. of layers

Before inner loop
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Experiments ’x G L U E
Training Tasks

GLUE: 8 tasks focus on sentence-level classification (without
WNLI & STS-B)

During Meta-Training: classify between every pair of labels



Experiments

Evaluation and Baselines

Samples: for every k e {4, 8, 16} sample 10 training datasets
Validation Task: SciTail

Models: BERTbase, Multi-task BERT, Prototypical BERT BERTgase

Evaluation: 17 target NLP tasks



Results

Unseen Tasks

e Relative gainin accuracy:
o  14.5% (k=4)
o  10.75% (k=8)
o  10.9% (k=16)
e Outperforms baselines for never seen
tasks: entity typing, rating classification,
text classification

e Prototypical networks worse than

fine-tuning methods for never seen tasks

Entity Typing
N k  BERT}, MT-BERT, ; MT-BERT  Proto-BERT LEOPARD

4 50.44 + 0857 52.28 +4.06 55.63 +499 3223 +510 54.16 +632
CoNLL 4 £ 1130 +7.12 B USSR ¥ E R T E R

16 74.47 +03.10 71.67 +3.03 71.29 £330 3375 +605s 76.37 + 308
I 4 4937 +428 45.52 +5.90 50.49 +440 17.36 £275  49.84 4331 |
MITR 8 .38 1776 SEI0 T 265 SSOT 350 1870125 0299 L3
16 69.24 + 368 66.09 +224 66.16 346 1641 +187  70.44 + 259
Text Classification
4 4276 +1350 43.73 + 7386 46.29 + 1226 4027 +819 54.95 + 1181
Airline 3 8 38.00+1706 52.39 +397 49.81 1086 51.16 760 61.44 + 03.90
16 58.01 + 0823 58.79 +297 5725 + 990 48.73 £679 6215 + 0556

4 5457 +s5m 54.32 +390 54.66 +374 5633 £437  60.49 + 666
Political Bias 2 8 56.15%375 57.36 +432 5479 +419 5887 +379 6174 +673
16 60.96 + 425 59.24 +425 60.30 +326 57.01 +444 65.08 +2.14

Overall Average 8 36.83 45.73 43.92 39.05 50.65
16 48.10 49.60 48.74 39.63 55.02




Results

Domain Adaptation

°
e MT-BERT performs better on Scitail since it is trained on many related NLI datasets
Natural Language Inference
k  BERT,e MTBERT fi1ax MT-BERT MTBERTreuse Proto-BERT LEOPARD
58.53 + 09.74 74.35 +5.86 63.97 + 14.36 76.65 + 245 76.27 +426 69.50 +9.56
Scitail 8 57.93 +10.70 79.11 + 3.1 68.24 +10.33 76.86 + 2.09 7827 £098  75.00 +2.42
16 65.66 + 06.82 79.60 + 2.31 75.35 4+ 04.80 79.53 +2.17 78.59 +048 77.03 +1.82
Amazon Review Sentiment Classification
4 5481 +375 68.69 +5.21 64.93 4 8.65 74.79 + 6.91 73.15 +585 82.54 +1.33
Books 8 53.54 +5.17 74.86 +2.17 67.38 +£9.78 78.21 +3.49 75.46 + 687 83.03 +1.28
16 65.56 +4.12 74.88 + 434 69.65 +8.94 78.87 +£3.32 7726 +327 83.33 +0.79
_—
4  56.93 +17.10 63.07 +17.80 60.53 +9.25 75.40 + 6.27 62.71 +953 78.35 +18.36
Kitchen 8 57.13 +6.60 68.38 + 4.47 69.66 + 8.05 75.13 £ 7.22 70.19 + 642 84.88 + 01.12
16 68.88 +3.39 75.17 + 457 77.37 + 6.74 80.88 + 1.60 71.83 +594 85.27 +01.31

LEOPARD outperforms on multi-domain sentiment classification




Ablation Study

Parameter Generator: Removing generator and using zero-initialized softmax performs worse

Parameter Efficient Training: For all tasks, except NLI (Scitail), adapting all parameters is better

k Model Entity Typing Sentiment Classification NLI
LEOPARD 37.62 +17.37 58.10 £ 5.40 78.53 £ 1.55

16 LEOPARD 5 62.49 +4.23 71.50 +5.93 73.27 +2.63
LEOPARD 69.00 4+ 4.76 76.65 4 247 76.10 +2.21

LEOPARD-ZERO 44.79 + 934 74.45 + 334 74.36 + 6.67



Ablation Study

Training Task Selection: LEOPARD’s performance is more consistent compared to MT-BERT

|
Typing 008 019 026 0.22 S04
s ! . 1
< |Sentiment 003 004 000 -002 -000 -0.07
:g 016
NLI 000 -007 006 004 005 -001 -0.01 0.07 003 -0.00 003 008
= =000 |
Typing 001 004 001 -005 003 006 -004 -0.05 .
- - 0,08
[e]
% Isentiment 001 002 004 000 002 000 003 008 003 n 0.02 -0.16
/ :
©
-

NLI 0.01 005 001 004 006 005 -006
AN IR R R A - I
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Discussion

e Include other baselines (e.g. single task / Ceiling [ human baselines])
e MT-BERT outperforms on Entity Typing for k=4 (not discussed in the paper)
e MAML-related approaches effective and gaining popularity

e |Is LEOPARD-like meta-learning the way forward to solving general linguistics in Al?



Our Opinion e Natural extension of MAML

4.5 * * * * 1 e Extensive Experiments

e Ablation Study

e Nointerpretable baseline

“Extensive experiments!”
- Aman & Albert
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