Meta-learning and its applications to NLP

Katia Shutova

ILLC University of Amsterdam

30 April 2020

Deep learning in NLP

Deep learning models have achieved much success in NLP, but...

- using large datasets for training
- the resulting models are not easily adaptive
- unrealistic to have such large datasets for every possible task, application scenario, domain or language

We need models that are adaptive and can learn from a few examples.

Self-supervised pre-training

- general-purpose word and sentence encoding models
- with self-supervised pre-training (e.g. BERT, GPT-2)
- provide a good starting point for task-specific fine-tuning

and yet...

- to perform well in a given task
- need to fine-tune on a large task-specific dataset

Do not enable few-shot learning or model adaptation.

Meta-learning

Meta-learning, aka "learning to learn"

- a framework to train models to perform fast adaptation from a few examples
- a different learning paradigm: episodic learning
- many promising results in computer vision
- still relatively new to NLP (but we have some initial positive results already!)

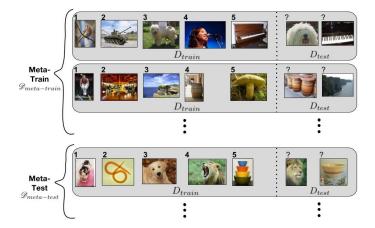
Episodic learning

Learning from a collection of few-shot tasks, called episodes

Each episode has its own

- training set = support set
- ► test set = query set

Meta-training and meta-test sets



Meta-learning methods

1. Metric-based

- embed examples in each episode using a neural network
- compute probability distribution over labels for all query examples
- based on their similarity with the support examples.

2. Model-based

achieve rapid learning directly through their architectures.

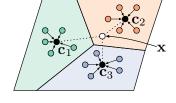
3. Optimisation-based

explicitly include generalizability in their objective function.

Metric-based method: Prototypical networks

Snell et al 2017. Prototypical Networks for Few-shot Learning. NIPS.

- use an embedding function f_{θ} to encode each input into a vector
- compute a prototype feature vector for every class k
- as the mean vector of the embedded support examples in this class.



$$c_k = \frac{1}{|S_k|} \sum_{(x_i, v_i) \in S_k} f_{\theta}(x_i)$$

Prototypical networks

For a given query input x:

- compute the distance between its embedding and each of the prototype vectors
- pass through a softmax
- to get the distribution over classes

$$P(y = k|x) = softmax(-d_{\phi}(f_{\theta}(x), c_k)) = \frac{exp(-d_{\phi}(f_{\theta}(x), c_k))}{\sum_{k'} exp(-d_{\phi}(f_{\theta}(x), c_{k'}))}$$

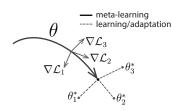
where d_{ϕ} is the distance function

- Snell et al. use squared Euclidean distance
- The loss function is the negative log-likelihood.

Optimisation-based method: Model-agnostic meta-learning

Finn et al. 2017. *Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks*. ICML.

- General and model-agnostic method
- applicable to any learning problem
- and any model architecture (trainable with gradient descent)



Model-agnostic meta-learning (MAML)

Key intuition:

- learn a good parameter initialisation
- such that the model has maximal performance on a new task
- after the parameters have been updated in a few gradient steps
- computed with a small amount of data from that new task.

Essentially, the goal is to learn internal representations that are broadly suitable for many tasks.

MAML overview

The learner model f_{θ} , parametrized by θ

e.g. a sentence encoder, such as an LSTM or Transformer.

The meta-learning algorithm

- 1. **Adapt** to a new task T_i , given the task objective
 - computing the loss on the support set
- Perform meta-optimisation over a batch of tasks (episodes)
 - computing the loss on the query sets.

MAML algorithm

- 1. Adapt to a new task T_i , given the task objective:
 - compute updated parameters θ'_i using the **support set**

$$\theta_i' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$$

- 2. Perform meta-optimisation over a batch of tasks (episodes)
 - minimise meta-objective across tasks, on the query sets:

$$\min_{ heta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{ heta_i'}) = \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{ heta - lpha
abla_{ heta} \mathcal{L}_{\mathcal{T}_i}(f_{ heta})})$$

ightharpoonup perform a meta-update of shared parameters θ

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$$

MAML algorithm

Algorithm 1 Model-Agnostic Meta-Learning

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters

1: randomly initialize θ

2: while not done do

3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

4: for all \mathcal{T}_i do

5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples

6: Compute adapted parameters with gradient descent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

7: end for

8: Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta_i'})$

9: end while

First-order approximation of MAML

- Computing second-order gradients is computationally expensive
- Finn et al. proposed a first order approximation of MAML
- compute the gradients with respect to the updated parameters θ_i' rather than the initial parameters θ

$$heta \leftarrow heta - eta
abla_{ heta_i'} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{ heta_i'})$$

Hybrid method: ProtoMAML

Triantafillou et al. 2020. *Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples*. ICLR.

 Prototypical networks with Euclidean distance are equivalent to a linear model with a particular parameterization

$$-||f_{\theta}(x) - c_{k}||^{2} = -f_{\theta}(x)^{T} f_{\theta}(x) + 2c_{k}^{T} f_{\theta}(x) - c_{k}^{T} c_{k}$$

 $f_{\theta}(x)^{T} f_{\theta}(x)$ is constant with respect to class k

$$2c_k^T f_{\theta}(x) - c_k^T c_k = w_k^T f_{\theta}(x) + b_k$$

 w_k and b_k are the weights and biases for the output unit corresponding to class k.

ProtoMAML

Key idea:

- ▶ initialise the final layer of the learner classifier in each episode
- with prototypical network-equivalent weights and biases
- and continue to learn with MAML.

Benefits:

- combines the strength of prototypical networks and MAML
- extends MAML beyond N-way, K-shot scenario.

Meta-learning in NLP

- 1. Address one NLP task (e.g. focus on learning new classes)
 - ► Tasks addressed: relation classification, entity typing, text classification, word sense disambiguation
- Apply meta-learning across multiple NLP tasks
 - ▶ Bansal et al. 2019 to be discussed later in this session
- 3. Apply meta-learning across languages
 - machine translation for low-resource languages
 - NLI and question answering (Nooralahzadeh et al. 2020)
 - to be discussed next Thursday

Meta-learning in NLP: Methods

- Model architectures:
 - feed-forward networks
 - graph convolutional networks
 - recurrent networks (LSTM, GRU)
 - transformers
- Meta-learning methods:
 - First-order MAML (the most popular)
 - several extensions thereof proposed
 - Prototypical networks
 - ProtoMAML

Meta-learning for word sense disambiguation

Holla et al. 2020. Learning to Learn to Disambiguate: Meta-Learning for Few-Shot Word Sense Disambiguation. ArXiv.

WSD task: determine the sense of a word (e.g. WordNet sense)

The children ran to the store
Service runs all the way to Cranbury
She is running a relief operation in Sudan
the story or argument runs as follows
Does this old car still run well?
Who's running for treasurer this year?

Our goal: learn new word senses from a few examples

Challenges in WSD

- The nature of the learning problem
 - WSD exhibits inter-word dependencies within sentences
 - has a large number of classes
 - and dramatic class imbalances.
- Existing supervised approaches
 - learn a model per word
 - require very large training datasets
 - that are impossible to produce at a realistic scale.

A problem desperately in need of a few-shot learning approach!

But also presents new challenges compared to the controlled setup in most current meta-learning approaches (N-way, K-shot classification).

Introduction to meta-learning

Task definition and episode generation

- Classify word use with respect to a predefined sense inventory
- typically treated as a sequence labelling task
- convert it to a "word in context" classification task.

She is **running** a relief operation in Sudan.

- Divide words into meta-training and meta-test splits
- Meta-training: 4 words per episode (with multiple senses)
- Meta-test: 1 word per episode (with multiple senses)
- experiment with support sets of 8, 16 and 32.

Methods

- Model architectures:
 - Glove + GRU
 - ► ELMo + MLP
 - fine-tuning BERT base.
- Meta-learning methods:
 - First- and second-order MAML
 - Prototypical networks
 - ProtoMAML (and its second-order variant)

Results

Embedding/	Method	Average macro F1 score			
Encoder	Method	S = 8	S = 16	S = 32	
-	MajoritySenseBaseline	0.259	0.264	0.261	
	NearestNeighbor	_	_	-	
	NE-Baseline	0.507 ± 0.005	0.479 ± 0.004	0.451 ± 0.009	
	EF-ProtoNet	0.539 ± 0.009	0.538 ± 0.003	0.562 ± 0.005	
GloVe+GRU	EF-FOMAML	0.341 ± 0.002	0.321 ± 0.004	0.303 ± 0.005	
	EF-ProtoFOMAML	0.529 ± 0.010	0.540 ± 0.004	0.553 ± 0.009	
	ProtoNet	0.601 ± 0.003	$\textbf{0.633} \pm \textbf{0.008}$	0.654 ± 0.004	
	FOMAML	0.418 ± 0.005	0.392 ± 0.007	0.375 ± 0.003	
	ProtoFOMAML	0.599 ± 0.005	0.617 ± 0.004	0.627 ± 0.004	
	NearestNeighbor	0.641	0.645	0.654	
ELMo+MLP	NE-Baseline	0.640 ± 0.012	0.633 ± 0.001	0.614 ± 0.00	
	EF-ProtoNet	0.635 ± 0.004	0.661 ± 0.004	0.683 ± 0.00	
ELMo+MLP	EF-FOMAML	0.414 ± 0.006	0.383 ± 0.003	0.352 ± 0.00	
	EF-ProtoFOMAML	0.621 ± 0.004	0.623 ± 0.008	0.611 ± 0.00	
	ProtoNet	0.688 ± 0.004	0.709 ± 0.006	0.731 ± 0.00	
	FOMAML	0.589 ± 0.010	0.587 ± 0.012	0.575 ± 0.01	
	ProtoFOMAML	$\textbf{0.689} \pm \textbf{0.007}$	$\textbf{0.711} \pm \textbf{0.004}$	0.726 ± 0.00	
BERT	NearestNeighbor	0.704	0.716	0.741	
	NE-Baseline	0.599 ± 0.023	0.539 ± 0.025	0.473 ± 0.01	
	EF-ProtoNet	0.655 ± 0.004	0.682 ± 0.005	0.721 ± 0.00	
	EF-FOMAML	0.522 ± 0.007	0.450 ± 0.008	0.393 ± 0.00	
	EF-ProtoFOMAML	0.662 ± 0.006	0.654 ± 0.009	0.665 ± 0.00	
	ProtoNet	$\textbf{0.750} \pm \textbf{0.008}$	$\textbf{0.755} \pm \textbf{0.002}$	0.766 ± 0.00	
	FOMAML	0.550 ± 0.011	0.476 ± 0.010	0.436 ± 0.01	
	ProtoFOMAML	0.731 ± 0.004	0.739 ± 0.008	0.744 ± 0.00	

Acknowledgement

Some images were adapted from Hugo Larochelle

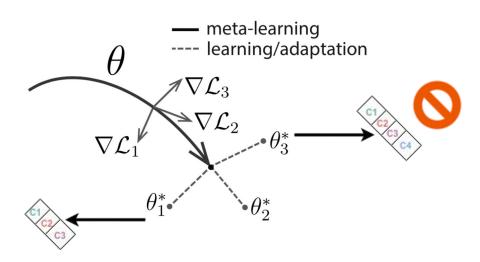
Few-Shot Learn Across Diverse NLP Classification Tasks

Authors: Trapit Bansal, Rishikesh Jha, Andrew McCallum

Presented by: Aman Hussain & Albert Harkema

Limitations of MAML

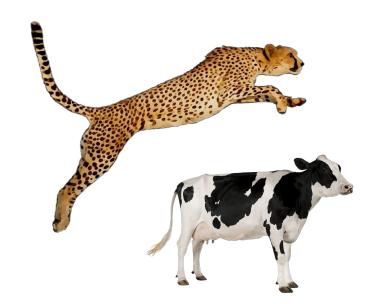
Requires fixed number of classes across different tasks



LEOPARD

Parameter Generator:
 Initializes task-dependent softmax parameters

Parameter Efficient Training:
 Adapt efficiently across diverse tasks

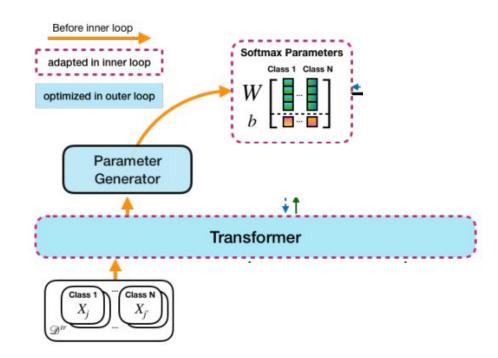


LEOPARD architecture

Parameter Generator

N-way task conditioned for on meta-training data

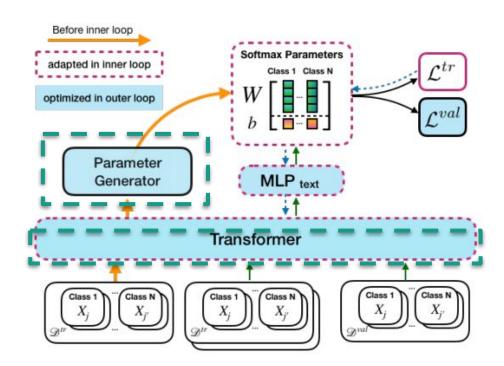
$$w_i^n, b_i^n = \frac{1}{|C_i^n|} \sum_{x_j \in C_i^n} g_{\psi}(f_{\theta}(\mathbf{x}_j))$$



LEOPARD architecture

Parameter Efficient Training

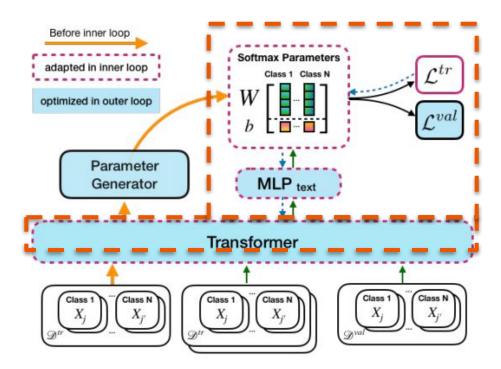
- 1. Task agnostic
- 2. Task specific



LEOPARD architecture

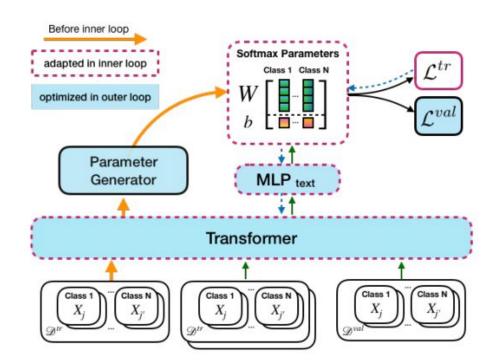
Parameter Efficient Training

- 1. Task agnostic
- 2. Task specific



Experiment Setup

- Per-layer learning rate for inner loop
- Pre-trained BERT
- Hyperparameter: task specific no. of layers



Experiments

Training Tasks

GLUE: 8 tasks focus on sentence-level classification (without WNLI & STS-B)

During Meta-Training: classify between every pair of labels

Experiments

Evaluation and Baselines

Samples: for every $k \in \{4, 8, 16\}$ sample 10 training datasets

Validation Task: SciTail

Models: BERTbase, Multi-task BERT, Prototypical BERT

Evaluation: 17 target NLP tasks

BERTBASE

Results

Unseen Tasks

- Relative gain in accuracy:
 - o **14.5%** (k=4)
 - o 10.75% (k=8)
 - o 10.9% (k=16)
- Outperforms baselines for never seen
 tasks: entity typing, rating classification,
 text classification
- Prototypical networks worse than fine-tuning methods for never seen tasks

Entity Typing								
	N	k	BERTbase	MT-BERT _{softmax}	MT-BERT	Proto-BERT	LEOPARD	
G 1777	-	4	50.44 ± 08.57	52.28 ± 4.06	55.63 ± 4.99	32.23 ± 5.10	54.16 ± 6.32	
CoNLL	4	8 16	50.06 ± 11.30 74.47 ± 03.10	65.34 ± 7.12 71.67 ± 3.03	58.32 ± 3.77 71.29 ± 3.30	34.49 ± 5.15 33.75 ± 6.05	67.38 ± 4.33 76.37 ± 3.08	
		- 1000		100-110-0012-1-40-00-1001	1000 C 1000 C 1000 C 1000 C	0.00 (0.000 H= 1.00 00.00		
MITR	8	4	49.37 ± 4.28 49.38 ± 7.76	45.52 ± 5.90 58.19 ± 2.65	50.49 ± 4.40 58.01 ± 3.54	17.36 ± 2.75 18.70 ± 2.38	49.84 ± 3.31 62.99 ± 3.28	
WITK	O	16	69.24 ± 3.68	66.09 ± 2.24	66.16 ± 3.46	16.41 ± 1.87	70.44 ± 2.89	
Text Classification								
		4	42.76 ± 13.50	43.73 ± 7.86	46.29 ± 12.26	40.27 ± 8.19	54.95 ± 11.81	
Airline	3	8	38.00 ± 17.06	52.39 ± 3.97	49.81 ± 10.86	51.16 ± 7.60	61.44 ± 03.90	
		16	58.01 ± 08.23	58.79 ± 2.97	57.25 ± 09.90	48.73 ± 6.79	62.15 ± 05.56	
220	-	4	55.73 ± 10.29	52.87 ± 6.16	50.61 ± 8.33	50.87 ± 1.12	51.45 ± 4.25	
Disaster	2	8 16	56.31 ± 09.57 64.52 ± 08.93	56.08 ± 7.48 65.83 ± 4.19	54.93 ± 7.88 60.70 ± 6.05	51.30 ± 2.30 52.76 ± 2.92	55.96 ± 3.58 61.32 ± 2.83	
Emotion	13	4 8	09.20 ± 3.22 08.21 ± 2.12	09.41 ± 2.10 11.61 ± 2.34	09.84 ± 2.14 11.21 ± 2.11	09.18 ± 3.14 11.18 ± 2.95	11.71 ± 2.16 12.90 ± 1.63	
Emotion	1.0	16	13.43 ± 2.51	13.82 ± 2.02	12.75 ± 2.04	12.32 ± 3.73	13.38 ± 2.20	
		4	54.57 ± 5.02	54.32 ± 3.90	54.66 ± 3.74	56.33 ± 4.37	60.49 ± 6.66	
Political Bias	2	8	56.15 ± 3.02	57.36 ± 4.32	54.00 ± 3.74 54.79 ± 4.19	58.87 ± 3.79	61.74 ± 6.66	
		16	60.96 ± 4.25	59.24 ± 4.25	60.30 ± 3.26	57.01 ± 4.44	65.08 ± 2.14	
		4	51.02 ± 1.23	50.45 ± 1.01	50.96 ± 1.72	49.55 ± 1.98	50.84 ± 1.33	
Political Audience	2	8	50.87 ± 1.88	51.63 ± 1.81	50.36 ± 1.53	50.62 ± 1.35	51.74 ± 1.37	
		16	53.09 ± 1.93	52.41 ± 1.25	51.24 ± 2.18	50.92 ± 1.56	51.90 ± 1.43	
		4	15.64 ± 2.73	13.71 ± 1.10	14.49 ± 1.75	14.22 ± 1.25	$\textbf{15.69} \pm 1.57$	
Political Message	9	8	13.38 ± 1.74	14.33 ± 1.32	15.24 ± 2.81	15.67 ± 1.96	18.02 ± 2.32	
		16	20.67 ± 3.89	18.11 ± 1.48	19.20 ± 2.20	16.49 ± 1.96	18.07 ± 2.41	
	2	4	39.42 ± 07.22	44.82 ± 9.00	38.97 ± 13.27	48.44 ± 7.43	54.92 ± 6.18	
Rating Books	3	8 16	39.55 ± 10.01 43.08 ± 11.78	51.14 ± 6.78 54.61 ± 6.79	46.77 ± 14.12 51.68 ± 11.27	52.13 ± 4.79 57.28 ± 4.57	59.16 ± 4.13 61.02 ± 4.19	
Rating DVD	3	4 8	32.22 ± 08.72 36.35 ± 12.50	45.94 ± 7.48 46.23 ± 6.03	41.23 ± 10.98 45.24 ± 9.76	47.73 ± 6.20 47.11 ± 4.00	49.76 ± 9.80 53.28 ± 4.66	
Kating DVD	3	16	42.79 ± 10.18	49.23 ± 6.68	45.19 ± 11.56	47.11 ± 4.00 48.39 ± 3.74	53.52 ± 4.06	
		4	39.27 ± 10.15	39.89 ± 5.83	41.20 ± 10.69	37.40 ± 3.72	51.71 ± 7.20	
Rating Electronics	3	8	39.27 ± 10.15 28.74 ± 08.22	39.89 ± 5.83 46.53 ± 5.44	41.20 ± 10.69 45.41 ± 09.49	37.40 ± 3.72 43.64 ± 7.31	51.71 ± 7.20 54.78 ± 6.48	
Kating Licetonies		16	45.48 ± 06.13	48.71 ± 6.16	47.29 ± 10.55	44.83 ± 5.96	58.69 ± 0.48	
		4	34.76 ± 11.20	40.41 ± 5.33	36,77 ± 10.62	44.72 ± 9.13	50.21 ± 09.63	
Rating Kitchen	3	8	34.49 ± 08.72	48.35 ± 7.87	47.98 ± 09.73	46.03 ± 8.57	53.72 ± 10.31	
		16	47.94 ± 08.28	52.94 ± 7.14	53.79 ± 09.47	49.85 ± 9.31	57.00 ± 08.69	
		4	38.06	40.04	40.05	36.13	45.84	
Overall Average		8	36.83	45.73	43.92	39.05	50.65	
		16	48.10	49.60	48.74	39.63	55.02	

Results

Domain Adaptation

- **LEOPARD** outperforms on **multi-domain** sentiment classification
- MT-BERT performs better on Scitail since it is trained on many related NLI datasets

Natural Language Inference							
	k	BERT _{base}	MT-BERT _{softmax}	MT-BERT	MT-BERT _{reuse}	Proto-BERT	LEOPARD
	4	58.53 ± 09.74	74.35 ± 5.86	63.97 ± 14.36	$\textbf{76.65} \pm \textbf{2.45}$	76.27 ± 4.26	69.50 ± 9.56
Scitail	8	57.93 ± 10.70	79.11 ± 3.11	68.24 ± 10.33	76.86 ± 2.09	78.27 ± 0.98	75.00 ± 2.42
	16	65.66 ± 06.82	79.60 ± 2.31	75.35 ± 04.80	79.53 ± 2.17	78.59 ± 0.48	77.03 ± 1.82
Amazon Review Sentiment Classification							
	4	54.81 ± 3.75	68.69 ± 5.21	64.93 ± 8.65	74.79 ± 6.91	73.15 ± 5.85	82.54 ± 1.33
Books	8	53.54 ± 5.17	74.86 ± 2.17	67.38 ± 9.78	78.21 ± 3.49	75.46 ± 6.87	83.03 ± 1.28
	16	65.56 ± 4.12	74.88 ± 4.34	69.65 ± 8.94	78.87 ± 3.32	77.26 ± 3.27	83.33 ± 0.79
	4	56.93 ± 7.10	63.07 ± 7.80	60.53 ± 9.25	75.40 ± 6.27	62.71 ± 9.53	$\textbf{78.35} \pm \textbf{18.36}$
Kitchen	8	57.13 ± 6.60	68.38 ± 4.47	69.66 ± 8.05	75.13 ± 7.22	70.19 ± 6.42	$\textbf{84.88} \pm \textbf{01.12}$
	16	68.88 ± 3.39	75.17 ± 4.57	77.37 ± 6.74	80.88 ± 1.60	71.83 ± 5.94	85.27 ± 01.31

Ablation Study

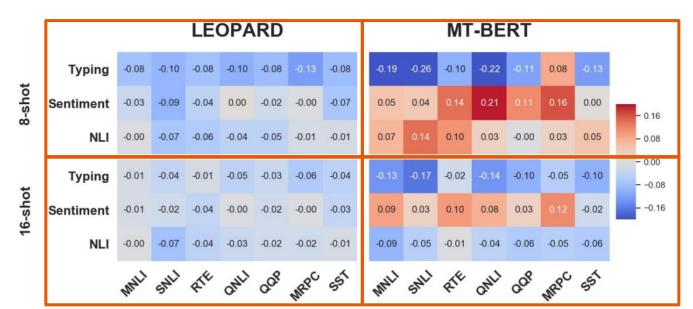
Parameter Generator: Removing generator and using zero-initialized softmax performs worse

Parameter Efficient Training: For all tasks, except NLI (Scitail), adapting all parameters is better

\overline{k}	Model	Entity Typing	Sentiment Classification	NLI
	LEOPARD 10	37.62 ± 7.37	58.10 ± 5.40	78.53 ± 1.55
16	LEOPARD 5	62.49 ± 4.23	71.50 ± 5.93	73.27 ± 2.63
10	LEOPARD	69.00 ± 4.76	76.65 ± 2.47	76.10 ± 2.21
200	LEOPARD-ZERO	44.79 ± 9.34	74.45 ± 3.34	74.36 ± 6.67

Ablation Study

Training Task Selection: LEOPARD's performance is more consistent compared to MT-BERT



Discussion

- Include other baselines (e.g. single task / Ceiling [human baselines])
- MT-BERT outperforms on Entity Typing for k=4 (not discussed in the paper)
- MAML-related approaches effective and gaining popularity
- Is LEOPARD-like meta-learning the way forward to solving general linguistics in AI?

Our Opinion

4.5 * * * * *

"Extensive experiments!"

- Aman & Albert

- Natural extension of MAML
- Extensive Experiments
- Ablation Study
- No interpretable baseline