
Meta-learning and its applications to NLP

Meta-learning and its applications to NLP

Katia Shutova

ILLC
University of Amsterdam

30 April 2020

1 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Deep learning in NLP

Deep learning models have achieved much success in NLP,
but...

I using large datasets for training

I the resulting models are not easily adaptive

I unrealistic to have such large datasets for every possible task,
application scenario, domain or language

We need models that are adaptive and can learn from a few
examples.

2 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Self-supervised pre-training

I general-purpose word and sentence encoding models

I with self-supervised pre-training (e.g. BERT, GPT-2)

I provide a good starting point for task-specific fine-tuning

and yet...

I to perform well in a given task

I need to fine-tune on a large task-specific dataset

Do not enable few-shot learning or model adaptation.

3 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Meta-learning

Meta-learning, aka "learning to learn"

I a framework to train models to perform fast adaptation from a
few examples

I a different learning paradigm: episodic learning

I many promising results in computer vision

I still relatively new to NLP (but we have some initial positive
results already!)

4 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Episodic learning

Learning from a collection of few-shot tasks, called episodes

Published as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

where ✓t�1 are the parameters of the learner after t � 1 updates, ↵t is the learning rate at time t,
Lt is the loss optimized by the learner for its tth update, r✓t�1Lt is the gradient of that loss with
respect to parameters ✓t�1, and ✓t is the updated parameters of the learner.

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)
if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1

Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let
it = �

�
WI ·

⇥
r✓t�1

Lt, Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1

Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt, Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that

3

Each episode has its own
I training set = support set
I test set = query set

5 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Meta-training and meta-test sets
Published as a conference paper at ICLR 2017

Figure 1: Example of meta-learning setup. The top represents the meta-training set Dmeta�train,
where inside each gray box is a separate dataset that consists of the training set Dtrain (left side of
dashed line) and the test set Dtest (right side of dashed line). In this illustration, we are considering
the 1-shot, 5-class classification task where for each dataset, we have one example from each of
5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set.
The meta-test set Dmeta�test is defined in the same way, but with a different set of datasets that
cover classes not present in any of the datasets in Dmeta�train (similarly, we additionally have a
meta-validation set that is used to determine hyper-parameters).

where ✓t�1 are the parameters of the learner after t � 1 updates, ↵t is the learning rate at time t,
Lt is the loss optimized by the learner for its tth update, r✓t�1Lt is the gradient of that loss with
respect to parameters ✓t�1, and ✓t is the updated parameters of the learner.

Our key observation that we leverage here is that this update resembles the update for the cell state
in an LSTM (Hochreiter & Schmidhuber, 1997)

ct = ft � ct�1 + it � c̃t, (2)
if ft = 1, ct�1 = ✓t�1, it = ↵t, and c̃t = �r✓t�1

Lt.

Thus, we propose training a meta-learner LSTM to learn an update rule for training a neural net-
work. We set the cell state of the LSTM to be the parameters of the learner, or ct = ✓t, and the
candidate cell state c̃t = r✓t�1Lt, given how valuable information about the gradient is for opti-
mization. We define parametric forms for it and ft so that the meta-learner can determine optimal
values through the course of the updates.

Let us start with it, which corresponds to the learning rate for the updates. We let
it = �

�
WI ·

⇥
r✓t�1

Lt, Lt, ✓t�1, it�1

⇤
+ bI

�
,

meaning that the learning rate is a function of the current parameter value ✓t�1, the current gradient
r✓t�1

Lt, the current loss Lt, and the previous learning rate it�1. With this information, the meta-
learner should be able to finely control the learning rate so as to train the learner quickly while
avoiding divergence.

As for ft, it seems possible that the optimal choice isn’t the constant 1. Intuitively, what would
justify shrinking the parameters of the learner and forgetting part of its previous value would be
if the learner is currently in a bad local optima and needs a large change to escape. This would
correspond to a situation where the loss is high but the gradient is close to zero. Thus, one proposal
for the forget gate is to have it be a function of that information, as well as the previous value of the
forget gate:

ft = �
�
WF ·

⇥
r✓t�1Lt, Lt, ✓t�1, ft�1

⇤
+ bF

�
.

Additionally, notice that we can also learn the initial value of the cell state c0 for the LSTM, treating
it as a parameter of the meta-learner. This corresponds to the initial weights of the classifier (that

3

6 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Meta-learning methods

1. Metric-based
I embed examples in each episode using a neural network
I compute probability distribution over labels for all query

examples
I based on their similarity with the support examples.

2. Model-based
I achieve rapid learning directly through their architectures.

3. Optimisation-based
I explicitly include generalizability in their objective function.

7 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Metric-based method: Prototypical networks

Snell et al 2017. Prototypical Networks for Few-shot Learning. NIPS.

I use an embedding function fθ to
encode each input into a vector

I compute a prototype feature vector
for every class k

I as the mean vector of the embedded
support examples in this class.

ck =
1
|Sk |

∑

(xi ,yi)∈Sk

fθ(xi)

c1

c2

c3

x

(a) Few-shot

v1

v2

v3

c1

c2

c3

x

(b) Zero-shot

Figure 1: Prototypical Networks in the few-shot and zero-shot scenarios. Left: Few-shot prototypes
ck are computed as the mean of embedded support examples for each class. Right: Zero-shot
prototypes ck are produced by embedding class meta-data vk. In either case, embedded query points
are classified via a softmax over distances to class prototypes: p�(y = k|x) / exp(�d(f�(x), ck)).

follow the same approach to tackle zero-shot learning; here each class comes with meta-data giving
a high-level description of the class rather than a small number of labeled examples. We therefore
learn an embedding of the meta-data into a shared space to serve as the prototype for each class.
Classification is performed, as in the few-shot scenario, by finding the nearest class prototype for an
embedded query point.

In this paper, we formulate Prototypical Networks for both the few-shot and zero-shot settings.
We draw connections to Matching Networks in the one-shot setting, and analyze the underlying
distance function used in the model. In particular, we relate Prototypical Networks to clustering [4]
in order to justify the use of class means as prototypes when distances are computed with a Bregman
divergence, such as squared Euclidean distance. We find empirically that the choice of distance
is vital, as Euclidean distance greatly outperforms the more commonly used cosine similarity. On
several benchmark tasks, we achieve state-of-the-art performance. Prototypical Networks are simpler
and more efficient than recent meta-learning algorithms, making them an appealing approach to
few-shot and zero-shot learning.

2 Prototypical Networks

2.1 Notation

In few-shot classification we are given a small support set of N labeled examples S =
{(x1, y1), . . . , (xN , yN)} where each xi 2 RD is the D-dimensional feature vector of an example
and yi 2 {1, . . . , K} is the corresponding label. Sk denotes the set of examples labeled with class k.

2.2 Model

Prototypical Networks compute an M -dimensional representation ck 2 RM , or prototype, of each
class through an embedding function f� : RD ! RM with learnable parameters �. Each prototype
is the mean vector of the embedded support points belonging to its class:

ck =
1

|Sk|
X

(xi,yi)2Sk

f�(xi) (1)

Given a distance function d : RM ⇥ RM ! [0, +1), Prototypical Networks produce a distribution
over classes for a query point x based on a softmax over distances to the prototypes in the embedding
space:

p�(y = k |x) =
exp(�d(f�(x), ck))P
k0 exp(�d(f�(x), ck0))

(2)

Learning proceeds by minimizing the negative log-probability J(�) = � log p�(y = k |x) of the
true class k via SGD. Training episodes are formed by randomly selecting a subset of classes from
the training set, then choosing a subset of examples within each class to act as the support set and a

2

8 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Prototypical networks
For a given query input x :

I compute the distance between its embedding and each of the
prototype vectors

I pass through a softmax

I to get the distribution over classes

P(y = k |x) = softmax(−dφ(fθ(x), ck)) =
exp(−dφ(fθ(x), ck))∑
k ′ exp(−dφ(fθ(x), ck ′))

where dφ is the distance function

I Snell et al. use squared Euclidean distance

I The loss function is the negative log-likelihood.

9 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Optimisation-based method: Model-agnostic
meta-learning

Finn et al. 2017. Model-Agnostic Meta-Learning for Fast Adaptation
of Deep Networks. ICML.

I General and model-agnostic method

I applicable to any learning problem

I and any model architecture
(trainable with gradient descent)

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

large improvements in the task loss.

The primary contribution of this work is a simple model-
and task-agnostic algorithm for meta-learning that trains
a model’s parameters such that a small number of gradi-
ent updates will lead to fast learning on a new task. We
demonstrate the algorithm on different model types, includ-
ing fully connected and convolutional networks, and in sev-
eral distinct domains, including few-shot regression, image
classification, and reinforcement learning. Our evaluation
shows that our meta-learning algorithm compares favor-
ably to state-of-the-art one-shot learning methods designed
specifically for supervised classification, while using fewer
parameters, but that it can also be readily applied to regres-
sion and can accelerate reinforcement learning in the pres-
ence of task variability, substantially outperforming direct
pretraining as initialization.

2. Model-Agnostic Meta-Learning
We aim to train models that can achieve rapid adaptation, a
problem setting that is often formalized as few-shot learn-
ing. In this section, we will define the problem setup and
present the general form of our algorithm.

2.1. Meta-Learning Problem Set-Up

The goal of few-shot meta-learning is to train a model that
can quickly adapt to a new task using only a few datapoints
and training iterations. To accomplish this, the model or
learner is trained during a meta-learning phase on a set
of tasks, such that the trained model can quickly adapt to
new tasks using only a small number of examples or trials.
In effect, the meta-learning problem treats entire tasks as
training examples. In this section, we formalize this meta-
learning problem setting in a general manner, including
brief examples of different learning domains. We will dis-
cuss two different learning domains in detail in Section 3.

We consider a model, denoted f , that maps observa-
tions x to outputs a. During meta-learning, the model
is trained to be able to adapt to a large or infinite num-
ber of tasks. Since we would like to apply our frame-
work to a variety of learning problems, from classifica-
tion to reinforcement learning, we introduce a generic
notion of a learning task below. Formally, each task
T = {L(x1,a1, . . . ,xH ,aH), q(x1), q(xt+1|xt,at), H}
consists of a loss function L, a distribution over initial ob-
servations q(x1), a transition distribution q(xt+1|xt,at),
and an episode length H . In i.i.d. supervised learning prob-
lems, the length H = 1. The model may generate samples
of length H by choosing an output at at each time t. The
loss L(x1,a1, . . . ,xH ,aH) ! R, provides task-specific
feedback, which might be in the form of a misclassification
loss or a cost function in a Markov decision process.

meta-learning
learning/adaptation✓

rL1

rL2

rL3

✓⇤1 ✓⇤2

✓⇤3

Figure 1. Diagram of our model-agnostic meta-learning algo-
rithm (MAML), which optimizes for a representation ✓ that can
quickly adapt to new tasks.

In our meta-learning scenario, we consider a distribution
over tasks p(T) that we want our model to be able to adapt
to. In the K-shot learning setting, the model is trained to
learn a new task Ti drawn from p(T) from only K samples
drawn from qi and feedback LTi generated by Ti. During
meta-training, a task Ti is sampled from p(T), the model
is trained with K samples and feedback from the corre-
sponding loss LTi

from Ti, and then tested on new samples
from Ti. The model f is then improved by considering how
the test error on new data from qi changes with respect to
the parameters. In effect, the test error on sampled tasks Ti

serves as the training error of the meta-learning process. At
the end of meta-training, new tasks are sampled from p(T),
and meta-performance is measured by the model’s perfor-
mance after learning from K samples. Generally, tasks
used for meta-testing are held out during meta-training.

2.2. A Model-Agnostic Meta-Learning Algorithm

In contrast to prior work, which has sought to train re-
current neural networks that ingest entire datasets (San-
toro et al., 2016; Duan et al., 2016b) or feature embed-
dings that can be combined with nonparametric methods at
test time (Vinyals et al., 2016; Koch, 2015), we propose a
method that can learn the parameters of any standard model
via meta-learning in such a way as to prepare that model
for fast adaptation. The intuition behind this approach is
that some internal representations are more transferrable
than others. For example, a neural network might learn
internal features that are broadly applicable to all tasks in
p(T), rather than a single individual task. How can we en-
courage the emergence of such general-purpose representa-
tions? We take an explicit approach to this problem: since
the model will be fine-tuned using a gradient-based learn-
ing rule on a new task, we will aim to learn a model in such
a way that this gradient-based learning rule can make rapid
progress on new tasks drawn from p(T), without overfit-
ting. In effect, we will aim to find model parameters that
are sensitive to changes in the task, such that small changes
in the parameters will produce large improvements on the
loss function of any task drawn from p(T), when altered in
the direction of the gradient of that loss (see Figure 1). We

10 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Model-agnostic meta-learning (MAML)

Key intuition:

I learn a good parameter initialisation

I such that the model has maximal performance on a new task

I after the parameters have been updated in a few gradient steps

I computed with a small amount of data from that new task.

Essentially, the goal is to learn internal representations that are
broadly suitable for many tasks.

11 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

MAML overview

The learner model fθ, parametrized by θ

I e.g. a sentence encoder, such as an LSTM or Transformer.

The meta-learning algorithm

1. Adapt to a new task Ti , given the task objective

I computing the loss on the support set

2. Perform meta-optimisation over a batch of tasks (episodes)

I computing the loss on the query sets.

12 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

MAML algorithm
1. Adapt to a new task Ti , given the task objective:

I compute updated parameters θ′i using the support set

θ′i = θ − α∇θLTi (fθ)

2. Perform meta-optimisation over a batch of tasks (episodes)

I minimise meta-objective across tasks, on the query sets:

min
θ

∑

Ti∼p(T)

LTi (fθ′i) =
∑

Ti∼p(T)

LTi (fθ−α∇θLTi (fθ)
)

I perform a meta-update of shared parameters θ

θ ← θ − β∇θ
∑

Ti∼p(T)

LTi (fθ′i)

13 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

MAML algorithm Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Algorithm 1 Model-Agnostic Meta-Learning
Require: p(T): distribution over tasks
Require: ↵, �: step size hyperparameters

1: randomly initialize ✓
2: while not done do
3: Sample batch of tasks Ti ⇠ p(T)
4: for all Ti do
5: Evaluater✓LTi

(f✓) with respect to K examples
6: Compute adapted parameters with gradient de-

scent: ✓0i = ✓ � ↵r✓LTi
(f✓)

7: end for
8: Update ✓ ✓ � �r✓

P
Ti⇠p(T) LTi(f✓0

i
)

9: end while

make no assumption on the form of the model, other than
to assume that it is parametrized by some parameter vector
✓, and that the loss function is smooth enough in ✓ that we
can use gradient-based learning techniques.

Formally, we consider a model represented by a
parametrized function f✓ with parameters ✓. When adapt-
ing to a new task Ti, the model’s parameters ✓ become ✓0i.
In our method, the updated parameter vector ✓0i is computed
using one or more gradient descent updates on task Ti. For
example, when using one gradient update,

✓0i = ✓ � ↵r✓LTi
(f✓).

The step size ↵ may be fixed as a hyperparameter or meta-
learned. For simplicity of notation, we will consider one
gradient update for the rest of this section, but using multi-
ple gradient updates is a straightforward extension.

The model parameters are trained by optimizing for the per-
formance of f✓0

i
with respect to ✓ across tasks sampled from

p(T). More concretely, the meta-objective is as follows:

min
✓

X

Ti⇠p(T)

LTi
(f✓0

i
) =

X

Ti⇠p(T)

LTi
(f✓�↵r✓LTi

(f✓))

Note that the meta-optimization is performed over the
model parameters ✓, whereas the objective is computed us-
ing the updated model parameters ✓0. In effect, our pro-
posed method aims to optimize the model parameters such
that one or a small number of gradient steps on a new task
will produce maximally effective behavior on that task.

The meta-optimization across tasks is performed via
stochastic gradient descent (SGD), such that the model pa-
rameters ✓ are updated as follows:

✓ ✓ � �r✓

X

Ti⇠p(T)

LTi
(f✓0

i
) (1)

where � is the meta step size. The full algorithm, in the
general case, is outlined in Algorithm 1.

The MAML meta-gradient update involves a gradient
through a gradient. Computationally, this requires an addi-
tional backward pass through f to compute Hessian-vector

products, which is supported by standard deep learning li-
braries such as TensorFlow (Abadi et al., 2016). In our
experiments, we also include a comparison to dropping
this backward pass and using a first-order approximation,
which we discuss in Section 5.2.

3. Species of MAML
In this section, we discuss specific instantiations of our
meta-learning algorithm for supervised learning and rein-
forcement learning. The domains differ in the form of loss
function and in how data is generated by the task and pre-
sented to the model, but the same basic adaptation mecha-
nism can be applied in both cases.

3.1. Supervised Regression and Classification

Few-shot learning is well-studied in the domain of super-
vised tasks, where the goal is to learn a new function from
only a few input/output pairs for that task, using prior data
from similar tasks for meta-learning. For example, the goal
might be to classify images of a Segway after seeing only
one or a few examples of a Segway, with a model that has
previously seen many other types of objects. Likewise, in
few-shot regression, the goal is to predict the outputs of
a continuous-valued function from only a few datapoints
sampled from that function, after training on many func-
tions with similar statistical properties.

To formalize the supervised regression and classification
problems in the context of the meta-learning definitions in
Section 2.1, we can define the horizon H = 1 and drop the
timestep subscript on xt, since the model accepts a single
input and produces a single output, rather than a sequence
of inputs and outputs. The task Ti generates K i.i.d. ob-
servations x from qi, and the task loss is represented by the
error between the model’s output for x and the correspond-
ing target values y for that observation and task.

Two common loss functions used for supervised classifica-
tion and regression are cross-entropy and mean-squared er-
ror (MSE), which we will describe below; though, other su-
pervised loss functions may be used as well. For regression
tasks using mean-squared error, the loss takes the form:

LTi(f�) =
X

x(j),y(j)⇠Ti

kf�(x(j))� y(j)k22, (2)

where x(j),y(j) are an input/output pair sampled from task
Ti. In K-shot regression tasks, K input/output pairs are
provided for learning for each task.

Similarly, for discrete classification tasks with a cross-
entropy loss, the loss takes the form:

LTi
(f�) =

X

x(j),y(j)⇠Ti

y(j) log f�(x(j))

+ (1� y(j)) log(1� f�(x(j)))

(3)

14 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

First-order approximation of MAML

I Computing second-order gradients is computationally expensive

I Finn et al. proposed a first order approximation of MAML

I compute the gradients with respect to the updated parameters θ′i
rather than the initial parameters θ

θ ← θ − β∇θ′i
∑

Ti∼p(T)

LTi (fθ′i)

15 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Hybrid method: ProtoMAML

Triantafillou et al. 2020. Meta-Dataset: A Dataset of Datasets for
Learning to Learn from Few Examples. ICLR.

I Prototypical networks with Euclidean distance are equivalent to
a linear model with a particular parameterization

−||fθ(x)− ck ||2 = −fθ(x)T fθ(x) + 2ck
T fθ(x)− ck

T ck

fθ(x)T fθ(x) is constant with respect to class k

2ck
T fθ(x)− ck

T ck = wk
T fθ(x) + bk

wk and bk are the weights and biases for the output unit
corresponding to class k .

16 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

ProtoMAML

Key idea:

I initialise the final layer of the learner classifier in each episode

I with prototypical network-equivalent weights and biases

I and continue to learn with MAML.

Benefits:

I combines the strength of prototypical networks and MAML

I extends MAML beyond N-way, K-shot scenario.

17 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Meta-learning in NLP

1. Address one NLP task (e.g. focus on learning new classes)

I Tasks addressed: relation classification, entity typing, text
classification, word sense disambiguation

2. Apply meta-learning across multiple NLP tasks

I Bansal et al. 2019 – to be discussed later in this session

3. Apply meta-learning across languages

I machine translation for low-resource languages
I NLI and question answering (Nooralahzadeh et al. 2020)

– to be discussed next Thursday

18 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Meta-learning in NLP: Methods

I Model architectures:

I feed-forward networks
I graph convolutional networks
I recurrent networks (LSTM, GRU)
I transformers

I Meta-learning methods:

I First-order MAML (the most popular)
I several extensions thereof proposed
I Prototypical networks
I ProtoMAML

19 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Meta-learning for word sense disambiguation

Holla et al. 2020. Learning to Learn to Disambiguate: Meta-Learning
for Few-Shot Word Sense Disambiguation. ArXiv.

WSD task: determine the sense of a word (e.g. WordNet sense)

The children ran to the store
Service runs all the way to Cranbury
She is running a relief operation in Sudan
the story or argument runs as follows
Does this old car still run well?
Who’s running for treasurer this year?

Our goal: learn new word senses from a few examples

20 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Challenges in WSD

I The nature of the learning problem

I WSD exhibits inter-word dependencies within sentences
I has a large number of classes
I and dramatic class imbalances.

I Existing supervised approaches

I learn a model per word
I require very large training datasets
I that are impossible to produce at a realistic scale.

A problem desperately in need of a few-shot learning approach!

But also presents new challenges compared to the controlled setup in
most current meta-learning approaches (N-way, K-shot classification).

21 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Task definition and episode generation

I Classify word use with respect to a predefined sense inventory

I typically treated as a sequence labelling task

I convert it to a "word in context" classification task.

She is running a relief operation in Sudan.

I Divide words into meta-training and meta-test splits

I Meta-training: 4 words per episode (with multiple senses)

I Meta-test: 1 word per episode (with multiple senses)

I experiment with support sets of 8, 16 and 32.

22 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Methods

I Model architectures:

I Glove + GRU
I ELMo + MLP
I fine-tuning BERT base.

I Meta-learning methods:

I First- and second-order MAML
I Prototypical networks
I ProtoMAML (and its second-order variant)

23 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Results
Embedding/

Encoder Method Average macro F1 score
|S| = 8 |S| = 16 |S| = 32

- MajoritySenseBaseline 0.259 0.264 0.261

GloVe+GRU

NearestNeighbor – – –
NE-Baseline 0.507 ± 0.005 0.479 ± 0.004 0.451 ± 0.009
EF-ProtoNet 0.539 ± 0.009 0.538 ± 0.003 0.562 ± 0.005
EF-FOMAML 0.341 ± 0.002 0.321 ± 0.004 0.303 ± 0.005
EF-ProtoFOMAML 0.529 ± 0.010 0.540 ± 0.004 0.553 ± 0.009
ProtoNet 0.601 ± 0.003 0.633 ± 0.008 0.654 ± 0.004
FOMAML 0.418 ± 0.005 0.392 ± 0.007 0.375 ± 0.005
ProtoFOMAML 0.599 ± 0.005 0.617 ± 0.004 0.627 ± 0.004

ELMo+MLP

NearestNeighbor 0.641 0.645 0.654
NE-Baseline 0.640 ± 0.012 0.633 ± 0.001 0.614 ± 0.008
EF-ProtoNet 0.635 ± 0.004 0.661 ± 0.004 0.683 ± 0.003
EF-FOMAML 0.414 ± 0.006 0.383 ± 0.003 0.352 ± 0.003
EF-ProtoFOMAML 0.621 ± 0.004 0.623 ± 0.008 0.611 ± 0.005
ProtoNet 0.688 ± 0.004 0.709 ± 0.006 0.731 ± 0.006
FOMAML 0.589 ± 0.010 0.587 ± 0.012 0.575 ± 0.016
ProtoFOMAML 0.689 ± 0.007 0.711 ± 0.004 0.726 ± 0.004

BERT

NearestNeighbor 0.704 0.716 0.741
NE-Baseline 0.599 ± 0.023 0.539 ± 0.025 0.473 ± 0.015
EF-ProtoNet 0.655 ± 0.004 0.682 ± 0.005 0.721 ± 0.009
EF-FOMAML 0.522 ± 0.007 0.450 ± 0.008 0.393 ± 0.002
EF-ProtoFOMAML 0.662 ± 0.006 0.654 ± 0.009 0.665 ± 0.009
ProtoNet 0.750 ± 0.008 0.755 ± 0.002 0.766 ± 0.003
FOMAML 0.550 ± 0.011 0.476 ± 0.010 0.436 ± 0.014
ProtoFOMAML 0.731 ± 0.004 0.739 ± 0.008 0.744 ± 0.005

Table 2: Average macro F1 scores of the meta-test words.

Embedding/
Encoder Method Average macro F1 score

|S| = 8 |S| = 16 |S| = 32

GloVe+GRU
ProtoNet 0.601 ± 0.003 0.633 ± 0.008 0.654 ± 0.004
ProtoFOMAML 0.599 ± 0.005 0.617 ± 0.004 0.627 ± 0.004
ProtoMAML 0.617 ± 0.005 0.629 ± 0.006 0.633 ± 0.006

ELMo+MLP
ProtoNet 0.688 ± 0.004 0.709 ± 0.006 0.731 ± 0.006
ProtoFOMAML 0.689 ± 0.007 0.711 ± 0.004 0.726 ± 0.004
ProtoMAML 0.699 ± 0.006 0.722 ± 0.007 0.729 ± 0.005

Table 3: Average macro F1 scores of the meta-test words for second-order gradient model variants.

setups, BERT-based ProtoNet achieves the highest
performance.

5.3 Analysis

Effect of the number of meta-training episodes
The total number of possible meta-training
episodes that can be generated using our proposed
setup is combinatorially large (see Section 3). We
now seek to investigate the following: do more
episodes always translate to higher performance?
In order to answer that question, we plot the aver-
age macro F1 score for our best-performing model
– ProtoNet with BERT – as the number of meta-
training episodes increases (Figure 2). The shaded
region shows one standard deviation from the mean,
obtained over five runs. Different |S| setups reach
peaks at different meta-training data sizes; however,

overall, the largest gains in performance come with
a minimum of around 4000 episodes.

Effect of number of senses To investigate the re-
lation between the macro F1 score and the number
of senses for a word, in Figure 3, we plot the macro
F1 scores averaged over words with a given num-
ber of senses in the meta-test set, obtained from
our best model — ProtoNet with BERT. Overall,
we see a trend where the macro F1 score reduces as
the number of senses increase. Furthermore, words
with a larger number of senses seem to benefit from
a larger number of sentences in the support set. For
a word with 8 senses, the |S| = 32 case becomes
roughly a 4-shot problem whereas it is roughly a 2-
shot and 1-shot problem for |S| = 16 and |S| = 8
respectively. In this view, the disambiguation of

24 / 24

Meta-learning and its applications to NLP

Introduction to meta-learning

Acknowledgement

Some images were adapted from Hugo Larochelle

25 / 24

Few-Shot Learn Across Diverse
NLP Classification Tasks

Authors: Trapit Bansal, Rishikesh Jha, Andrew McCallum
Presented by: Aman Hussain & Albert Harkema

Limitations of MAML

Requires fixed number of classes across different tasks

LEOPARD

● Parameter Generator:
Initializes task-dependent softmax parameters

● Parameter Efficient Training:
Adapt efficiently across diverse tasks

LEOPARD architecture

Parameter Generator
N-way task conditioned for on meta-training data

LEOPARD architecture

Parameter Efficient Training
1. Task agnostic
2. Task specific

LEOPARD architecture

Parameter Efficient Training
1. Task agnostic
2. Task specific

Experiment Setup

● Per-layer learning rate for inner loop
● Pre-trained BERT
● Hyperparameter: task specific no. of layers

Experiments
Training Tasks

GLUE: 8 tasks focus on sentence-level classification (without
WNLI & STS-B)

During Meta-Training: classify between every pair of labels

Experiments
Evaluation and Baselines

Samples: for every k ∈ {4, 8, 16} sample 10 training datasets

Validation Task: SciTail

Models: BERTbase, Multi-task BERT, Prototypical BERT

Evaluation: 17 target NLP tasks

Results
Unseen Tasks

● Relative gain in accuracy:

○ 14.5% (k=4)

○ 10.75% (k=8)

○ 10.9% (k=16)

● Outperforms baselines for never seen

tasks: entity typing, rating classification,

text classification

● Prototypical networks worse than

fine-tuning methods for never seen tasks

Results
Domain Adaptation

● LEOPARD outperforms on multi-domain sentiment classification

● MT-BERT performs better on Scitail since it is trained on many related NLI datasets

Ablation Study

Parameter Generator: Removing generator and using zero-initialized softmax performs worse

Parameter Efficient Training: For all tasks, except NLI (Scitail), adapting all parameters is better

Ablation Study
Training Task Selection: LEOPARD’s performance is more consistent compared to MT-BERT

Discussion

● Include other baselines (e.g. single task / Ceiling [human baselines])

● MT-BERT outperforms on Entity Typing for k=4 (not discussed in the paper)

● MAML-related approaches effective and gaining popularity

● Is LEOPARD-like meta-learning the way forward to solving general linguistics in AI?

Our Opinion
4.5

● Natural extension of MAML

● Extensive Experiments

● Ablation Study

● No interpretable baseline

“Extensive experiments!”
- Aman & Albert

	Introduction to meta-learning

