Advanced Topics in Computational Semantics Overview of Research Projects

Katia Shutova

ILLC University of Amsterdam

6 April 2020

< 日 > < 同 > < 回 > < 回 > < □ > <

э

1/13

Research project topics

- 1. Meta-learning across NLP tasks
- 2. Meta-learning for domain adaptation
- 3. Enriching semantic models with cognitive signals
- 4. Cross-lingual meta-learning
- 5. Mitigating gender and racial bias in sentiment analysis

Submit your top three choices on Canvas by Friday, 10 April

Topic 1: Meta-learning across NLP tasks

Deep learning models have achieved much success in NLP, but...

- using large datasets for training
- the resulting models are not easily adaptive
- unrealistic to have such large datasets for every possible task, application scenario, domain or language

We need models that are adaptive and can learn from a few examples.

Meta-learning

Meta-learning, aka "learning to learn"

- a framework to train models to perform fast adaptation from a few examples
- a different learning paradigm: episodic training
- many promising results in computer vision
- still relatively new to NLP (but we have some initial positive results already!)

Possible task combinations

A series of projects focusing on extending **multitask learning** to a **meta-learning** paradigm.

Tasks combinations:

- 1. learning sentence representations (NLI, stance, paraphrasing)
- 2. pragmatics and social meaning (emotion detection, sarcasm, abusive language detection)
- 3. combining different levels of linguistic hierarchy (*syntax, lexical and compositional semantics*)
- 4. discourse level tasks (*discourse coherence, argumentation, misinformation*)

Topic 2: Meta-learning for domain adaptation

It is often challenging to apply trained models to **new domains** and **data sources**.

In this project, we will

- use meta-learning to perform domain adaptation from a few examples
- focus on a specific task
- apply meta-learning on several datasets from this task
- experiment with tasks such as emotion detection, sentiment analysis, abusive language detection.

Topic 3: Enriching models with cognitive signals

Use human attention patterns to guide attention in neural models

- eye-tracking records eye movement and fixations (gaze) of humans during text reading
- using gaze features leads to performance improvements in many NLP tasks
- gaze features used as input to neural networks, or in a multitask learning paradigm

Two projects using gaze data

1. Exploiting task-specific vs general gaze data

- experiment with the relation extraction task
- two gaze datasets: text read without and during annotation
- multitask learning for relation extraction and gaze prediction

2. Incorporating gaze supervision in document-level tasks

- so far gaze has been used in word and sentence-level tasks
- we will experiment with document-level tasks (e.g. coherence prediction, argumentation, stance)
- using gaze to guide document-level attention
- experiment in a multitask learning paradigm

Topic 4: Cross-lingual meta-learning

Extend the benefits of accurate NLP to low-resource languages

- Performance gap between NLP models in high- and low-resource languages (e.g. English vs. Farsi)
- Multilingual word representations and sentence encoders
- that project multiple languages into the same semantic space.
- Train task-specific models in a given language(s)
- few-shot or zero-shot transfer to other languages.

Methods and experiments

Use meta-learning to perform cross-lingual model adaptation

- already promising results in multilingual NLI and QA
- you will apply this to a linguistic task: dependency parsing
- coarse-grained categories suitable for cross-lingual transfer
- group languages based on typological relationships
- use multilingual BERT and meta-learning for few-shot model adaptation

Topic 5: Mitigating demographic bias in NLP models

Demographic bias in the datasets is reflected in the models trained. This is **problematic for real-world application** of NLP.

- We will consider the case of sentiment analysis
- Specific noun phrases associated with specific classes (e.g. negative or positive sentiment, or particular emotions)
- Equity Evaluation Corpus (EEC) used to evaluate bias
- Sentences contain gendered noun phrases or European American vs. African American names

My daughter feels devastated My son feels devastated

Methods and experiments

We will develop a novel **debiasing method** based on **multitask learning**.

- main task: sentiment analysis
- auxiliary adversarial objective nudge the model to "conflate" race and gender of noun phrases
- learn gender and race invariant features for sentiment analysis.
- evaluate against the Equity Evaluation Corpus.

Advanced Topics in Computational Semantics

Overview of research projects

Coming next...

On Thursday:

 Seminar: contextualised word embeddings and modelling ambiguity

On Friday:

Deadline: Submit your three project choices on Canvas!

Learning to Understand Phrases by Embedding the Dictionary by Hill et al.

presented by Stefan Schouten

presented by Stefan Schouten

Learning to Understand Phrases by Embedding the Dictionary

1 / 23

- Neural network that can map a phrase to a word.
- Train network using dictionary definitions of words.

- Neural network that can map a phrase to a word.
- Train network using dictionary definitions of words.
- Research Question: Can we do this?

- Paper considers two tasks
 - (cross-lingual) reverse dictionary
 - crossword puzzles

P

- Paper considers two tasks
 - (cross-lingual) reverse dictionary
 - crossword puzzles

(which are a form of General Knowledge Question Answering)

- Paper considers two tasks
 - (cross-lingual) reverse dictionary
 - crossword puzzles
 - (which are a form of General Knowledge Question Answering)
 - Research Question: Can we apply it in this way?

- Paper considers two tasks
 - (cross-lingual) reverse dictionary
 - crossword puzzles
 - (which are a form of General Knowledge Question Answering)
 - Research Question: Can we apply it in this way?
- More?

4 / 23

イロト 不同 トイヨト イヨト

5 / 23

イロト 不同 トイヨト イヨト

- Baselines
 - sum of embeddings
 - product of embeddings
- CBOW
- LSTM

▲ 同 ▶ ▲ 臣

▶ ∢ ⊒

- Cosine Similarity
- Rank loss

イロト 人間ト イヨト イヨト

- Cosine Similarity
- Rank loss:

•
$$max(0, m - cos(M(s_c), v_c) - cos(M(s_c), v_r))$$

イロト 不得 トイヨト イヨト

- Cosine Similarity
- Rank loss:
 - $max(0, m cos(M(s_c), v_c) cos(M(s_c), v_r))$
 - $max(0, m cos(M(s_c), v_c) + cos(M(s_c), v_r))$

э

- Cosine Similarity
- Rank loss:
 - $max(0, m cos(M(s_c), v_c) cos(M(s_c), v_r))$
 - $max(0, m cos(M(s_c), v_c) + cos(M(s_c), v_r))$
 - We want $cos(M(s_c), v_c)$ to be higher than $cos(M(s_c), v_r)$ by a margin m, where v_r is a random word vector.

- WordNet
- The American Heritage Dictionary
- The Collaborative International Dictionary of English
- Wiktionary
- Webster's
- Simple Wikipedia
 - Words in target embeddings that also have a Wikipedia page.
 - First paragraph treated as if definition.
- Total: roughly 900 000 word-definition pairs, for roughly 100 000 unique words.

seen

500 words from WordNet that all models had seen, random definition.

unseen

500 words from WordNet that **no** models had seen, random definition.

concept descriptions

Ten native English speakers were asked to write single-sentence descriptions of 200 random words from 3000 most frequent (but outside the top 100) in the British National Corpus.

Test set	Word	Description
Dictionary	valve	"control consisting of a mechanical
definition		device for controlling fluid flow"
Concept	prefer	"when you like one thing
description		more than another thing"

Table 2: Style difference between *dictionary definitions* and *concept descriptions* in the evaluation.

イロト 不得 トイヨト イヨト

Comparison with OneLook.com

"is the first reverse dictionary tool returned by a Google search and seems to be the most popular among writers."

Learning to Understand Phrases by Embedding the Dictionary

11 / 23

Evaluation: Reverse Dictionary

Dictionary definitions										
	Test Set	See	n (500 WI	N defs)	Unsee	n (500 WN	V defs)	Conce	pt descrip	tions (200)
Unsup.	W2V add	-	-	-	923	.04/.16	163	339	.07/.30	150
models	W2V mult	-	-	-	1000	.00/.00	10*	1000	.00/.00	27*
	OneLook	0	.89/.91	67				18.5	.38 /.58	153
	RNN cosine	12	487.73	$\bar{1}0\bar{3}$	$\bar{22}$.417.70	$\bar{1}16$	69	.28/.54	157
	RNN w2v cosine	19	.44/.70	111	19	.44/.69	126	26	.38 /.66	111
	RNN ranking	18	.45/.67	128	24	.43/.69	103	25	.34/.66	102
NLMs	RNN w2v ranking	54	.32/.56	155	33	.36/.65	137	30	.33/.69	77
	BOW cosine	22	.44/.65	129	19	.43/.69	103	50	.34/.60	99
	BOW w2v cosine	15	.46/.71	124	14	.46/ .71	104	28	.36/.66	99
	BOW ranking	17	.45/.68	115	22	.42/.70	95	32	.35/.69	101
	BOW w2v rankng	55	.32/.56	155	36	.35/.66	138	38	.33/ .72	85

median rank accuracy@10/100 rank variance

Table 1: Performance of different reverse dictionary models in different evaluation settings. *Low variance in *mult* models is due to consistently poor scores, so not highlighted.

- For the seen data, the OneLook algorithm clearly outperforms their models.
- Paper's models fare better for the concept descriptions.
- RNN models do not outperform BOW models.
- Little difference between model-specific and pre-trained input word embeddings?
 - Pre-trained input embeddings do seem better for concept descriptions.
 - Possibly due to overfitting of model-specific.

Input Description	OneLook	W2V add	RNN	BOW
"a native of a cold country" "a way of moving through the air"	1:country 2:citizen 3:foreign 4:naturalize 5:cisco 1:drag 2:whiz 3:aerodynamics 4:draught 5:coefficient of drag	1:a 2.the 3:another 4:of 5:whole 1:the 2:through 3:a 4:moving 5:in	1:eskimo 2:scandinavian 3:arctic 4:indian 5:siberian 1:glide 2:scooting 3:glides 4:gliding 5:flight	1:frigid 2:cold 3:icy 4:russian 5:indian 1:flying 2:gliding 3:glide 4:fly 5:scooting
"a habit that might annoy your spouse"	1:sisterinlaw 2:fatherinlaw 3:motherinlaw 4:stepson 5:stepchild	1:annoy 2:your 3:might 4:that 5:either	1:bossiness 2:jealousy 3:annoyance 4:rudeness 5:boorishness	1:infidelity 2:bossiness 3:foible 4:unfaithfulness 5:adulterous

Table 3: The top-five candidates for example queries (invented by the authors) from different reverse dictionary models. Both the RNN and BOW models are without Word2Vec input and use the cosine loss.

presented by Stefan Schouten

Learning to Understand Phrases by Embedding the Dictionary

→ < ∃→

< /□> < 三

- e.g. From description in English to corresponding French term.
- Replace target embeddings bilingual embeddings.
- Their experiment used embeddings from BilBOWA [].
- Train to map from English to English, at test time return closest French term.

Input description	RNN EN-FR	W2V add	RNN + Google
"an emotion that you might feel	<u>triste</u> , pitoyable	insister, effectivement	sentiment, regretter
after being rejected"	répugnante, épouvantable	pourquoi, nous	peur, aversion
"a small black flying insect that transmits disease and likes horses"	<u>mouche</u> , canard <u>hirondelle</u> , pigeon	attentivement, pouvions pourrons, naturellement	voler, <u>faucon</u> <u>mouches</u> , volant

Table 4: Responses from cross-lingual reverse dictionary models to selected queries. Underlined responses are 'correct' or potentially useful for a native French speaker.

- Some crossword questions are quite like definitions.
- Test sets:
 - **long**: 150 questions from Eddie James crossword website: general-knowledge crosswords. Excluded clues of fewer than four words, and those with multiple words as answer.
 - **short**: 150 questions from the Guardian Quick crossword, more cryptic. Excluded clues of more than four words. Subset of 30 **single-word** clues.

Test set	Word	Description
Long	Baudelaire	"French poet
(150)		and key figure
		in the development
		of Symbolism."
Short (120)	satanist	"devil devotee"
Single-Word (30)	guilt	"culpability"

Table 5: Examples of the different question types in the crossword question evaluation dataset.

イロト 人間ト イヨト イヨト

		Long (15	0)		Short (12	0)	Si	ingle-Word	d (30)
One Across		.39 /			.68 /			.70 /	
Crossword Maestro		.27 /			.43 /			.73 /	
W2V add	42	.31/.63	92	11	.50/.78	66	$\bar{2}$.79/.90	45
RNN cosine	15	.43/.69	108	22	.39/.67	117	72	.31/.52	- 187 -
RNN w2v cosine	4	.61/.82	60	7	.56/.79	60	12	.48/.72	116
RNN ranking	6	.58/.84	48	10	.51/.73	57	12	.48/.69	67
RNN w2v ranking	3	.62/.80	61	8	.57/.78	49	12	.48/.69	114
BOW cosine	4	.60/.82	54	7	.56/.78	51	12	.45/.72	137
BOW w2v cosine	4	.60/.83	56	7	.54/.80	48	3	.59/.79	111
BOW ranking	5	.62/.87	50	8	.58/.83	37	8	.55/.79	39
BOW w2v ranking	5	.60/.86	48	8	.56/.83	35	4	.55/.83	43

Question Type avg rank -accuracy@10/100 - rank variance

Table 6: Performance of different models on crossword questions of different length. The two commercial systems are evaluated via their web interface so only accuracy@10 can be reported in those cases.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ()

Evaluation: Crosswords

Input Description	One Across	Crossword Maestro	BOW	RNN
"Swiss mountain	1:noted 2:front	1:after 2:favor	1: Eiger 2. <i>Crags</i>	1: Eiger 2:Aosta
peak famed for its	3: Eiger 4:crown	3:ahead 4:along	3: <i>Teton</i> 4: <i>Cerro</i>	3:Cuneo 4:Lecco
north face (5)"	5:fount	5:being	5: <i>Jebel</i>	5:Tyrol
"Old Testament	1: Joshua 2: <i>Exodus</i>	1:devise 2:Daniel	1:Isaiah 2:Elijah	1: Joshua 2: <i>Isaiah</i>
successor to	3:Hebrew 4:person	3:Haggai 4: Isaiah	3: Joshua 4:Elisha	3:Gideon 4:Elijah
Moses (6)"	5:across	5:Joseph	5:Yahweh	5:Yahweh
"The former currency of the Netherlands (7)"	1:Holland 2:general 3:Lesotho	1:Holland 2:ancient 3:earlier 4:onetime 5:qondam	1: Guilder 2:Holland 3:Drenthe 4:Utrecht 5:Naarden	1: Guilder 2:Escudos 3:Pesetas 4:Someren 5:Florins
"Arnold, 20th	1:surrealism	1:disharmony	1:Schoenberg	1:Mendelsohn
Century composer	2:labornarty	2:dissonance	2:Christleib	2:Williamson
pioneer of	3:tonemusics	3:bringabout	3:Stravinsky	3:Huddleston
atonality	4:introduced	4:constitute	4:Elderfield	4:Mandelbaum
(10)"	5:Schoenberg	5:triggeroff	5:Mendelsohn	5:Zimmerman

Table 7: Responses from different models to example crossword clues. In each case the model output is filtered to exclude any candidates that are not of the same length as the correct answer. BOW and RNN models are trained without Word2Vec input embeddings and cosine loss.

presented by Stefan Schouten

■ 10 20 / 23

- Shown that dictionaries can be valuable to train neural language models.
- Performs comparably to commercial systems on reverse dictionary; without linguistic pre-processing or task-specific engineering.
- Outperforms commercial systems on crossword questions over 4 words long.
- Approach may ultimately lead to improved output from more general QA systems.

- Experiments in multiple settings.
- Quantitative and qualitative evaluation.
- This exact setup might not have too many other applications.
- Definitions vs. general text.

- What they mentioned:
 - More research into QA; train on questions.
 - Try to understand how BOW models can perform well without word order.
 - Endow model with richer world knowledge, possibly integrate external memory module.
- Transformer model (especially for encyclopedia?)

Introduction		Discussion	
•0			

DisSent: Learning Sentence Representations from Explicit Discourse Relations

Allen Nie, Erin D. Bennett, Noah D. Goodman

Presented by: Tom Kersten

April 6, 2020

Introduction ○●		Experiments 00000000	Discussion 000	
Motivation &	& Contribution			

- Goal: Improve general sentence embedding models
- Leverage high-level discourse relations
- Automatic data collection
- Between InferSent (SentEval) and BERT

	Method ●00	Experiments 0000000	Discussion 000	
Discourse Pre	diction Task			

- Based on Rhetorical Structure Theory¹
- Segment text into elementary discourse units (EDUs)²
- Focus on sentence-like EDUs
- Predict explicit discourse markers between EDUs
- Humans do not perform perfectly on this task³

¹Mann and Thompson 1988 ²Carlson and Marcu 2001 ³Malmi et al. 2018

	Method	Experiments	Discussion	
Data Collection				

- **Corpus**: BookCorpus⁴ (*Romance, Fantasy, Science Fiction, Teen*)
- \bullet Discourse Markers: Markers in PDTB5 with frequency > 1%
- Parser: Stanford CoreNLP dependency parser⁶

advel

	Label	Discourse Markers	Pairs
mark	Books 5	and, but, because, if, when	3.2M
(S1) (because) (S2)	Books 8	and, but, because, if, when, be-	3.6M
[I wore a jacket] $_{S1}$ because [it was cold outside] $_{S2}$.		fore, though, so	
mode - dual	Books	and, but, because, if, when, be-	4.7M
mark advci	ALL	fore, though, so, as, while, af-	
because (S2) (S1)		ter, still, also, then, although	
Because HE was cold outside [go, 1] Wore a tackel [gt.			

⁴Zhu et al. 2015

⁵Prasad et al. 2008

⁶Schuster and Manning 2016

	Method 00●	Experiments 00000000	Discussion 000	
DisSent Model				

(a) Image taken from Conneau et al. 2017

		Experiments ●0000000	Discussion 000	
Experiment Over	view			

- DisSent Task
- Marked vs Unmarked Prediction Task
- Implicit Relation Prediction Task
- SentEval Tasks
- Extraction Validation

		Experiments o●oooooo	Discussion 000	
DisSent Training	Task			

- Models evaluated on test set
- BiLSTM model trained on training data
- BERT fine-tuned on all DisSent tasks

	All		Books 8		Books 5	
Model	F1	Acc	F1	Acc	F1	Acc
BiLSTM	47.2	67.5	64.4	73.5	72.1	77.3
BERT	60.1	77.5	76.2	82.9	82.6	86.1

(a) Unbalanced dataset

(b) Balanced dataset

		Experiments 000●0000	Discussion 000	
Marked vs U	nmarked Predic	tion Task Setup		

- Sentences can be related without explicit markings
- Created a task that has one predict if two sentences are explicitly or implicitly connected.
- Dataset based on Penn Discourse Treebank⁷
- 16,224 implicit sentences vs 18,459 explicit sentences

		Experiments 0000●000	Discussion 000	
Implicit Relat	tion Prediction	Task Setun		

- Sentences with implicit and explicit relations are qualitatively different⁸
- Sentences with explicit relations can be used for additional training⁹
- Dataset based on Penn Discourse Treebank¹⁰
- Only use 11 most frequent implicit relations

 ⁸Sporleder and Lascarides 2008
⁹Qin et al. 2017
¹⁰Prasad et al. 2008

		Experiments 00000●00	Discussion 000	
Marking & Imp	licit Results			

Model	IMP	MVU
Sentence Encoder Mo	odels	
SkipThought	9.3	57.2
InferSent	39.3	84.5
DisSent Books 5	40.7	86.5
DisSent Books 8	41.4	87.9
DisSent Books ALL	42.9	87.6
Fine-Tuned Mode	ls	
BERT	52.7	80.5
BERT + MNLI	53.7	80.7
BERT + MNLI + SNLI	51.3	79.8
BERT + DisSent Books 5	54.7	81.6
BERT + DisSent Books 8	52.4	80.6
BERT + DisSent Books ALL	53.2	81.8

	Experiments 000000●0	Discussion 000	
SentEval Tasks			

Model	MR	CR	SUBJ	MPQA	SST	TREC	SICK-R	SICK-E	MRPC
		Se	lf-superv	ised traini	ng met	hods			
DisSent Books 5	80.2	85.4	93.2	90.2	82.8	91.2	0.845	83.5	76.1
DisSent Books 8	79.8	85.0	93.4	<u>90.5</u>	83.9	93.0	<u>0.854</u>	<u>83.8</u>	76.1
DisSent Books ALL	80.1	84.9	<u>93.6</u>	90.1	<u>84.1</u>	<u>93.6</u>	0.849	83.7	75.0
		U	nsupervis	sed trainir	ig meth	ods			
FastSent + AE	71.8	76.7	88.8	81.5		80.4	_		71.2
Skipthought-LN	79.4	83.1	93.7	89.3	82.9	88.4	0.858	79.5	
Supervised training methods									
DictRep (bow)	76.7	78.7	90.7	87.2	_	81.0	_	_	
InferSent	81.1	86.3	92.4	90.2	84.6	88.2	0.884	86.1	76.2
Multi-task training methods									
LSMTL	82.5	87.7	94.0	90.9	83.2	93.0	0.888	87.8	78.6

- Validate data extraction method on Penn Treebank (PTB)
- Compare to Penn Discourse Treebank (PDTB)

	Experiments 00000000	Discussion ●00	
Conclusion			

- A discourse marker prediction task has been proposed to improve sentence embedding quality
- The trained embeddings lead to high performance on established tasks for sentence embeddings
- Fine-tuning larger models on this task lead to state-of-the-art results on the PDTB implicit discourse relation task
- A dataset for this task can be automatically collected
- The resulting dataset is cheap and noisy, but provides strong training signals

	Experiments 00000000	Discussion 0●0	
Opinion			

- I find the presented task to be a useful addition to the already established tasks for sentence embeddings
- I value the explicit verification method of their data extraction approach
- I would have liked to see the data extraction method being applied to a different dataset, such as a wikidump

	Experiments 00000000	Discussion 00●	
Future Research			

- Investigate other discourse structure signals with explicit markers
- Fine-tune the extraction method to improve precision and quality of sentences
- Extend method to different languages with different discourse structures

	Experiments 00000000	Discussion 000	References
Bibliography I			

- Lynn Carlson and Daniel Marcu. "Discourse tagging reference manual". In: *ISI Technical Report ISI-TR-545* 54 (2001), p. 56.
- Alexis Conneau et al. Supervised Learning of Universal Sentence Representations from Natural Language Inference Data. 2017. arXiv: 1705.02364 [cs.CL].
- Eric Malmi et al. "Automatic Prediction of Discourse Connectives". In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018). Miyazaki, Japan: European Language Resources Association (ELRA), May 2018. URL: https://www.aclweb.org/anthology/L18-1260.
- William C Mann and Sandra A Thompson. "Rhetorical structure theory: Toward a functional theory of text organization". In: *Text-interdisciplinary Journal for the Study of Discourse* 8.3 (1988), pp. 243–281.
 - Rashmi Prasad et al. "The Penn Discourse TreeBank 2.0.". In: LREC. Citeseer. 2008.

	Experiments 00000000	Discussion 000	References
Bibliography II			

- Lianhui Qin et al. "Adversarial Connective-exploiting Networks for Implicit Discourse Relation Classification". In: *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Vancouver, Canada: Association for Computational Linguistics, July 2017, pp. 1006–1017. DOI: 10.18653/v1/P17-1093. URL: https://www.aclweb.org/anthology/P17-1093.
- Sebastian Schuster and Christopher D Manning. "Enhanced english universal dependencies: An improved representation for natural language understanding tasks". In: *Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16).* 2016, pp. 2371–2378.
- Caroline Sporleder and Alex Lascarides. "Using automatically labelled examples to classify rhetorical relations: An assessment". In: Natural Language Engineering 14.3 (2008), pp. 369–416.

	Experiments 00000000	Discussion 000	References
Bibliography III			

Yukun Zhu et al. Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books. 2015. arXiv: 1506.06724 [cs.CV].