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What are we presenting?

Joint

Many-Task

Neural Network

Trained in an end-to-end fashion

5 different NLP task hierarchically

All tasks learned by an LSTM



Why?

● Multiple levels of representation to help solve complex tasks
● Hierarchical nature aligns well with human language 

processing and deep learning models
● Existing systems:

○ ignore linguistic hierarchies
○ are pipelines (not trained end-to-end)



Taxonomy

Network architecture
Hierarchical sharing

Task prioritisation
Consecutive learning

Task weights
No explicit weighing
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Architecture
Joint Many-Task (JMT)  model

● POS tagging
● Chunking
● Dependency parsing

● Semantic relatedness
● Textual entailment



● POS
○ Input: embeddings
○ bi-LSTM + ReLU layer + softmax

● Chunking
○ Input: embeddings + POS hidden + POS LE
○ bi-LSTM + ReLU layer + softmax

Modules

LE = label embedding = 



● Dependency parsing
○ Input: embeddings + chunk hidden + 

POS LE+ chunk LE
○ bi-LSTM + 

■ matching function
■ ReLU layer + softmax

Modules



● Semantic relatedness
○ Input: embedding + dep hidden + POS LE + 

chunk LE
○ bi-LSTM + Max pooling
○
○ Maxout layer + softmax

Modules



● Textual entailment
○ Input: embedding + dep hidden + POS LE +         

chunk LE + relatedness LE
○ bi-LSTM + Max pooling
○
○ 3 Maxout layers + softmax

Modules
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Word embeddings

Word representations

Pre-train skip-gram

Character n-gram 
embeddings

Semantics

Morphology
Pre-train skip-gram

Fine tuned



Task order and end-to-end learning

● Consecutive learning:
○ 1 epoch: full dataset on 

all tasks
○ Bottom to top

● End-to-end:
○ Upper layers dependent 

on lower
○ Backpropagate

Loss

Error

Loss
Error
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Datasets

Metric

● POS: Wall Street Journal (WSJ)  Accuracy
● Chunking: WSJ F1
● Dependency parsing: converted WSJ      UAS and LAS
● Semantic relatedness: SICK  MSE
● Text entailment: SICK  Accuracy



Results



Dependency parsingPOS tagging Chunking



Semantic relatedness Textual entailment
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Depth



Shortcut connections
&

Label Encoding



Nouns

Verbs

Adverbs + Nouns 
(Dep on verbs)

Semantics

Semantics

Sample:
“Standing”Semantics



Shortcut connections
&

Label Encoding



Different layers



Successive regularization
& 

Vertical connections



Conclusion and 
Discussion
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● Hierarchical model that improves 

over hard-parameter sharing ones

● Low-level tasks improve high-level 

ones and vice versa

● Shortcut connections are crucial

Conclusion



Authors’ discussion

Training strategy

● Not obvious when to stop
● Dependency accuracy 

maximized
● Same number of epochs for all

More tasks

● Entity detection and 
relation extraction

● Multiple domains Learn low-level 
features with a 
high-level task

● Existing work on learning 
task oriented latent graph 
structures of sentences 
using machine translation



● Very well-structured

● Close SOTA on all tasks in the 

joint mode

● Extensive experimenting and 

ablation

 Positives  Room for improvement

● Lacking motivation behind choices

○ Maxout layers

Paper opinion



Connect dependency layer

Opinion 
&

 Future work 

Character level encoders

Hierarchy engineering 

Attention for the LSTMs

BERT Rediscovers the 
Classical NLP Pipeline



Does anyone have any questions?

THANKS
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Metaphors
Definition: “A metaphor is a figure of speech that, for rhetorical effect, directly 
refers to one thing by mentioning another.“ [Wikipedia]

Often used to express emotions in an abstract way.

“My mind is seething and boiling”

Your brain does not have a high temperature in a literal sense (source)

But you are so angry that it feels like your brain is overheating (target)
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Metaphors
Humans can even infer the meaning of a metaphor they don’t know due to 
their capability to emotionally relate
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Motivation behind the Research

● Metaphor detection and emotion regression are rather hard NLP tasks
● Evidence from other disciplines (linguistics, cognitive psychology and neuroscience) that 

metaphors are highly connected to emotions (metaphors are more emotionally evocative)

→  Research Question: Do the two tasks share similar semantic concepts and can they profit 
from each other in a MTL approach? 

Mutual InformationMetaphor Emotion

5



Main Contributions
Previous work:

● Mostly separate approaches to emotion regression and metaphor detection
● Already tried to incorporate emotion information into metaphor 

identification

What’s new?

● Joint MTL approach training for both tasks at the same time
● Advances state of the art in both tasks
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The two Tasks
Metaphor identification:

● sequence labeling task (word-level classification: metaphorical or literal)
● metaphoricity score (sentence-level)

Emotion prediction:

● Sentence-level regression
● Three emotion dimensions:

Valence (polarity), Arousal (strength), Dominance (control))
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Model Architectures (Joint MTL)
Input: Concatenated GloVe and ELMo word embeddings

1. Hard parameter sharing:

● Two shared Bi-LSTM layers for mutual general feature extraction

● One task specific Bi-LSTM layer (for each of the two tasks)

● Fully-connected layers for classification/regression

● Task specific word-level attention mechanism for sentence-level regression
8
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Model Architectures (Joint MTL)
● assess effect of MTL independent of model architecture

fine-tuned BERT model for comparison

● all transformer layers fixed (hard parameter sharing) 
except the last layer (task-specific)
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Model Architectures (Joint MTL)
2. Soft parameter-sharing:
Two separate networks for each task connected to share information

a) Cross-stitching model:
● Three Bi-LSTM layers for each of the two tasks
● Four alpha parameters per layer control information transfer between the 

two networks

From net B to net A

From net A to net B
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Model Architectures (Joint MTL)
2. Soft parameter-sharing:

b) Gated network:

● similar to the cross-stitch architecture 
● BUT replace static globally shared alpha parameters by dynamic gates 
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Experiments - Datasets
3 Datasets:

1. VUA metaphor corpus: >10,000 english sentences from 4 genres (news, 
conversation academic writing and fiction); binary labels on word level (L, M)

2. LCC metaphor corpus: ~9,000 samples from english portion of sentences; 
sentence-level regression with metaphoricity score

3. EmoBank corpus: 10,000 english sentences from many different genres 
annotated in the VAD emotion dimensions for sentence-level regression.
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Experiments - EmoBank Examples
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Experiments - Procedure
● Train each architecture in a STL and MTL setup

● Train emotion dimensions separately

● randomly select one of the two tasks for MTL

● auxiliary task is downscaled to constitute 10% of the loss of the main task

● BCE loss for sequence labeling MSE for regression tasks
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Results - Metaphor
● with Dominance MTL consistently 

outperforms the STL setup

● BERT model gives most 
improvement

● slight advantage of gated network

● advances state-of-the-art
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Results - Emotion
● for Dominance and Valence MTL 

consistently outperforms the STL 
setup

● BERT model gives most improvement

● no big difference between different 
parameter sharing methods

● advances state-of-the-art
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Discussion
● Dominance dimension most important for metaphors although often 

ignored by a lot of previous work while Arousal not so important

● Transformer model outperforms recurrent approaches
contextual information seems to be important

● Improvement due to MTL setup rather than specific architecture

● Also a lot of improvement in emotion regression 
both way synergy while previous work mostly considered emotion to 
help metaphor detection
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Discussion - Gating Mechanisms
● Gating more open in lower 

layers while almost no 
information transfer in the top 
layers

● Fulfills intuition from general to 
specific like in hard parameter 
sharing

● Probably that is why there is 
little difference between the 
parameter sharing methods
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Discussion - Success and Failure  
● Improvement mostly from correcting literal STL predictions to 

metaphorical

● Different key words for the emotion dimensions

● Metaphor detection benefits from the emotion in valence/arousal words 
and the emotional context of dominance words

● Also some new failure cases introduced by making non-emotional 
metaphors literal
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First MTL approach to jointly model metaphor detection and emotion 
prediction in text

experiment with various MTL schemes

Metaphor detection 

Implication: metaphor might be good MTL support for sentiment analysis

Conclusion

enhances Emotion prediction
(especially Dominance)
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Evaluation of the Paper (our opinion)
Pros:
+ Well structured, nice figures, well explained, easy to read
+ detailed information about data pre-processing, hyperparameters, etc.
+ Impressive results: beat state of the art in both tasks

Cons:
- would have been more consistent to also combine the other MTL 
architectures with a BERT version
- it isn’t addressed why the STL setups are already better than previous 
SotA
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Thank you for your Attention!
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Questions?
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