Neural Discourse Structure for Text Categorization

Yangfeng Ji and Noah A. Smith. 2017.

Task: document categorization

How to construct a meaningful document representation?

- Previous work: all sentences are weighted **equally** and/or use **hand-crafted** weighting schemes
- Can we do better?
- Hypothesis: we can **deeply model** the **relative salience** of a document's sentence by exploiting **discourse structure**

Key research questions:

• What is the value of discourse structure for neural text categorization?

Paper overview

Primary experiments:

- Text categorization across 5 corpora
- Domains include sentiment analysis on movie/restaurant reviews, congressional debates, and congressional bills

Primary contributions of authors:

- Exploit **discourse structure** to improve neural text categorization
- **Recursive** neural architecture for handling documents represented as **discourse trees**
- Novel attention mechanism to learn importance of document's sentences based on relational structure

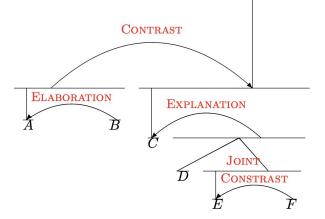
- Background: Rhetorical Structure Theory
- Models
- Experimental setup
- Results & discussion

Background: Rhetorical Structure Theory (RST)

- A document can be represented as a tree
- Each node is an **elementary discourse unit** (EDU)
- Spans between nodes represent discourse relations

Key concept: leveraging tree structure can offer inductive bias

- Model can more easily discern salient parts of a text
- Documents parsed by open-source parser; RST trees are transformed to dependency structures



[Although the food was amazing]^A [and I was in love with the spicy pork burrito,]^B [the service was really awful.]^C [We watched our waiter serve himself many drinks.]^D [He kept running into the bathroom]^E [instead of grabbing our bill.]^F

- Background: Rhetorical Structure Theory
- Models
- Experimental setup
- Results & discussion

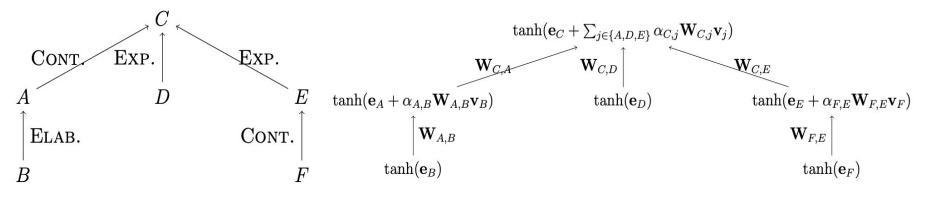
Model

- Model input: discourse dependency tree
- **Bidirectional LSTM** to obtain a distributed sentence representation e_i for each clause
- Construct document representation by **recursively composing** node representation **v**_i :
 - \circ If EDU is a **leaf** in the tree: $\mathbf{v}_i = anh(\mathbf{e}_i)$

• If EDU is a **parent node**:
$$\mathbf{v}_i = \tanh\left(\mathbf{e}_i + \sum_{j \in children(i)} \alpha_{i,j} \mathbf{W}_{r_{i,j}} \mathbf{v}_j\right)$$

- Where $lpha_{i,j}$ represents an attention mechanism: $lpha_{i,j} = \sigma\left(\mathbf{e}_i^ op \mathbf{W}_lpha \mathbf{v}_j
 ight)$
- Note: $\alpha_{i,j}$ independent of other children of parent node!

Recursive model: Visual Overview



(a) dependency structure

(b) recursive neural network structure

Prediction is obtained by a softmax on $(\mathbf{W}_{o}\mathbf{v}_{root} + \mathbf{b})$

Model variants

Main idea: gradually introduce more components to model in order to measure benefit of discourse

- 1. **ROOT**: Only select the **root** EDU; no usage of composition function. $\mathbf{v}_{root} = \mathbf{e}_{root}$.
- 2. ADDITIVE: Take the average of all distributed representations: $\mathbf{v}_{root} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{e}_i$,
- 3. UNLABELLED: no composition matrix $\mathbf{W}_{r_{i,j}}$; only attention: $\mathbf{v}_i = \tanh\left(\mathbf{e}_i + \sum_{j \in children(i)} \alpha_{i,j} \mathbf{v}_j\right)$

4. FULL:
$$\mathbf{v}_i = \tanh\left(\mathbf{e}_i + \sum_{j \in children(i)} \alpha_{i,j} \mathbf{W}_{r_{i,j}} \mathbf{v}_j\right)$$

Implementation Details

Discourse Parsing

- Discourse structure for each document obtained via use of open-source RST parser DPLP
- DPLP is trained on 347 Wall Street Journal articles from Penn Treebank
- RST trees are converted to **discourse dependency trees**

Models

- Pretrained *GloVe* embeddings for bidirectional LSTM
- Randomly initialized embeddings for the larger corpora
- SGD/Adam for optimization
- Grid search for LSTM dimensionality and learning rate

- Background: Rhetorical Structure Theory
- Models
- Experimental setup
- Results

Tasks & Data

Five different datasets, with four different tasks

Dataset	Task	Classes	Total	Training	Development	Test	Vocab. size
Yelp	Sentiment	5	700K	650K	_	50K	10K
MFC	Frames	15	4.2K	_	-	—	7.5K
Debates	Vote	2	1.6K	1,135	105	403	5K
Movies	Sentiment	2	2.0K	_	_	_	5K
Bills	Survival	2	52K	46K	_	6K	10 K

Number of docs.

- Background: Rhetorical Structure Theory
- Models
- Experimental setup
- Experimental results

Quantitative Results

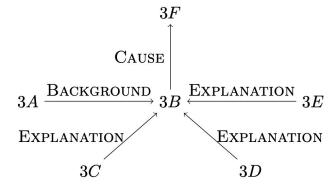
- UNLABELED outperforms previous SOTA on four out of five tasks
- FULL has best performance on Yelp; comparatively poor on other tasks
- ADDITIVE performs best on Bills, somewhat close results to UNLABELED on MFC and Movies
- **ROOT** has poor performance across the board

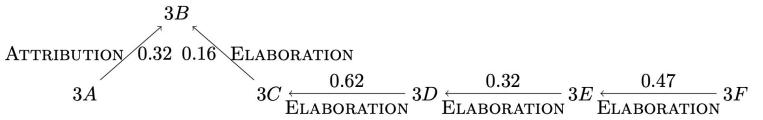
-	Method	Yelp	MFC	Debates	Movies	Bills
of	Prior work					
	1. Yang et al. (2016)	71.0			_	_
	2. Card et al. (2016)		56.8		_	_
•	3. Yogatama and Smith (2014)		_	74.0	_	88.5
	4. Bhatia et al. (2015)		_	_	82.9	_
า	5. Hogenboom et al. (2015)		_	_	71.9	_
S	Variants of our model					
, k	6. Additive	68.5	57.6	69.0	82.7	80.1
	7. Root	54.3	51.2	60.3	68.7	70.5
e	8. UNLABELED	71.3	58.4	75.7	83.1	78.4
	9. Full	71.8	56.3	74.2	79.5	77.0

Qualitative results - Parser can inhibit performance

[We use to visit this pub 10 years ago because they had a nice english waitress and excellent fish and chips for the price.]^{3A} [However we went back a few weeks ago and were disappointed.]^{3B} [The price of the fish and chip dinner went up and they cut the portion in half.]^{3C} [No one assisted us in putting two tables together we had to do it ourselves.]^{3D} [Two guests wanted a good English hot tea and they didn't brew it in advance.]^{3E} [So we've decided there are newer and better places to eat fish and chips especially up in north phoenix.]^{3F}

From DPLP:

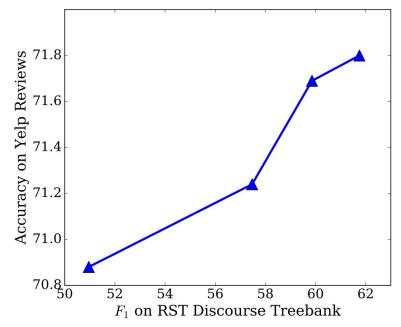




Exploring the effect of parsing performance

Degrading DPLP to observe effect on classification performance

- Authors train FULL model with DPLP trained on only 25%, 50%, and 75% of its training set
- **Plot**: discourse parser performance (x-axis) against text classifier performance (y-axis)
- Lower parsing performance implies lower classification accuracy
- Further improvements to parsing better models?



Contrasting un-normalized attention

• The authors propose an **un-normalized** attention layer, "inspired by RST's lack of "competition" for salience among satellites"

/ -

1

• How does this compare with **normalized** attention, which is common in **machine translation**?

• Here,
$$\boldsymbol{\alpha}'_i$$
 is a vector with one element
for each child node, which sums to one: $\boldsymbol{\alpha}'_i = \operatorname{softmax} \left(\begin{bmatrix} \vdots \\ \mathbf{v}_j^\top \\ \vdots \end{bmatrix} \right)$

- On Yelp data, the **FULL** model achieves 70.3% accuracy - 1.5% less compared to the **FULL** model with un-normalized attention
- Authors: "empirical support for theoretically-motivated design decision not to normalize attention."

Summary

- Empirical evidence that discourse structure can benefit text categorization
- Extensive analysis of benefits of incorporating more discourse structure information
- Brief empirical study of dependence of model performance on discourse parser performance
- Some additional empirical support for un-normalized attention mechanism

- **Novel** approach w.r.t previous work in sentence weighting; well-explained paper overall
- Ablation study offers some interesting insight on how the different components affect performance
- **Promising results**, albeit somewhat ambiguous, due to model dependence on underlying **DPLP** parser
- Dependence on parser suggests limited potential for domains with different discourse structure
- No reporting of **hyperparameters** for each model other than mentioning grid-search
- No significance testing despite small differences between previous SOTA
- Parsing degradation is only tested with Yelp dataset, only on FULL model
- Un-normalized attention mechanism is only contrasted on the Yelp dataset and only on **FULL** model
- Contrasting on both **FULL** and **UNLABELED** architectures, across all tasks, would have made for **stronger** evidence for un-normalized attention mechanism

Possible angles for future research

- **Domain adaptation** methods to overcome **mismatches** between parser training corpus and domain of interest
- Explore to what extent further improvements to RST parsing would translate to gains in text categorization
- UNLABELED was the most consistent model variant
 - No concept of relations; still a relatively simple interpretation of discourse structure?
 - Further work could explore ways to fully leverage the **rich representational structure** of RST (for instance, by use of larger datasets and/or less parameters to avoid **overparameterization**)

Thanks for your attention!