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Practical things

w If you have a question, simply raise your hand

- If my connection breaks, let me know 1n the chat
§2 If I ask a question, feel free to turn on your audio and answer
v/ If I ask simple yes/no questions, you can also answer by reactions
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Today’s learning goals

* What 1s “attention™?
* What different kind of attention layers exist in NLP?
* Why and when to use attention

* Special focus: Self-attention and the Transformer architecture

* Building blocks, design choices, training tips
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Introduction

What is attention?

A weighted average of (sequence) elements with the weights depending on an input query.

Query: Feature vector, describing what we are looking for, what might be important
Key: One feature vector per element/word. What is this word “offering”? When might it be important?
Value: One feature vector per element/word. The actual features we want to average

Score function f,;¢, : maps query-key pair to importance weight. Commonly MLP or dot product

Values l c0q + I S, + I g+ I c Oy + I ‘g = Output features

I am eating an apple
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Introduction

What is attention?

A weighted average of (sequence) elements with the weights depending on an input query.

__exp(faren (keyj, query)) _ z
= out = a; - value;
2. j €Xp (f attn (Keyj, CIUQFY))

i

Example Ouery [

Keys I O, l ©) I © l ©, ' ®
Values I S+ I ca, + I “ag + I C Qg+ I ‘g = . Output features

I am eating an apple
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Introduction

Attention mechanisms

Encoder-Decoder

Aggregation
How are you ? I am
Encoder Decoder
How are you ?
How are you ? <s> I
Cross-Attention
Self-Attention
7&\ =
(NN
How are you ?
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Introduction

. sof’:r;ax
Aggregation v

sentence
attention
Recap NLP1: Hierarchical Attention Network s
e Summarizing hidden states per word into sentence | L | | i
representation R, — | ; sentence
LBy R e T —| AL encoder
wir = tanh(Wyhi + by) T
T
exp (U Uw) ]
Dt €XP(Uy Un) word
attention
si=» aithi. -
t [ |4 |
* Sentences can again be weighted and summed to | ; ; word
obtain a document representation f; ] __";f__: ] __hf_T__i encoder
Formula legend w2 w22 w2r
h;¢ - hidden state of t-th word in the i-th sentence
u,, - learned query vector Credit: Yang et al., “Hierarchical Attention Networks for Document Classification” (2016)
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» General setup
» Global vs Local Attention

» Applications
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Encoder-Decoder Attention

How are you : I am
L Encoder ] Decoder
How are you <s> |




Encoder-Decoder Attention

Encoder-Decoder

X Y /Z <eos>

Suffering from long-term dependencies

Encoder output must summarize the whole
sentences with all its details

Especially difficult if there are many different
possible outputs

A B C D <eos> X Y Z

Credit: Luong et al., “Effective Approaches to Attention-based NMT” (2015)
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Encoder-Decoder Attention

Global vs Local Attention

Attention Layer I Attention Layer

Context vector
Aligned position
Pt

Local weights

Global Attention Model Local Attention Model

Credit: Luong et al., “Effective Approaches to Attention-based NMT” (2015)
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Encoder-Decoder Attention

X Y /Z <eos>

hy

Attention Layer

A B C D <eos> X Y Z

Credit: Luong et al., “Effective Approaches to Attention-based NMT” (2015)

Encoder-Decoder with attention

Attention layer enriches token-level
information

Alternative setup: attention layer using cell
state and enriching input information to the
RNN instead of output information
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Encoder-Decoder Attention

Applications — Machine Translation

I’ accord sur la zone économique européenne a été signé en ao(t 1992 . <end>
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the agreement on the European Economic Area was signed in August 1992 . <end>

Credit: Olah, Chris and Carter, Shan, “Attention and Augmented Recurrent Neural Networks”
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https://distill.pub/2016/augmented-rnns/

» General setup

» Applications

16/04/2020

Cross-Attention
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Cross-Attention

v
O, Q

i -
Vv =

Cross-Attention

* Input: two sentences or sequences

IS
no
reason
he
should
n't

be
</s>

 Task: reason/compare those sentences

<S>

 Attention: queries for each word from one sentences,
key and value for each word from second sentence why

should
n't

he

be

?

</s>




Cross-Attention

Prediction
Softmax /\ Softmax

Applications — NLI

Inference Composition

A Premise Hypothesis
* Combining sentence-level with word-level inference Premise ; 2
* Premise and hypothesis word can align to find small Hypothesis

differences much easier (e.g. “blue” vs “red” bag) e g T

Local Inference Modeling

100000 § n0n0 D

Premise Premise

A
Y
A
Y

Hypothesis
Hypothesis

AN Premise Hypothesis

Premise
> >
- -

Hypothesis

BiLSTM Input Tree-LSTM

A
Y
A
Y
A
Y

Credit: Chen et al., “Enhanced LSTM for NLI” (2016)
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Cross-Attention

Applications — Question-Answering

SQuAD NewsQA MS MARCO

Answer Answer Answer
Module Module Module

-

/ [:] Parameterized Network
[? [? [? [%] ? ? (CJ  Highway Network

Memory/Cross Attention
Contextual Encoding Contextual Encoding
Lexicon Encoding Lexicon Encoding
t 1 t 1 t t 1 t t 1
Question Document

Credit: Xu et al. ,Multi-Task Learning for Machine Reading Comprehension.” (2018)
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Self-attention

> Intuition and Motivation %‘\ \
AR

» Self-attention layer

» Transformer architecture
» (Optional) Optimization issues and training tips

» (Optional) Transformers as Graph Neural Network
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Self-Attention

Intuition

Ernie

Query: what word is the subject of the sentence?

Ernie was smart but he didn’t know the answer
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Intuition

Self-Attention

answer

Query: what is the contrast in this sentence?

Ernie

was

smart

but

he

didn’t know

the

answer
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Self-attention layer

QK"

Attention(Q, K, V') = softmax(———)V

|

Vdy

MatMul

1
SoftMax
4
Mask (opt.)
[
Scale
1
MatMul

t 1
Q K
S |

A

4

[ Linear

]

Formula legend *
dj, - hidden size of key/query X

Self-Attention

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 ( Vd )

Softmax

Softmax
X
Value

Sum

Thinking

x: [

q1 [ ] |‘[ —

Machines

x, [
o [T

v. [

qi e k2 =

Credit: Alammar, Jay: The lllustrated Transformer, http://jalammar.github.io/illustrated-transformer/
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http://jalammar.github.io/illustrated-transformer/

Self-Attention

Self-attention layer

QK"
vy,

Attention(Q, K, V') = softmax( 1%

)
MatMul
SoftM
- 1 — Why scaling by 1/,/d},?
MaSk*(Opt') * The variance of the dot product scales linearly with d,
Scale = Scaling brings it back to 1
NtV * High initial values significantly harm gradient flow
t1
Q K V
[ , S S | ]
Linear
)
X
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|

Linear

]

Concat

AT‘

Self-Attention

Multi-Head self-attention

» Single head offers only one perspective on the data
= Often not enough, can harm gradients again

y
Scaled Dot-Product * Performing several self-attentions in parallel increases
Attention flexibility and non-linearity/complexity
Y 3
A M’ A “! w— I * QOutput projection to scale down the concatenation if
Linear J Linear J Linear necessary
V K Q
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Self-Attention

Decoder
. Output
Transformer architecture Probapiltos
| Softmax |
)
| Linear |}
* Transformer has an encoder-decoder structure (e rom ) |
Encoder Feed
. . . Forward
* Both parts consists of N blocks with self-attention layers T
s I ~\ | Add & Norm J~
.. . . . R Mult-Head
* Initially designed for machine translation Feed Attertion
Forward 7 7 Nx
. L ) —
* Encoder analyses input sentence (Ao 3 Mo Jem
N> | —((Add & Norm ) ——
= Decoder predicts output sentence autoregressively Multi-Head Multi-Head
Attention Attention
Ly 7 At 7
O J —
Positional D ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
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Self-Attention

Transformer - Encoder

Byte-pair encoding
* Encode common subtokens instead of only words
smarter = smart-er, tokenized = token-ized

« Easier adaptation to unseen words in the training corpus

Positional o hari CCoi 99 Ge . 99
ring of common wor -1n re- .
Encoding ®_¢ Sharing of common word parts (“-ing”, “re-”, etc.)
Input
Embedding
Inputs
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Self-Attention

Positional embeddings

» Self-attention layers do not encode position, but view the input as set (permutation invariant).

 Sinusoidal positional encoding added to embeddings

hidden dimensionality i
0

PE(pos,2i) — Sin(pOS/l()OOOQi/dmodel)

= \
5 F 2
PE(pos,2i41) = COS(pOS/l()OOOQi/dmOdd) 10 HH 5

position

=
* Scales to unseen lengths

15
\
20
* Encodes distance between positions s
Formula legend J I I
dmoder - hidden size of embedding 30 = [

i —index over the hidden dimension
pos — position of word in sentence

Credit: Weng, Lilian: The Transformer family
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1
Add & Norm }

Multi-Head
Attention

At

16/04/2020

Self-Attention

Transformer - Encoder

* Residual connection combined with Layer normalization

LayerNorm(z 4 Sublayer(x))

Batch Norm Layer Norm

NAVAVAVAVAY

Credit: Kurita, Keita, An Overview of Normalization Methods

ATCS - Attention Mechanism in Neural Networks, Phillip Lippe

27


https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/

Self-Attention

Transformer - Encoder

* Residual connection combined with Layer normalization

LayerNorm(z 4 Sublayer(x))

] . .
Add & Norm ) Why do we need residual connections?
Multi-Head .
Attention * Better gradient flow
L

*  Word/position information would get lost, especially after init

Why do we need Layer normalization?
* Faster training and regularization

* Not batch normalization due to high variance in language features
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Self-Attention

Transformer - Encoder

\

Add &rNorm ] * Point-wise feed-forward network with ReLU activation
Feed
Forward FFN(x) = max(0,zW7 4+ b1)Ws + by

* Adds complexity with classical non-linearity to network

* Inner hidden dimensionality commonly 4-8x larger

Why larger hidden dimensionality instead of deeper MLP?
* Faster computation (can be run in parallel)
* Less parameters

* Single layer complexity sufficient

Formula legend

W — weight matrix
b — bias vector
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Self-Attention

Transformer - Decoder

f 1
| Add & Norm ]"\\
Feed
Forward
—— . . . —
(Add & Norm e~ e Multi-head self-attention masked for autoregressive prediction
Multi-Head . .
Attortion * Additional attention sublayer over encoder output layer
7 J 7 Nx
— = Key and value features from encoder
[LAdd & Norm J<=
Y = Query features from decoder
Multi-Head .
Attention * Linear output layer and softmax over vocabulary
t
\ — )
¢ Positional
Encoding
Output
Embedding
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Self-Attention

Transformer - Performance

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

ol BLEU Training Cost (FLOPs)
Mode EN-DE EN-FR EN-DE EN-FR
ByteNet [15] 23.75
Deep-Att + PosUnk [32] 39.2 1.0-10%0
GNMT + RL [31] 24.6 39.92 2.3-10"° 1.4.10%°
ConvS2S [8] 25.16  40.46 9.6 -101® 1.5.10%
MOoE [26] 26.03  40.56 2.0-101 1.2-10%°
Deep-Att + PosUnk Ensemble [32] 404 8.0-10%
GNMT + RL Ensemble [31] 26.30  41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [8] 26.36 41.29 7.7-1019  1.2-10%!
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.0 2.3-10Y
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|s attention all we need?

Transformers RNNs
State-of-the-art on most benchmarks Language 1s naturally recurrent
Scalable to billions of parameters (Turing-NLG Higher non-linearity and more complex
— 17 billion params) composition
Computation in parallel (feedforward network) = Single-layer RNN outperforms single-layer
transformer
— Recurrence needs to be learned — Does not scale well beyond 5 layers

= lots of data required or autoregressive task
— Slower to run for long sequences

— Many parameters for suitable model necessary

, — Long-term dependencies problematic
= can easily overfit

— Memory scales quadratically with seq length
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Self-Attention

Transformers vs RNNSs

When to use Transformers? If you...
* have a lot of data

* have a challenging problem

* finetune a pretrained language model

* have strong GPUs with a lot of memory

When to use RNNs? If you...

* have limited data
 can make use of pretrained embeddings

* have a strong recurrent bias in the data (i.e. position is important)
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Self-Attention

Transformers — Training tips

* Training Transformers can be painful on a single small GPU...
* Use many heads, but not too many. Commonly, 4-16 heads work well

* Higher batch sizes are often beneficial. To reduce memory, consider removing the (significantly)
largest sentences from training. But...

» Transformers have been shown to generalize poorly to sentence lengths differing from training set
= Don’t make sentence lengths too different
= Only remove if there are very few very long sentences

* Training with huge batch size across many GPUs comes with new challenges
But don’t worry if you’re not Google, Microsoft or NVIDIA (Lamb, ZeRO)

* BPE vocabulary must be trained on sufficient data. Otherwise it easily overfits
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https://arxiv.org/abs/1904.00962
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

Self-Attention

Transformers — Warmup

* Learning rate warmup is one of the most important hyperparameters

Learning rate over time

0.00100

9 ~—
8
0000 7 5 o Cooooooooooooooooooooooes 7
2
8 6
g 5
0.00050 o o oo g 4
|_ v
X o)
2 verlapped
000025 = 1
0
0 10k 20k 30k 40k 50k 60k 70k
0.00000

4000 8000 12000 16000 20000 —_— Adam-eps — Adam-2k — Adam-vanilla
--- RAdam - -- Adam-warmup

Credit: Liu et al., “On the variance of the adaptive learning rate and beyond” (2020)
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Self-Attention

Transformers — Warmup

* Why is warmup so critical?

(1) Variance in adaptive learning rate

Adam: m® = BmY 4 (1—6;)-g®

High variance in first iterations.

() (t)
m® = T 50 = T | > Better: RAdam (Liu et al., 2020)
LA 1-6 ) | B
T .
B — 1) _ ] o 7, (® Hugging Face: skip bias correction

Formula legend

g* - gradient at iteration t

m — momentum

v — second-order momentum (adaptive Ir)
w — weight parameters

B1, B2 - Adam hyperparameters

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe
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https://arxiv.org/pdf/1908.03265.pdf
https://github.com/huggingface/transformers/blob/80a169451479f97d737e2be433a7cbd30c39c6bb/src/transformers/optimization.py

Self-Attention

Transformers — Warmup

¢ Why is warmup so critical? Post-LN Pre-LN
(2) Layer Normalization xl; ' xlf :
Layer Norm ition
 After initialization, the expected gradients of the y 1 =
parameters near the output layer are very large addition\ =
T
* In short: last FFN and Multi-head attention layer FFN
have gradients independent of number of layers, L
making them sensitive for deep transformers oaiion
» Better: use Pre-Layer Normalization N
Attention
* Even better: use different normalization ortond f
= Adaptive Normalization Attention
= Power Normalization '
X1 X1

Credit: Xiong et al., “On Layer Normalization in the Transformer Architecture” (2020)
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https://arxiv.org/pdf/2002.04745.pdf
https://arxiv.org/abs/2003.07845

Self-Attention

Transformers — Finetune

* Many state-of-the-art performances can be achieved by finetuning large pre-trained language
models such as BERT

 If you want to finetune yourself, use libraries such as Hugging Face

 If you want to find good 1nitial hyperparameters, consider:

» The following paper on hyperparameter search: Dodge et al., 2020

= The examples in the Hugging Face library for different tasks (link)
e Don’t finetune whole BERT but only the last few layers to prevent overfitting and reduce memory

* Regularization like weight decay or dropout often helps
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https://arxiv.org/abs/2002.06305
https://github.com/huggingface/transformers/tree/master/examples

Self-Attention

Transformers as Graph NN

Claim: Transformers are just graph convolutions over dense graphs

* Each node sends a “message” to all its
neighbors

based on features from the sender and
receiver

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe

* Nodes can weight their input messages

39



Self-Attention

Transformers as Graph NN

Claim: Transformers are just graph convolutions over dense graphs

 FEach node sends a value vector to all its
neighbors

* Nodes can weight their input messages based
on the dot product between the query from
the sender and key from the receiver
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Self-Attention

Transformers as Graph NN

Claim: Transformers are just graph convolutions over dense graphs
Implications:
* Positional encoding necessary as self-attention considers input as graph and not as sequence

* Long-term dependencies not an issue as distance 1s equal among all words

* Dense graph has N? edges
= Graph sparsification based on syntax trees etc. corresponds to masking

 Self-attention can be used for permutation-invariant tasks
» Data like sets, graphs, etc.

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe
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Conclusion

Conclusion

Four main attention mechanisms:

1. Aggregation: compressing sequence to single feature vector, pooling
Applications: creating sentence representations

2. Encoder-Decoder attention: allowing the decoder to take a second look at the input based on
the current word.

Applications: any Seq2Seq task like Machine Translation, Summarization, Dialogue Modeling

3. Cross-Attention: comparing two sequences on word-level.
Applications: Natural Language Inference, Question-Answering

4. Self-Attention: message passing among words within a sentence or document.
Applications: stand-alone architecture for almost any task

* Transformers constitute current state-of-the-art, but don’t forget about RNNs!
 Self-attention views sentence as graph, not as sequence
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Conclusion

Useful blogposts

* Google Al Blog explaining the transformer paper.

e The Illustrated Transformer, nice illustrations and detailed explanation of self-attention and the
transformer model.

* The transformer family, review of many different transformer variants

* A Survey of Long-Term Context in Transformers, reviews transformer variants with the goal of
more efficient models for long sequences

» Attention? Attention!, explaining different forms of attention. Takes a different perspective and
does not only focus NLP

» Attention and Augmented Recurrent Neural Networks, although from 2016, gives a nice review of
attention before transformers, especially with insights to Machine Translation. Written by Chris
Olah who also wrote the most cited LSTM blog.
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Conclusion

Useful papers

* Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing
systems. 2017. Original transformer paper.

Papers extending the original Transformer architecture

* Dehghani, Mostafa, et al. "Universal transformers." arXiv preprint arXiv:1807.03819 (2018).
Combining Transformers with recurrence over layer depth, making it Turing complete. Especially
useful for complex reasoning tasks like question-answering.

 Kitaev, Nikita, et al. “Reformer: The Efficient Transformer” arXiv preprint arXiv:2001.04451

(2020). Making transformers more memory efficient by local-sensitive hasing and using reversible
layers to re-calculate activations during backpropagation.

» Sukhbaatar, Sainbayar, et al. “Adaptive Attention Span in Transformers™ arXiv preprint

arXiv:1905.07799 (2019). Allowing the attention layers to learn the optimal receptive field/span to
reduce memory footprint and computational time.
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https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://arxiv.org/pdf/1807.03819.pdf%3Futm_campaign=NLP%2520News&utm_medium=email&utm_source=Revue%2520newsletter
https://arxiv.org/abs/2001.04451
https://arxiv.org/abs/1905.07799

Conclusion

Useful papers

Papers about training details — general tips

* Popel, Martin, Bojar, Ondrej, “Training Tips for the Transformer Model” (2018). Review of a large
hyperparameter grid search and sharing insights.

* Dodge, Jesse et a., “Fine-Tuning Pretrained Language Models (2020). Review of hyperparameters
for finetuning large transformer-based language models.
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https://ufal.mff.cuni.cz/pbml/110/art-popel-bojar.pdf
https://arxiv.org/abs/2002.06305

Conclusion

Useful papers

Papers about training details — Layer Normalization

» Shen, Sheng, et al. "Rethinking Batch Normalization in Transformers." arXiv preprint
arXiv:2003.07845 (2020). Analyzing Batch normalization for language and proposing alternative

to Layer normalization

* Xu, Jingjing, et al. "Understanding and Improving Layer Normalization." Advances in Neural
Information Processing Systems. 2019. Analyzing gain and bias in Layer normalization and
proposing alternative

* Xiong, Ruibin, et al. "On Layer Normalization in the Transformer Architecture." arXiv preprint
arXiv:2002.04745(2020). Analyzing and comparing PreNorm vs PostNorm

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe
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https://arxiv.org/abs/2003.07845
https://papers.nips.cc/paper/8689-understanding-and-improving-layer-normalization.pdf
https://arxiv.org/abs/2002.04745

Introduction — Encoder-Decoder Attention — Cross-Attention — Self-Attention — Conclusion
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WORD EMBEDDINGS

e One word, one representation

e Problem: word’s meaning depends on context

“Stick to the plan, dude.”
VS

“If you don’t pay attention to my presentation, I’lL hit
you with a stick.”



CONTEXTUALLZED

EMBEDDINGS




DEEP CONTEXTUALLZED WORD REPRESENTATIONS




DEEP CONTEXTUALLZED WORD REPRESENTATIONS: ELMO

e Embeddings computed from bidirectional LSTM

ELMo

e So, embeddings now depend on context

¢ Pre-Train on Language Modelling (LM) task



ALLYOU NEED IS

ATTENTION




TRANSFORMERS FOR LANGUAGE MODELLING

e Instead of recurrent model, use a Transformer

Self-attention: condition on all other words

Layer: '5 4| Attention: Input - Input $

3

animal
didn

o~

cross
the
street
because

-~ =
FK’

The_
animal_
didn_

t

Cross_
the_
street_
because_
it_

was_
too_

tire

d



TRANSFORMERS FOR LANGUAGE MODELLING

e LM task: predict next word
¢ Problem: self-attention uses all words

e Solution: mask words to the right

Current
position

Position we can look at



TRANSFORMER

Contextual .
Embeddings Left'tO'r|ght



HINE-TUNING




FROM FEATURE-BASED T0 FINE-TUNING

e Feature-based: pre-trained representations as features

e Problems:

o harder to generalize

o embeddings not optimal for downstream task

e Solution: fine-tune pre-trained weights

e Finetuning: ULM-FAiT
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MODEL ARITHMETIC
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FROM GPTT0 BERT

e GPT uses left-to-right (LTR) representations
e Intuitively, bidirectional representations more powerful

e BERT’s main contribution:

How to do bidirectional context modelling with
Transformers.

Bidirectional __
+ =
context C BERT

\_ TRANSFORMER /




FROM GPTT0 BERT
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BIDIRECTIONAL CONTENXT
MODELLING: HOW!

USE SPECIAL PRE-TRAINING TASKS



PRE-TRAINING: MASKED LANGUAGE MODEL (MLM)

The cat on the mat



PRE-TRAINING: MASKED LANGUAGE MODEL (MLM)

The cat sat on the mat

i



PRE-TRAINING: MASKED LANGUAGE MODEL (MLM)

Randomly mask

15% of tokens
[CLS] L stick to  [MASK]



PRE-TRAINING: MASKED LANGUAGE MODEL (MLM)

Use the output of the 0.1% | Aardvark

masked word'’s position
to predict the masked word

Possible classes:
All English words 10% Improvisation

0% | Zyzzyva

FFNN + Softmax

BERT

Randomly mask oy
15% of tokens

[CLS] stick to [MASK] in HV S skit



PRE-TRAINING: NEXT SENTENCE PREDICTION (NSP)

Predict likelihood
that sentence B
belongs after

1% | IsNext

99% NotNext

sentence A
[ FFNN + Softmax ]
e 00
BERT
Tokenized cee
InDUt [CLS] the man  [MASK] to [SEP]
Input [CLS] the man [MASK] to the store nguin [MASK] are flightl

Sentence A Sentence B



PRE-TRAINING: DATA

e English wikipedia (2,500M words)
e BooksCorpus (800M words)
e Document-level corpus critical

(as opposed to shuffled sentence-level)



INPUT PROCESSING

Input [CLSIW my dog is | cute | [SEP] he ’ Iikes” play | ##ing \ [SEP]

Token

Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe Elikes Eplay EMing E[SEP]
+ 3= + + + + =+ + + + +

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
=+ + + =+ + + =+ =+ =+ + -+

Position

Embeddings Eo El E2 E3 E4 ES E6 E7 E8 E9 E10




HINE-TUNING

e Straightforward. Only need to adapt inputs/outputs.
e No need to encode text pairs explicitly

e Relatively inexpensive compared to pre-training



ARCHITECTURE

e Like GPT: stack of Transformer blocks

[tcLs]|(EmBEDS){comE][ouT]

TRANORMER TRANSFORMER TRANSFORMER

[[:TS]][TOIIENS][;';][H;E] BERT




BERT: ) SIZES

BERTgAse

e Smaller model: 12 Transformer blocks

J

BERTaRGE

e Same size as GPT for comparison

e BERT-large: 24 blocks



EXPERIMENTS

AND RESULTS




PERFORMANCE BENCHMARKS

e GLUE: 11 NLP tasks
e Some other tasks
e A lot of tasks, basically

e Importantly, architecture stays same over most tasks



PERFORMANCE BENCHMARKS
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WHAT MAKES 1T PERFORM 50 WELL!

e Effect of pre-training tasks

o Removing NSP hurts performance significantly

o LTR model worse than MLM model on all tasks

o Conlusion: bidirectionality is important
e Effect of model size

o Bigger 1is better

o Show that extreme model sizes improve even small scale tasks
e Feature-based approach:

o Worse but not much

o Concat Last Four Hidden works best in experiment



WHAT DOES BERT LEARN?

- Noun modifiers (e.g., determiners) attend
to their noun

- 94.3% accuracy at the det relation
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WHAT DOES BERT LEARN?

Head 1-1
Attends broadly
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[SEP]
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WHAT DOES BERT LEARN?

AN

N

BERT Heads

o

Avg. Attention Entropy (nats)

2 < 6 8 10 12

Source: Clark et al. 2019



CONCLUSION

Bidirectional __
+ =
context C— BERT

\_ TRANSFORMER /

The core argument:

Bi-directionality and the two pre-training tasks account
for the majority of the empirical improvements



CONCLUSION

Biggest impact on the field:

With pre-training, bigger == better, without

(so far)

Dev Accuracy

Effect of Model Size

= MNLI (400k) = MRPC (3.6 k)
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OPINION

e Good methodological study of model aspects
e Comparison with GPT very well done
e Open-sourcing pre—-trained models

e No understanding learned representations



FURTHER RESEARCH

e Hierarchical representations
e More speed up —-- smaller models

e Understanding representations



[HE END
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