
Attention Mechanism in Neural Networks
UvA, Advanced Topics in Computational Semantics
Phillip Lippe
16/04/2020

Practical things

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 2

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

If you have a question, simply raise your hand

If my connection breaks, let me know in the chat

If I ask a question, feel free to turn on your audio and answer

If I ask simple yes/no questions, you can also answer by reactions

Today’s learning goals

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 3

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

• What is “attention”?

• What different kind of attention layers exist in NLP?

• Why and when to use attention

• Special focus: Self-attention and the Transformer architecture

• Building blocks, design choices, training tips

What is attention?

A weighted average of (sequence) elements with the weights depending on an input query.

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 4

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Query: Feature vector, describing what we are looking for, what might be important

Key: One feature vector per element/word. What is this word “offering”? When might it be important?

Value: One feature vector per element/word. The actual features we want to average

Score function !!""# : maps query-key pair to importance weight. Commonly MLP or dot product

I am eating an apple

Values ⋅ "! + ⋅ "" + ⋅ "# + ⋅ "$ + ⋅ "% = Output features

What is attention?

A weighted average of (sequence) elements with the weights depending on an input query.

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 5

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

"$ =
exp(!!""# key%, query)
∑& exp !!""#(key', query)

out =2
$
"$ ⋅ value$

Query: Feature vector, describing what we are looking for, what might be important

Key: One feature vector per element/word. What is this word “offering”? When might it be important?

Value: One feature vector per element/word. The actual features we want to average

Score function !!""# : maps query-key pair to importance weight. Commonly MLP or dot product

What is attention?

A weighted average of (sequence) elements with the weights depending on an input query.

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 6

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

"$ =
exp(!!""# key%, query)
∑& exp !!""#(key', query)

out =2
$
"$ ⋅ value$

Example

I am eating an apple

Values

Keys

Query

⋅ "! + ⋅ "" + ⋅ "# + ⋅ "$ + ⋅ "% = Output features

⋅ ⋅ ⋅ ⋅ ⋅

Attention mechanisms

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 7

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Aggregation

How are you ?

Cross-Attention

How are you ?

I

am

fine

Self-Attention

How are you ?

Encoder-Decoder

How are you ?

Encoder

How are you ?

Decoder

<s> I

I am

Aggregation

Recap NLP1: Hierarchical Attention Network
• Summarizing hidden states per word into sentence

representation

• Sentences can again be weighted and summed to
obtain a document representation

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 8

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion
tance of words and sentences are highly context de-
pendent, i.e. the same word or sentence may be dif-
ferentially important in different context (§3.5). To
include sensitivity to this fact, our model includes
two levels of attention mechanisms (Bahdanau et al.,
2014; Xu et al., 2015) — one at the word level and
one at the sentence level — that let the model to
pay more or less attention to individual words and
sentences when constructing the representation of
the document. To illustrate, consider the example
in Fig. 1, which is a short Yelp review where the
task is to predict the rating on a scale from 1–5. In-
tuitively, the first and third sentence have stronger
information in assisting the prediction of the rat-
ing; within these sentences, the word delicious,
a-m-a-z-i-n-g contributes more in implying
the positive attitude contained in this review. At-
tention serves two benefits: not only does it often
result in better performance, but it also provides in-
sight into which words and sentences contribute to
the classification decision which can be of value in
applications and analysis (Shen et al., 2014; Gao et
al., 2014).

The key difference to previous work is that our
system uses context to discover when a sequence of
tokens is relevant rather than simply filtering for (se-
quences of) tokens, taken out of context. To evaluate
the performance of our model in comparison to other
common classification architectures, we look at six
data sets (§3). Our model outperforms previous ap-
proaches by a significant margin.

2 Hierarchical Attention Networks
The overall architecture of the Hierarchical Atten-
tion Network (HAN) is shown in Fig. 2. It con-
sists of several parts: a word sequence encoder, a
word-level attention layer, a sentence encoder and a
sentence-level attention layer. We describe the de-
tails of different components in the following sec-
tions.

2.1 GRU-based sequence encoder

The GRU (Bahdanau et al., 2014) uses a gating
mechanism to track the state of sequences without
using separate memory cells. There are two types of
gates: the reset gate rt and the update gate zt. They
together control how information is updated to the

 �
h 21
 �
h 21

 �
h 22
 �
h 22

�!
h 22
�!
h 22

 �
h 2T
 �
h 2T

�!
h 2T
�!
h 2T

uwuw

w21w21 w22w22 w2Tw2T

word
encoder

word
attention

 �
h 1
 �
h 1

�!
h 1
�!
h 1

 �
h 2
 �
h 2

�!
h 2
�!
h 2

 �
h L
 �
h L

�!
h L
�!
h L

usus

s1s1 s2s2 sLsL

↵L↵L

sentence
encoder

sentence
attention

vv

softmax

↵21↵21 ↵22↵22 ↵2T↵2T

�!
h 21
�!
h 21

↵1↵1 ↵2↵2

Figure 2: Hierarchical Attention Network.

state. At time t, the GRU computes the new state as

ht = (1 � zt) � ht�1 + zt � h̃t. (1)

This is a linear interpolation between the previous
state ht�1 and the current new state h̃t computed
with new sequence information. The gate zt decides
how much past information is kept and how much
new information is added. zt is updated as:

zt = �(Wzxt + Uzht�1 + bz), (2)

where xt is the sequence vector at time t. The can-
didate state h̃t is computed in a way similar to a tra-
ditional recurrent neural network (RNN):

h̃t = tanh(Whxt + rt � (Uhht�1) + bh), (3)

Here rt is the reset gate which controls how much
the past state contributes to the candidate state. If rt
is zero, then it forgets the previous state. The reset
gate is updated as follows:

rt = �(Wrxt + Urht�1 + br) (4)

2.2 Hierarchical Attention
We focus on document-level classification in this
work. Assume that a document has L sentences

Credit: Yang et al., “Hierarchical Attention Networks for Document Classification” (2016)

si and each sentence contains Ti words. wit with
t 2 [1, T] represents the words in the ith sentence.
The proposed model projects the raw document into
a vector representation, on which we build a classi-
fier to perform document classification. In the fol-
lowing, we will present how we build the document
level vector progressively from word vectors by us-
ing the hierarchical structure.

Word Encoder Given a sentence with words
wit, t 2 [0, T], we first embed the words to vectors
through an embedding matrix We, xij = Wewij .
We use a bidirectional GRU (Bahdanau et al., 2014)
to get annotations of words by summarizing infor-
mation from both directions for words, and therefore
incorporate the contextual information in the anno-
tation. The bidirectional GRU contains the forward
GRU

�!
f which reads the sentence si from wi1 to

wiT and a backward GRU
 �
f which reads from wiT

to wi1:

xit =Wewit, t 2 [1, T],
�!
h it =

���!
GRU(xit), t 2 [1, T],

 �
h it =

 ���
GRU(xit), t 2 [T, 1].

We obtain an annotation for a given word wit by
concatenating the forward hidden state

�!
h it and

backward hidden state
 �
h it, i.e., hit = [

�!
h it,
 �
h it],

which summarizes the information of the whole sen-
tence centered around wit.

Note that we directly use word embeddings. For
a more complete model we could use a GRU to get
word vectors directly from characters, similarly to
(Ling et al., 2015). We omitted this for simplicity.

Word Attention Not all words contribute equally
to the representation of the sentence meaning.
Hence, we introduce attention mechanism to extract
such words that are important to the meaning of the
sentence and aggregate the representation of those
informative words to form a sentence vector. Specif-
ically,

uit =tanh(Wwhit + bw) (5)

↵it =
exp(u>

ituw)P
t exp(u

>
ituw)

(6)

si =
X

t

↵ithit. (7)

That is, we first feed the word annotation hit through
a one-layer MLP to get uit as a hidden represen-
tation of hit, then we measure the importance of
the word as the similarity of uit with a word level
context vector uw and get a normalized importance
weight ↵it through a softmax function. After that,
we compute the sentence vector si (we abuse the no-
tation here) as a weighted sum of the word annota-
tions based on the weights. The context vector uw

can be seen as a high level representation of a fixed
query “what is the informative word” over the words
like that used in memory networks (Sukhbaatar et
al., 2015; Kumar et al., 2015). The word context
vector uw is randomly initialized and jointly learned
during the training process.

Sentence Encoder Given the sentence vectors si,
we can get a document vector in a similar way. We
use a bidirectional GRU to encode the sentences:

�!
h i =

���!
GRU(si), i 2 [1, L],

 �
h i =

 ���
GRU(si), t 2 [L, 1].

We concatenate
�!
h i and

 �
h j to get an annotation of

sentence i, i.e., hi = [
�!
h i,
 �
h i]. hi summarizes the

neighbor sentences around sentence i but still focus
on sentence i.

Sentence Attention To reward sentences that are
clues to correctly classify a document, we again use
attention mechanism and introduce a sentence level
context vector us and use the vector to measure the
importance of the sentences. This yields

ui =tanh(Wshi + bs), (8)

↵i =
exp(u>

i us)P
i exp(u

>
i us)

, (9)

v =
X

i

↵ihi, (10)

where v is the document vector that summarizes
all the information of sentences in a document.
Similarly, the sentence level context vector can be
randomly initialized and jointly learned during the
training process.

2.3 Document Classification
The document vector v is a high level representation
of the document and can be used as features for doc-

Formula legend
ℎ!" - hidden state of t-th word in the i-th sentence
"# - learned query vector

Encoder-Decoder Attention

Ø General setup

Ø Global vs Local Attention

Ø Applications

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 9

How are you ?

Encoder

How are you ?

Decoder

<s> I

I am

Encoder-Decoder

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 10

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Effective Approaches to Attention-based Neural Machine Translation

Minh-Thang Luong Hieu Pham Christopher D. Manning
Computer Science Department, Stanford University, Stanford, CA 94305

{lmthang,hyhieu,manning}@stanford.edu

Abstract

An attentional mechanism has lately been

used to improve neural machine transla-

tion (NMT) by selectively focusing on

parts of the source sentence during trans-

lation. However, there has been little

work exploring useful architectures for

attention-based NMT. This paper exam-

ines two simple and effective classes of at-

tentional mechanism: a global approach

which always attends to all source words

and a local one that only looks at a subset

of source words at a time. We demonstrate

the effectiveness of both approaches on the

WMT translation tasks between English

and German in both directions. With local

attention, we achieve a significant gain of

5.0 BLEU points over non-attentional sys-

tems that already incorporate known tech-

niques such as dropout. Our ensemble

model using different attention architec-

tures yields a new state-of-the-art result in

the WMT’15 English to German transla-

tion task with 25.9 BLEU points, an im-

provement of 1.0 BLEU points over the

existing best system backed by NMT and

an n-gram reranker.1

1 Introduction

Neural Machine Translation (NMT) achieved

state-of-the-art performances in large-scale trans-

lation tasks such as from English to French (Luong

et al., 2015) and English to German (Jean et al.,

2015). NMT is appealing since it requires minimal

domain knowledge and is conceptually simple.

The model by Luong et al. (2015) reads through all

the source words until the end-of-sentence symbol

<eos> is reached. It then starts emitting one tar-

get word at a time, as illustrated in Figure 1. NMT

1All our code and models are publicly available at http:
//nlp.stanford.edu/projects/nmt.

B C D <eos> X Y Z

X Y Z <eos>

A

Figure 1: Neural machine translation – a stack-

ing recurrent architecture for translating a source

sequence A B C D into a target sequence X Y

Z. Here, <eos> marks the end of a sentence.

is often a large neural network that is trained in an

end-to-end fashion and has the ability to general-

ize well to very long word sequences. This means

the model does not have to explicitly store gigantic

phrase tables and language models as in the case

of standard MT; hence, NMT has a small memory

footprint. Lastly, implementing NMT decoders is

easy unlike the highly intricate decoders in stan-

dard MT (Koehn et al., 2003).

In parallel, the concept of “attention” has gained

popularity recently in training neural networks, al-

lowing models to learn alignments between dif-

ferent modalities, e.g., between image objects

and agent actions in the dynamic control problem

(Mnih et al., 2014), between speech frames and

text in the speech recognition task (Chorowski et

al., 2014), or between visual features of a picture

and its text description in the image caption gen-

eration task (Xu et al., 2015). In the context of

NMT, Bahdanau et al. (2015) has successfully ap-

plied such attentional mechanism to jointly trans-

late and align words. To the best of our knowl-

edge, there has not been any other work exploring

the use of attention-based architectures for NMT.

In this work, we design, with simplicity and ef-

fectiveness in mind, two novel types of attention-

Credit: Luong et al., “Effective Approaches to Attention-based NMT” (2015)

• Suffering from long-term dependencies

• Encoder output must summarize the whole
sentences with all its details

• Especially difficult if there are many different
possible outputs

Global vs Local Attention

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 11

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Credit: Luong et al., “Effective Approaches to Attention-based NMT” (2015)

Encoder-Decoder with attention

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 12

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Credit: Luong et al., “Effective Approaches to Attention-based NMT” (2015)

h̃t

Attention Layer

B C D <eos> X Y Z

X Y Z <eos>

A

Figure 4: Input-feeding approach – Attentional

vectors h̃t are fed as inputs to the next time steps to

inform the model about past alignment decisions.

3.3 Input-feeding Approach

In our proposed global and local approaches,

the attentional decisions are made independently,

which is suboptimal. Whereas, in standard MT,

a coverage set is often maintained during the

translation process to keep track of which source

words have been translated. Likewise, in atten-

tional NMTs, alignment decisions should be made

jointly taking into account past alignment infor-

mation. To address that, we propose an input-

feeding approach in which attentional vectors h̃t

are concatenated with inputs at the next time steps

as illustrated in Figure 4.11 The effects of hav-

ing such connections are two-fold: (a) we hope

to make the model fully aware of previous align-

ment choices and (b) we create a very deep net-

work spanning both horizontally and vertically.

Comparison to other work – Bahdanau et al.

(2015) use context vectors, similar to our ct, in

building subsequent hidden states, which can also

achieve the “coverage” effect. However, there has

not been any analysis of whether such connections

are useful as done in this work. Also, our approach

is more general; as illustrated in Figure 4, it can be

applied to general stacking recurrent architectures,

including non-attentional models.

Xu et al. (2015) propose a doubly attentional

approach with an additional constraint added to

the training objective to make sure the model pays

equal attention to all parts of the image during the

caption generation process. Such a constraint can

11If n is the number of LSTM cells, the input size of the
first LSTM layer is 2n; those of subsequent layers are n.

also be useful to capture the coverage set effect

in NMT that we mentioned earlier. However, we

chose to use the input-feeding approach since it

provides flexibility for the model to decide on any

attentional constraints it deems suitable.

4 Experiments

We evaluate the effectiveness of our models on the

WMT translation tasks between English and Ger-

man in both directions. newstest2013 (3000 sen-

tences) is used as a development set to select our

hyperparameters. Translation performances are

reported in case-sensitive BLEU (Papineni et al.,

2002) on newstest2014 (2737 sentences) and new-

stest2015 (2169 sentences). Following (Luong et

al., 2015), we report translation quality using two

types of BLEU: (a) tokenized12 BLEU to be com-

parable with existing NMT work and (b) NIST13

BLEU to be comparable with WMT results.

4.1 Training Details

All our models are trained on the WMT’14 train-

ing data consisting of 4.5M sentences pairs (116M

English words, 110M German words). Similar to

(Jean et al., 2015), we limit our vocabularies to

be the top 50K most frequent words for both lan-

guages. Words not in these shortlisted vocabular-

ies are converted into a universal token <unk>.

When training our NMT systems, following

(Bahdanau et al., 2015; Jean et al., 2015), we fil-

ter out sentence pairs whose lengths exceed 50

words and shuffle mini-batches as we proceed.

Our stacking LSTM models have 4 layers, each

with 1000 cells, and 1000-dimensional embed-

dings. We follow (Sutskever et al., 2014; Luong

et al., 2015) in training NMT with similar set-

tings: (a) our parameters are uniformly initialized

in [−0.1, 0.1], (b) we train for 10 epochs using

plain SGD, (c) a simple learning rate schedule is

employed – we start with a learning rate of 1; after

5 epochs, we begin to halve the learning rate ev-

ery epoch, (d) our mini-batch size is 128, and (e)

the normalized gradient is rescaled whenever its

norm exceeds 5. Additionally, we also use dropout

with probability 0.2 for our LSTMs as suggested

by (Zaremba et al., 2015). For dropout models, we

train for 12 epochs and start halving the learning

rate after 8 epochs. For local attention models, we

12All texts are tokenized with tokenizer.perl and
BLEU scores are computed with multi-bleu.perl.

13With the mteval-v13a script as per WMT guideline.

• Attention layer enriches token-level
information

• Alternative setup: attention layer using cell
state and enriching input information to the
RNN instead of output information

Applications – Machine Translation

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 13

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Credit: Olah, Chris and Carter, Shan, “Attention and Augmented Recurrent Neural Networks”

https://distill.pub/2016/augmented-rnns/

Cross-Attention

Ø General setup

Ø Applications

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 14

How are you ?

I

am

fine

Cross-Attention

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 15

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

• Input: two sentences or sequences

• Task: reason/compare those sentences

• Attention: queries for each word from one sentences,
key and value for each word from second sentence

Applications – NLI

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 16

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Figure 1: A high-level view of our hybrid neural
inference networks.

to encode the input premise and hypothesis (Equa-
tion (1) and (2)). Here BiLSTM learns to represent
a word (e.g., ai) and its context. Later we will also
use BiLSTM to perform inference composition to
construct the final prediction, where BiLSTM en-
codes local inference information and its interac-
tion. To bookkeep the notations for later use, we
write as āi the hidden (output) state generated by
the BiLSTM at time i over the input sequence a.
The same is applied to b̄j :

āi = BiLSTM(a, i), 8i 2 [1, . . . , `a], (1)

b̄j = BiLSTM(b, j), 8j 2 [1, . . . , `b]. (2)

Due to the space limit, we will skip the descrip-
tion of the basic chain LSTM and readers can refer
to Hochreiter and Schmidhuber (1997) for details.
Briefly, when modeling a sequence, an LSTM em-
ploys a set of soft gates together with a memory
cell to control message flows, resulting in an effec-
tive modeling of tracking long-distance informa-
tion/dependencies in a sequence.

A bidirectional LSTM runs a forward and back-
ward LSTM on a sequence starting from the left
and the right end, respectively. The hidden states

generated by these two LSTMs at each time step
are concatenated to represent that time step and
its context. Note that we used LSTM memory
blocks in our models. We examined other recurrent
memory blocks such as GRUs (Gated Recurrent
Units) (Cho et al., 2014) and they are inferior to
LSTMs on the heldout set for our NLI task.

As discussed above, it is intriguing to explore
the effectiveness of syntax for natural language
inference; for example, whether it is useful even
when incorporated into the best-performing models.
To this end, we will also encode syntactic parse
trees of a premise and hypothesis through tree-
LSTM (Zhu et al., 2015; Tai et al., 2015; Le and
Zuidema, 2015), which extends the chain LSTM to
a recursive network (Socher et al., 2011).

Specifically, given the parse of a premise or hy-
pothesis, a tree node is deployed with a tree-LSTM
memory block depicted as in Figure 2 and com-
puted with Equations (3–10). In short, at each node,
an input vector xt and the hidden vectors of its two
children (the left child hL

t�1 and the right hR
t�1) are

taken in as the input to calculate the current node’s
hidden vector ht.

ct

Cell

⇥ ht⇥

fLt

Left Forget Gate

⇥ fRt

Right Forget Gate

⇥

itInput Gate otOutput Gate

xt

hL
t�1

hR
t�1

xt hR
t�1

hL
t�1

xt hR
t�1

hL
t�1

xt h
R
t�1

hL
t�1xt h

R
t�1

hL
t�1 cLt�1

cRt�1

Figure 2: A tree-LSTM memory block.

We describe the updating of a node at a high level
with Equation (3) to facilitate references later in the
paper, and the detailed computation is described
in (4–10). Specifically, the input of a node is used
to configure four gates: the input gate it, output
gate ot, and the two forget gates fLt and fRt . The
memory cell ct considers each child’s cell vector,
cLt�1 and cRt�1, which are gated by the left forget

• Combining sentence-level with word-level inference

• Premise and hypothesis word can align to find small
differences much easier (e.g. “blue” vs “red” bag)

Credit: Chen et al., “Enhanced LSTM for NLI” (2016)

Applications – Question-Answering

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 17

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Credit: Xu et al. „Multi-Task Learning for Machine Reading Comprehension.“ (2018)

Self-attention

Ø Intuition and Motivation

Ø Self-attention layer

Ø Transformer architecture

Ø (Optional) Optimization issues and training tips

Ø (Optional) Transformers as Graph Neural Network

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 18

How are you ?

Intuition

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 19

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Ernie was smart but he didn’t know the answer

Query: what word is the subject of the sentence?

Ernie was smart but he didn’t know the answer

Intuition

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 20

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Ernie was smart but he didn’t know the answer

Query: what is the contrast in this sentence?

Ernie was smart but he didn’t know the answer

Self-attention layer

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 21

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by
p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by
p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Credit: Alammar, Jay: The Illustrated Transformer, http://jalammar.github.io/illustrated-transformer/
X

Linear

Formula legend
#$ - hidden size of key/query

http://jalammar.github.io/illustrated-transformer/

Self-attention layer

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 22

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Why scaling by ⁄8 9(?
• The variance of the dot product scales linearly with :)
⇒ Scaling brings it back to 1

• High initial values significantly harm gradient flow

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by
p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by
p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

X

Linear

Multi-Head self-attention

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 23

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

query with all keys, divide each by
p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

Multi-head attention allows the model to jointly attend to information from different representation
subspaces at different positions. With a single attention head, averaging inhibits this.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

• Single head offers only one perspective on the data
⇒ Often not enough, can harm gradients again

• Performing several self-attentions in parallel increases
flexibility and non-linearity/complexity

• Output projection to scale down the concatenation if
necessary

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 24

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

Transformer architecture

• Transformer has an encoder-decoder structure

• Both parts consists of N blocks with self-attention layers

• Initially designed for machine translation

§ Encoder analyses input sentence

§ Decoder predicts output sentence autoregressively

Encoder

Decoder

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 25

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Transformer - Encoder

Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

Byte-pair encoding

• Encode common subtokens instead of only words

smarter ⇒ smart-er, tokenized ⇒ token-ized

• Easier adaptation to unseen words in the training corpus

• Sharing of common word parts (“-ing”, “re-”, etc.)

Positional embeddings

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 26

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

• Self-attention layers do not encode position, but view the input as set (permutation invariant).

• Sinusoidal positional encoding added to embeddings

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n
2 · d) O(1) O(1)

Recurrent O(n · d2) O(n) O(n)

Convolutional O(k · n · d2) O(1) O(logk(n))

Self-Attention (restricted) O(r · n · d) O(1) O(n/r)

bottoms of the encoder and decoder stacks. The positional encodings have the same dimension dmodel
as the embeddings, so that the two can be summed. There are many choices of positional encodings,
learned and fixed [8].

In this work, we use sine and cosine functions of different frequencies:

PE(pos,2i) = sin(pos/10000
2i/dmodel)

PE(pos,2i+1) = cos(pos/10000
2i/dmodel)

where pos is the position and i is the dimension. That is, each dimension of the positional encoding
corresponds to a sinusoid. The wavelengths form a geometric progression from 2⇡ to 10000 · 2⇡. We
chose this function because we hypothesized it would allow the model to easily learn to attend by
relative positions, since for any fixed offset k, PEpos+k can be represented as a linear function of
PEpos.

We also experimented with using learned positional embeddings [8] instead, and found that the two
versions produced nearly identical results (see Table 3 row (E)). We chose the sinusoidal version
because it may allow the model to extrapolate to sequence lengths longer than the ones encountered
during training.

4 Why Self-Attention

In this section we compare various aspects of self-attention layers to the recurrent and convolu-
tional layers commonly used for mapping one variable-length sequence of symbol representations
(x1, ..., xn) to another sequence of equal length (z1, ..., zn), with xi, zi 2 Rd, such as a hidden
layer in a typical sequence transduction encoder or decoder. Motivating our use of self-attention we
consider three desiderata.

One is the total computational complexity per layer. Another is the amount of computation that can
be parallelized, as measured by the minimum number of sequential operations required.

The third is the path length between long-range dependencies in the network. Learning long-range
dependencies is a key challenge in many sequence transduction tasks. One key factor affecting the
ability to learn such dependencies is the length of the paths forward and backward signals have to
traverse in the network. The shorter these paths between any combination of positions in the input
and output sequences, the easier it is to learn long-range dependencies [11]. Hence we also compare
the maximum path length between any two input and output positions in networks composed of the
different layer types.

As noted in Table 1, a self-attention layer connects all positions with a constant number of sequentially
executed operations, whereas a recurrent layer requires O(n) sequential operations. In terms of
computational complexity, self-attention layers are faster than recurrent layers when the sequence
length n is smaller than the representation dimensionality d, which is most often the case with
sentence representations used by state-of-the-art models in machine translations, such as word-piece
[31] and byte-pair [25] representations. To improve computational performance for tasks involving
very long sequences, self-attention could be restricted to considering only a neighborhood of size r in

6

• Scales to unseen lengths

• Encodes distance between positions

Credit: Weng, Lilian: The Transformer family

po
sit

io
n

hidden dimensionality !

Formula legend
#%&'() - hidden size of embedding
$ – index over the hidden dimension
%&' – position of word in sentence

https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 27

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Transformer - Encoder

Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

• Residual connection combined with Layer normalization

Credit: Kurita, Keita, An Overview of Normalization Methods

https://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 28

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Transformer - Encoder

Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

• Residual connection combined with Layer normalization

Why do we need residual connections?

• Better gradient flow

• Word/position information would get lost, especially after init

Why do we need Layer normalization?

• Faster training and regularization

• Not batch normalization due to high variance in language features

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 29

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Transformer - Encoder

Figure 1: The Transformer - model architecture.

wise fully connected feed-forward network. We employ a residual connection [10] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the

3

• Point-wise feed-forward network with ReLU activation

• Adds complexity with classical non-linearity to network

• Inner hidden dimensionality commonly 4-8x larger

Why larger hidden dimensionality instead of deeper MLP?

• Faster computation (can be run in parallel)

• Less parameters

• Single layer complexity sufficient
Formula legend
(– weight matrix
) – bias vector

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 30

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Transformer - Decoder

• Multi-head self-attention masked for autoregressive prediction

• Additional attention sublayer over encoder output layer
§ Key and value features from encoder

§ Query features from decoder

• Linear output layer and softmax over vocabulary

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 31

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Transformer - Performance

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Model
BLEU Training Cost (FLOPs)

EN-DE EN-FR EN-DE EN-FR
ByteNet [15] 23.75
Deep-Att + PosUnk [32] 39.2 1.0 · 1020
GNMT + RL [31] 24.6 39.92 2.3 · 1019 1.4 · 1020
ConvS2S [8] 25.16 40.46 9.6 · 1018 1.5 · 1020
MoE [26] 26.03 40.56 2.0 · 1019 1.2 · 1020
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 · 1020
GNMT + RL Ensemble [31] 26.30 41.16 1.8 · 1020 1.1 · 1021
ConvS2S Ensemble [8] 26.36 41.29 7.7 · 1019 1.2 · 1021
Transformer (base model) 27.3 38.1 3.3 · 1018

Transformer (big) 28.4 41.0 2.3 · 1019

Label Smoothing During training, we employed label smoothing of value ✏ls = 0.1 [30]. This
hurts perplexity, as the model learns to be more unsure, but improves accuracy and BLEU score.

6 Results

6.1 Machine Translation

On the WMT 2014 English-to-German translation task, the big transformer model (Transformer (big)
in Table 2) outperforms the best previously reported models (including ensembles) by more than 2.0

BLEU, establishing a new state-of-the-art BLEU score of 28.4. The configuration of this model is
listed in the bottom line of Table 3. Training took 3.5 days on 8 P100 GPUs. Even our base model
surpasses all previously published models and ensembles, at a fraction of the training cost of any of
the competitive models.

On the WMT 2014 English-to-French translation task, our big model achieves a BLEU score of 41.0,
outperforming all of the previously published single models, at less than 1/4 the training cost of the
previous state-of-the-art model. The Transformer (big) model trained for English-to-French used
dropout rate Pdrop = 0.1, instead of 0.3.

For the base models, we used a single model obtained by averaging the last 5 checkpoints, which
were written at 10-minute intervals. For the big models, we averaged the last 20 checkpoints. We
used beam search with a beam size of 4 and length penalty ↵ = 0.6 [31]. These hyperparameters
were chosen after experimentation on the development set. We set the maximum output length during
inference to input length + 50, but terminate early when possible [31].

Table 2 summarizes our results and compares our translation quality and training costs to other model
architectures from the literature. We estimate the number of floating point operations used to train a
model by multiplying the training time, the number of GPUs used, and an estimate of the sustained
single-precision floating-point capacity of each GPU 5.

6.2 Model Variations

To evaluate the importance of different components of the Transformer, we varied our base model
in different ways, measuring the change in performance on English-to-German translation on the
development set, newstest2013. We used beam search as described in the previous section, but no
checkpoint averaging. We present these results in Table 3.

In Table 3 rows (A), we vary the number of attention heads and the attention key and value dimensions,
keeping the amount of computation constant, as described in Section 3.2.2. While single-head
attention is 0.9 BLEU worse than the best setting, quality also drops off with too many heads.

5We used values of 2.8, 3.7, 6.0 and 9.5 TFLOPS for K80, K40, M40 and P100, respectively.

8

Is attention all we need?

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 32

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Transformers
+ State-of-the-art on most benchmarks
+ Scalable to billions of parameters (Turing-NLG

– 17 billion params)
+ Computation in parallel (feedforward network)

RNNs
+ Language is naturally recurrent
+ Higher non-linearity and more complex

composition
⇒ Single-layer RNN outperforms single-layer
transformer

- Recurrence needs to be learned
⇒ lots of data required or autoregressive task

- Many parameters for suitable model necessary
⇒ can easily overfit

- Memory scales quadratically with seq length

- Does not scale well beyond 5 layers

- Slower to run for long sequences

- Long-term dependencies problematic

Transformers vs RNNs

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 33

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

When to use Transformers? If you…
• have a lot of data
• have a challenging problem
• finetune a pretrained language model
• have strong GPUs with a lot of memory

When to use RNNs? If you…
• have limited data
• can make use of pretrained embeddings
• have a strong recurrent bias in the data (i.e. position is important)

Transformers – Training tips

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 34

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

• Training Transformers can be painful on a single small GPU…

• Use many heads, but not too many. Commonly, 4-16 heads work well

• Higher batch sizes are often beneficial. To reduce memory, consider removing the (significantly)
largest sentences from training. But…

§ Transformers have been shown to generalize poorly to sentence lengths differing from training set

§ Don’t make sentence lengths too different

§ Only remove if there are very few very long sentences

• Training with huge batch size across many GPUs comes with new challenges
But don’t worry if you’re not Google, Microsoft or NVIDIA (Lamb, ZeRO)

• BPE vocabulary must be trained on sufficient data. Otherwise it easily overfits

https://arxiv.org/abs/1904.00962
https://www.microsoft.com/en-us/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/

Transformers – Warmup

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 35

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

• Learning rate warmup is one of the most important hyperparameters

Published as a conference paper at ICLR 2020

ON THE VARIANCE OF THE ADAPTIVE LEARNING
RATE AND BEYOND

Liyuan Liu ⇤

University of Illinois, Urbana-Champaign
ll2@illinois

Haoming Jiang †

Georgia Tech
jianghm@gatech.edu

Pengcheng He, Weizhu Chen
Microsoft Dynamics 365 AI
{penhe,wzchen}@microsoft.com

Xiaodong Liu, Jianfeng Gao
Microsoft Research
{xiaodl,jfgao}@microsoft.com

Jiawei Han
University of Illinois, Urbana-Champaign
hanj@illinois

ABSTRACT

The learning rate warmup heuristic achieves remarkable success in stabilizing
training, accelerating convergence and improving generalization for adaptive
stochastic optimization algorithms like RMSprop and Adam. Pursuing the theory
behind warmup, we identify a problem of the adaptive learning rate – its vari-
ance is problematically large in the early stage, and presume warmup works as a
variance reduction technique. We provide both empirical and theoretical evidence
to verify our hypothesis. We further propose Rectified Adam (RAdam), a novel
variant of Adam, by introducing a term to rectify the variance of the adaptive
learning rate. Experimental results on image classification, language modeling,
and neural machine translation verify our intuition and demonstrate the efficacy
and robustness of RAdam.1

1 INTRODUCTION

Adam-eps Adam-2k Adam-vanilla
RAdam Adam-warmup

0
1
2
3
4
5
6
7
8
9

0 10k 20k 30k 40k 50k 60k 70k
CAdam Adam-warmup

Tr
ai

ni
ng

 lo
ss

Overlapped

0
50

100
150
200
250
300
350
400
450
500
550

0 10k 20k 30k 40k 50k 60k 70k
Adam-eps Adam-2k

Tr
ai

ni
ng

 p
er

pl
ex

ity

Adam-vanilla

Figure 1: Training loss v.s. # of
iterations of Transformers on the
De-En IWSLT’14 dataset.

Fast and stable optimization algorithms are what generations
of researchers have been pursuing (Gauss, 1823; Cauchy,
1847). Remarkably, stochastic gradient-based optimization,
such as stochastic gradient descent (SGD), has witnessed
tremendous success in many fields of science and engineering
despite its simplicity. Recently, many efforts have been made
to accelerate optimization by applying adaptive learning rate.
In particular, Adagrad (Duchi et al., 2010) and its variants, e.g.,
RMSprop (Hinton et al., 2012), Adam (Kingma & Ba, 2014),
Adadelta (Zeiler, 2012) and Nadam (Dozat, 2016), stand out
due to their fast convergence, and have been considered as the
optimizer of choice in many applications.

However, it has been observed that these optimization methods may converge to bad/suspicious
local optima, and have to resort to a warmup heuristic – using a small learning rate in the first
few epochs of training to mitigate such problem (Vaswani et al., 2017; Popel & Bojar, 2018). For
example, when training typical Transformers based neural machine translation models on the De-En
IWSLT’14 dataset, removing the warmup stage increases the training loss from 3 to around 10, as
shown in Figure 1. Similar phenomena are observed in other scenarios like BERT (a bidirectional
transformer language model) pre-training (Devlin et al., 2019).

Duo to the lack of the theoretical underpinnings, there is neither guarantee that warmup would bring
consistent improvements for various machine learning settings nor guidance on how we should

⇤Work was done during an internship at Microsoft.
†Work was done during an internship at Microsoft.
1All implementations are available at: https://github.com/LiyuanLucasLiu/RAdam.

1

ar
X

iv
:1

90
8.

03
26

5v
2

 [c
s.L

G
]

10
 M

ar
 2

02
0

Credit: Liu et al., “On the variance of the adaptive learning rate and beyond” (2020)

Learning rate over time

Transformers – Warmup

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 36

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

• Why is warmup so critical?

(1) Variance in adaptive learning rate

Adam:

High variance in first iterations.

Better: RAdam (Liu et al., 2020)

Hugging Face: skip bias correction

Formula legend
*" - gradient at iteration t
+ – momentum
, – second-order momentum (adaptive lr)
- – weight parameters
.*, .+ - Adam hyperparameters

https://arxiv.org/pdf/1908.03265.pdf
https://github.com/huggingface/transformers/blob/80a169451479f97d737e2be433a7cbd30c39c6bb/src/transformers/optimization.py

Transformers – Warmup

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 37

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

• Why is warmup so critical?

(2) Layer Normalization

• After initialization, the expected gradients of the
parameters near the output layer are very large

• In short: last FFN and Multi-head attention layer
have gradients independent of number of layers,
making them sensitive for deep transformers

• Better: use Pre-Layer Normalization

• Even better: use different normalization
⇒Adaptive Normalization
⇒ Power Normalization

On Layer Normalization in the Transformer Architecture

Figure 1. (a) Post-LN Transformer layer; (b) Pre-LN Transformer
layer.

Our theory also shows that the layer normalization plays a
crucial role in controlling the gradient scales. This motivates
us to investigate whether there are some other ways of po-
sitioning the layer normalization that lead to well-behaved
gradients. In particular, we study another variant, the Trans-
former with Pre-Layer Normalization (Pre-LN) (Baevski
& Auli, 2018; Child et al., 2019; Wang et al., 2019). The
Pre-LN Transformer puts the layer normalization inside the
residual connection and equips with an additional final-layer

normalization before prediction (Please see Figure 1 for the
differences between the two variants of the Transformer
architectures). We show that at initialization, the gradients
are well-behaved without any exploding or vanishing for the
Pre-LN Transformer both theoretically and empirically.

Given the gradients are well-behaved in the Pre-LN Trans-
former, it is natural to consider removing the learning rate
warm-up stage during training. We conduct a variety of
experiments, including IWSLT14 German-English transla-
tion, WMT14 English-German translation, and BERT pre-
training tasks. We show that, in all tasks, the learning rate
warm-up stage can be safely removed, and thus, the number
of hyper-parameter is reduced. Furthermore, we observe
that the loss decays faster for the Pre-LN Transformer model.
It can achieve comparable final performances but use much
less training time. This is particularly important for training
large-scale models on large-scale datasets.

Our contributions are summarized as follows:

• We investigate two Transformer variants, the Post-LN
Transformer and the Pre-LN Transformer, using mean field
theory. By studying the gradients at initialization, we pro-
vide evidence to show why the learning rate warm-up stage
is essential in training the Post-LN Transformer.

• We are the first to show that the learning-rate warm-up
stage can be removed for the Pre-LN Transformer, which

eases the hyperparameter tuning. We further show that by
using proper learning rate schedulers, the training time can
be largely reduced on a wide range of applications.

2. Related work
Gradient descent-based methods (Kingma & Ba, 2014;
Zeiler, 2012; Duchi et al., 2011; Tieleman & Hinton, 2012)
are popularly used in optimizing deep neural networks. For
convolutional neural networks and recurrent neural net-
works, a relatively large learning rate is usually set in the be-
ginning, and then decreased along with the optimization pro-
cess (He et al., 2016; 2017; Sutskever et al., 2014; Gehring
et al., 2017; He et al., 2019). The learning rate warm-up
stage has only been shown essential in dealing with some
very specific problems, e.g., the large-batch training. Goyal
et al. (2017); He et al. (2019); You et al. (2018) showed that
a learning rate warm-up stage is preferred when training
neural networks with extremely large batch sizes.

However, the learning rate warm-up stage is essential and
critical when optimizing the Transformer models in a ma-
jority of scenarios (Vaswani et al., 2017; Devlin et al., 2018;
Dai et al., 2019; Radford et al., 2019; Lu et al., 2019). Popel
& Bojar (2018) investigated the influence of different warm-
up strategies for the optimization of the Post-LN Trans-
former model and found that without or with relatively less
warm-up iterations, the optimization diverges. The Pre-
LN Transformer has been proposed in several recent works
(Baevski & Auli, 2018; Child et al., 2019; Wang et al., 2019)
to alleviate some optimization issues when training deeper
models, but the troublesome warm-up stage still remains in
their training pipelines.

In a concurrent and independent work (Liu et al., 2019a),
the authors claimed that the benefit of the warm-up stage
comes from reducing the variance for the adaptive learning
rate in the Adam optimizer (Kingma & Ba, 2014). They
proposed to rectify the variance of adaptive learning rate by
a new variant of Adam called RAdam. However, we find
that not only for Adam, the learning rate warm-up stage also
helps quite a lot for other optimizers. This may indicate
that Adam is not the prerequisite for the necessity of the
warm-up stage. Therefore, we re-identify the problem and
find that it highly relates to the architecture, in particular,
the position of layer normalization.

3. Optimization for the Transformer
3.1. Transformer with Post-Layer Normalization

The Transformer architecture usually consists of stacked
Transformer layers (Vaswani et al., 2017; Devlin et al.,
2018), each of which takes a sequence of vectors as input
and outputs a new sequence of vectors with the same shape.

Credit: Xiong et al., “On Layer Normalization in the Transformer Architecture” (2020)

Pre-LNPost-LN

https://arxiv.org/pdf/2002.04745.pdf
https://arxiv.org/abs/2003.07845

Transformers – Finetune

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 38

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

• Many state-of-the-art performances can be achieved by finetuning large pre-trained language
models such as BERT

• If you want to finetune yourself, use libraries such as Hugging Face

• If you want to find good initial hyperparameters, consider:

§ The following paper on hyperparameter search: Dodge et al., 2020

§ The examples in the Hugging Face library for different tasks (link)

• Don’t finetune whole BERT but only the last few layers to prevent overfitting and reduce memory

• Regularization like weight decay or dropout often helps

https://arxiv.org/abs/2002.06305
https://github.com/huggingface/transformers/tree/master/examples

Transformers as Graph NN

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 39

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Claim: Transformers are just graph convolutions over dense graphs

• Each node sends a “message” to all its
neighbors

• Nodes can weight their input messages
based on features from the sender and
receiver

Transformers as Graph NN

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 40

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Claim: Transformers are just graph convolutions over dense graphs

• Each node sends a value vector to all its
neighbors

• Nodes can weight their input messages based
on the dot product between the query from
the sender and key from the receiver

The

dragon

torched

thecity

Transformers as Graph NN

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 41

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Claim: Transformers are just graph convolutions over dense graphs
Implications:
• Positional encoding necessary as self-attention considers input as graph and not as sequence
• Long-term dependencies not an issue as distance is equal among all words
• Dense graph has N2 edges
⇒ Graph sparsification based on syntax trees etc. corresponds to masking

• Self-attention can be used for permutation-invariant tasks
• Data like sets, graphs, etc.

Conclusion

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 42

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Four main attention mechanisms:
1. Aggregation: compressing sequence to single feature vector, pooling

Applications: creating sentence representations
2. Encoder-Decoder attention: allowing the decoder to take a second look at the input based on

the current word.
Applications: any Seq2Seq task like Machine Translation, Summarization, Dialogue Modeling

3. Cross-Attention: comparing two sequences on word-level.
Applications: Natural Language Inference, Question-Answering

4. Self-Attention: message passing among words within a sentence or document.
Applications: stand-alone architecture for almost any task
• Transformers constitute current state-of-the-art, but don’t forget about RNNs!
• Self-attention views sentence as graph, not as sequence

Useful blogposts

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 43

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

• Google AI Blog explaining the transformer paper.

• The Illustrated Transformer, nice illustrations and detailed explanation of self-attention and the
transformer model.

• The transformer family, review of many different transformer variants

• A Survey of Long-Term Context in Transformers, reviews transformer variants with the goal of
more efficient models for long sequences

• Attention? Attention!, explaining different forms of attention. Takes a different perspective and
does not only focus NLP

• Attention and Augmented Recurrent Neural Networks, although from 2016, gives a nice review of
attention before transformers, especially with insights to Machine Translation. Written by Chris
Olah who also wrote the most cited LSTM blog.

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
http://jalammar.github.io/illustrated-transformer/
https://lilianweng.github.io/lil-log/2020/04/07/the-transformer-family.html
https://www.pragmatic.ml/a-survey-of-methods-for-incorporating-long-term-context/
https://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
https://distill.pub/2016/augmented-rnns/

Useful papers

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 44

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

• Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing
systems. 2017. Original transformer paper.

Papers extending the original Transformer architecture
• Dehghani, Mostafa, et al. "Universal transformers." arXiv preprint arXiv:1807.03819 (2018).

Combining Transformers with recurrence over layer depth, making it Turing complete. Especially
useful for complex reasoning tasks like question-answering.

• Kitaev, Nikita, et al. “Reformer: The Efficient Transformer” arXiv preprint arXiv:2001.04451
(2020). Making transformers more memory efficient by local-sensitive hasing and using reversible
layers to re-calculate activations during backpropagation.

• Sukhbaatar, Sainbayar, et al. “Adaptive Attention Span in Transformers” arXiv preprint
arXiv:1905.07799 (2019). Allowing the attention layers to learn the optimal receptive field/span to
reduce memory footprint and computational time.

https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://arxiv.org/pdf/1807.03819.pdf%3Futm_campaign=NLP%2520News&utm_medium=email&utm_source=Revue%2520newsletter
https://arxiv.org/abs/2001.04451
https://arxiv.org/abs/1905.07799

Useful papers

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 45

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Papers about training details – general tips
• Popel, Martin, Bojar, Ondrej, “Training Tips for the Transformer Model” (2018). Review of a large

hyperparameter grid search and sharing insights.
• Dodge, Jesse et a., “Fine-Tuning Pretrained Language Models” (2020). Review of hyperparameters

for finetuning large transformer-based language models.

https://ufal.mff.cuni.cz/pbml/110/art-popel-bojar.pdf
https://arxiv.org/abs/2002.06305

Useful papers

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 46

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

Papers about training details – Layer Normalization
• Shen, Sheng, et al. "Rethinking Batch Normalization in Transformers." arXiv preprint

arXiv:2003.07845 (2020). Analyzing Batch normalization for language and proposing alternative
to Layer normalization

• Xu, Jingjing, et al. "Understanding and Improving Layer Normalization." Advances in Neural
Information Processing Systems. 2019. Analyzing gain and bias in Layer normalization and
proposing alternative

• Xiong, Ruibin, et al. "On Layer Normalization in the Transformer Architecture." arXiv preprint
arXiv:2002.04745(2020). Analyzing and comparing PreNorm vs PostNorm

https://arxiv.org/abs/2003.07845
https://papers.nips.cc/paper/8689-understanding-and-improving-layer-normalization.pdf
https://arxiv.org/abs/2002.04745

Q&A

16/04/2020 ATCS - Attention Mechanism in Neural Networks, Phillip Lippe 47

Introduction – Encoder-Decoder Attention – Cross-Attention – Self-Attention – Conclusion

BERT

Bidirectional Encoder Representations from Transformers

Presented by Omar Elbaghdadi

Word embeddings
● One word, one representation
● Problem: word’s meaning depends on context

“Stick to the plan, dude.”

vs

“If you don’t pay attention to my presentation, I’ll hit
you with a stick.”

Contextualized
Embeddings

Deep contextualized word representations

Deep contextualized word representations: ELMo
● Embeddings computed from bidirectional LSTM

● So, embeddings now depend on context
● Pre-Train on Language Modelling (LM) task

All you need is
attention

● Instead of recurrent model, use a Transformer
● Self-attention: condition on all other words

Transformers for language modelling

● LM task: predict next word
● Problem: self-attention uses all words
● Solution: mask words to the right

Transformers for language modelling

Contextual
Embeddings

Fine-tuning

● Feature-based: pre-trained representations as features
● Problems:

○ harder to generalize
○ embeddings not optimal for downstream task

● Solution: fine-tune pre-trained weights
● Finetuning: ULM-FiT

From feature-based to fine-tuning

Contextual
Embeddings

Model arithmetic

Contextual
Embeddings

12

From GPT to BERT
● GPT uses left-to-right (LTR) representations
● Intuitively, bidirectional representations more powerful
● BERT’s main contribution:

How to do bidirectional context modelling with
Transformers.

From GPT to BERT

Contextual
Embeddings

Bidirectional Context
Modelling: How?

Use special pre-training Tasks

Pre-training: masked Language Model (MLM)

The cat sat on the mat

Pre-training: masked Language Model (MLM)

The cat sat on the mat

Pre-training: masked Language Model (MLM)

Pre-training: masked Language Model (MLM)

Pre-training: next sentence prediction (NSP)

Pre-training: data
● English wikipedia (2,500M words)

● BooksCorpus (800M words)

● Document-level corpus critical

(as opposed to shuffled sentence-level)

Input processing

Fine-Tuning
● Straightforward. Only need to adapt inputs/outputs.

● No need to encode text pairs explicitly

● Relatively inexpensive compared to pre-training

Architecture
● Like GPT: stack of Transformer blocks

Bert: 2 sizes

● Smaller model: 12 Transformer blocks
● Same size as GPT for comparison
● BERT-large: 24 blocks

Experiments
And Results

Performance benchmarks
● GLUE: 11 NLP tasks

● Some other tasks

● A lot of tasks, basically

● Importantly, architecture stays same over most tasks

Performance benchmarks

What makes it perform so well?
● Effect of pre-training tasks

○ Removing NSP hurts performance significantly
○ LTR model worse than MLM model on all tasks
○ Conlusion: bidirectionality is important

● Effect of model size
○ Bigger is better
○ Show that extreme model sizes improve even small scale tasks

● Feature-based approach:
○ Worse but not much
○ Concat Last Four Hidden works best in experiment

What does BERT learn?

Source: Clark et al. 2019

What does BERT learn?

Source: Clark et al. 2019

What does BERT learn?

Source: Clark et al. 2019

The core argument:

Bi-directionality and the two pre-training tasks account
for the majority of the empirical improvements

Conclusion

Conclusion
Biggest impact on the field:

With pre-training, bigger == better, without clear limits
(so far)

Opinion
● Good methodological study of model aspects

● Comparison with GPT very well done

● Open-sourcing pre-trained models

● No understanding learned representations

Further research
● Hierarchical representations

● More speed up -- smaller models

● Understanding representations

The end

Credit and references
Images for BERT models, Elmo, and Cookie Monster were taken
from the Illustrated BERT blog post.

The input architecture and BiLSTM figures come from the BERT
paper.

What Does BERT Look At? An Analysis of BERT's Attention
(Kevin Clark, Urvashi Khandelwal, Omer Levy & Christopher
Manning)

Slides by BERT co-author J. Devlin.

http://jalammar.github.io/illustrated-bert/
https://arxiv.org/pdf/1810.04805
https://arxiv.org/pdf/1810.04805
https://arxiv.org/pdf/1906.04341.pdf
https://arxiv.org/pdf/1906.04341.pdf
https://arxiv.org/pdf/1906.04341.pdf
https://nlp.stanford.edu/seminar/details/jdevlin.pdf

