
INTRODUCTION TO
CLUSTER COMPUTING
Carlos Teijeiro Barjas (HPC Advisor)
Maxim Masterov (HPC Advisor)
UvA – Amsterdam (remote) – 31/03/2020

Outline

Introduction to High Performance Computing

Definitions

Parallel programming

SURFsara facilities

Presentation

Systems and specifications

Running jobs

Hands-on exercises

Exercise available in your home directories (LisaGPUTutorials.txt)

4

Outline

Introduction to High Performance Computing

Definitions

Parallel programming

SURFsara facilities

Presentation

Systems and specifications

Running jobs

Hands-on exercises

Exercise available in your home directories (LisaGPUTutorials.txt)

5

High-performance computing (HPC) is …

… an area of computer-based computation. It includes all computing work that
requires a high computing capacity or storage capacity.

… the use of parallel processing for running advanced application programs
efficiently, reliably and fast.

… the practice of aggregating computing power in a way that delivers much higher
performance than one could get out of a typical desktop computer or workstation in
order to solve large problems in science, engineering, or business.

… the use of super computers and parallel processing techniques for solving complex
computational problems.

6

A computer is …

7

A computer is …

8

A larger computer actually is …

19

A larger computer actually is …

20

A larger computer actually is …

21

A larger computer actually is …

22

High-performance computing (HPC) …

… is an area of computer-based computation. It includes all computing work that
requires a high computing capacity or storage capacity.

… is the use of parallel processing for running advanced application programs
efficiently, reliably and fast.

… refers to the practice of aggregating computing power in a way that delivers much
higher performance than one could get out of a typical desktop computer or
workstation in order to solve large problems in science, engineering, or business.

… is the use of super computers and parallel processing techniques for solving
complex computational problems.

23

High-performance computing (HPC) …

… is an area of computer-based computation. It includes all computing work that
requires a high computing capacity or storage capacity.

… is the use of parallel processing for running advanced application programs
efficiently, reliably and fast.

… refers to the practice of aggregating computing power in a way that delivers much
higher performance than one could get out of a typical desktop computer or
workstation in order to solve large problems in science, engineering, or business.

… is the use of super computers and parallel processing techniques for solving
complex computational problems.

… is the part of computing focused on making computers collaborate efficiently up to
very large scales

… is optimized and scalable computer coordination (hardware and software)

24

Outline

Introduction to High Performance Computing

Definitions

Parallel programming

SURFsara facilities

Presentation

Systems and specifications

Running jobs

Hands-on exercises

Exercise available in your home directories (LisaGPUTutorials.txt)

26

SURFsara is part of SURF

27

Location of SURFsara

28

Activities at SURFsara

Regular user support: from a few minutes to a couple of days

Application enabling for Dutch Compute Challenge Projects

Potential effort by SURFsara staff: 1 to 6 person months per project

Performance improvement of applications

Typically meant for promising user applications

Potential effort by SURFsara staff: 3 to 6 person months per project

Support for PRACE applications: access to European systems

Visualization projects

Training and workshops (regular and on demand)

Please contact SURFsara at helpdesk@surfsara.nl

29

mailto:hic@surfsara.nl

Dutch national supercomputers: performance increase

30

Year Machine Rpeak (GFlop/s) kW GFlop/s/ kW

1984 CDC Cyber 205 1-pipe 0.1 250 0.0004

1988 CDC Cyber 205 2-pipe 0.2 250 0.0008

1991 Cray Y-MP/4128 1.33 200 0.0067

1994 Cray C98/4256 4 300 0.0133

1997 Cray C916/121024 12 500 0.024

2000 SGI Origin 3800 1,024 300 3.4

2004 SGI Origin 3800 +SGI Altix
3700

3,200 500 6.4

2007 IBM p575 Power5+ 14,592 375 40

2008 IBM p575 Power6 62,566 540 116

2009 IBM p575 Power6 64,973 560 116

2013 Bull bullx DLC 250,000 260 962

2014 Bull bullx DLC >1,000,000 >520 1923

2017 Bull bullx DLC + KNL > 1,800,000

2016 Raspberry PI 3 (35 euro) 0.44 0.004 110

Schematic overview of a supercomputer

31

Specific example: Lisa architecture

32

/scratch /home /project

login3

login4 r12n3

r12n2

r12n1 r25n1

r25n2

…

r12n3

… …

/archive

Specific example: Cartesius architecture

33

/scratch /home /project

int1

int2 tcn12

tcn11

tcn10 fcn1

fcn2

…

fcn3

… …

/archive

Specific example: Cartesius architecture

34

/scratch /home /project

int1

int2 tcn12

tcn11

tcn10 fcn1

fcn2

…

fcn3

… …

/archive

high-performance network between nodes

Compute power on Cartesius

1 thin node island, a so-called Bull sequana X1000 cell

177 sequana X1110 thin nodes, each with 2 × 16-core 2.6 GHz Intel
Xeon E5-2697A v4 and 64 GB memory

3 thin node islands

360 bullx B720 thin nodes, each with 2 × 12-core 2.6 GHz Intel Xeon
E5-2690 v3 and 64 GB memory

2 thin node islands

360 + 180 bullx B710 thin nodes, each with 2 × 12-core 2.4 GHz Intel
Xeon E5-2695 v2 and 64 GB memory

35

Compute power on Cartesius

1 fat node island

32 bullx R428 E3 fat nodes with 4 × 8-core 2.7 GHz Intel Xeon E5-
4650 and 256 GB memory

18 sequana X1210 Xeon Phi nodes

64-core 1.3 GHz Intel Xeon Phi 7230 (Knights Landing) with 96 GB
memory

1 accelerator island with 66 bullx B515 GPGPU accelerated nodes

2 × 8-core 2.5 GHz Intel Xeon E5-2450 v2 with 96 GB memory

2 × NVIDIA Tesla K40m GPGPUs/node

36

Compute power on Cartesius

2 bullx R423-E3 interactive front end nodes

2 × 8-core 2.9 GHz Intel Xeon E5-2690 with 128 GB memory

5 bullx R423-E3 service nodes

2 × 8-core 2.9 GHz Intel Xeon E5-2690 with 32 GB memory

Global summary

47,776 cores + 132 GPUs: 1.843 Pflop/s (peak performance)

130 TB memory

37

Compute power on Cartesius

Low-latency network: 4x FDR14 InfiniBand

Non-blocking within fat- and thin-node islands and 3.3 : 1 inter-island pruning factor

56 Gbit/s inter-node bandwidth

2.4 µs inter-island latency

Maximum 700 nodes per job

File systems and I/O

180 TB NFS file system (home)

7.7 PB Lustre file system (scratch and project)

bullx GNU/Linux OS, compatible with Red Hat Enterprise Linux

Specific policy for software installation and maintenance

38

Compute power on Lisa

39

Number Processor
Type Clock Scratch Memory Sockets Cache Cores GPUs Interconne

ct

23 Bronze
3104 1.70 GHz 1.5 TB

NVME
256 GB UPI
10.4 GT/s 2 8.25 MB 12

4 x
GeForce
1080Ti, 11
GB
GDDR5X

40 Gbit/s
Ethernet

2 Bronze
3104 1.70 GHz 1.5 TB

NVME
256 GB UPI
10.4 GT/s 2 8.25 MB 12

4 x Titan V,
12GB
HBM2

40 Gbit/s
Ethernet

8 Gold 5118 2.30 GHz 1.5 TB
NVME

192 GB UPI
10.4 GT/s 2 16.5 MB 24

4 x Titan
RTX, 24 GB
GDDR6

40 Gbit/s
Ethernet

192 Gold 6130 2.10 GHz 1.7 TB 96 GB UPI
10.4 GT/s 1 22 MB 16 - 10 Gbit/s

Ethernet

96 Silver 4110 2.10 GHz 1.8 TB 64 GB UPI
9.6 GT/s 2 11 MB 16 - 10 Gbit/s

Ethernet

1 E7-8857
v2 3.00 GHz 13 TB 1 TB QPI

8.00 GT/s 4 30 MB 48 - 10 Gbit/s
Ethernet

1 Gold 6126 2.60 GHz 11 TB 2 TB UPI
10.4 GT/s 4 19.25 MB 48 - 40 Gbit/s

Ethernet

https://ark.intel.com/products/123546/
https://ark.intel.com/products/123546/
https://ark.intel.com/content/www/us/en/ark/products/120473/intel-xeon-gold-5118-processor-16-5m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120492/intel-xeon-gold-6130-processor-22m-cache-2-10-ghz.html
http://ark.intel.com/products/123547/
http://ark.intel.com/nl/products/75254/
http://ark.intel.com/nl/products/120483/

Compute power on Lisa

CPU nodes
Total number of CPU cores: 4704
Total amount of memory: 30 TB
Total peak performance: 263 TFlop/sec
Disk space: 400 TB for the home file systems
Operating System: Debian Linux

GPU nodes
Total number of CPU cores: 492
Total number of CUDA cores: 376832
Total number of Tensor cores: 1280
Total amount of memory: 6.3 TB
Total peak performance (SP): 1,576.8 TFlop/sec
Total peak performance (DP): 52.9 TFlop/sec

40

File systems on Cartesius and Lisa

/home/user

User home directory (quota - currently 200GB)

Storage of important files (sources, scripts, input and output data)

Backed up

Based on NFS: not the fastest file system

/scratch (/scratch-local & /scratch-shared on Cartesius)

Variable quota depending on disk (currently 8 TB on Cartesius)

Temporary storage (during running of a job and shortly thereafter)

Not backed up: any data is removed after 14 days !!!

Based on Lustre: the fastest file systems on Cartesius & Lisa

41

File systems on Cartesius and Lisa

/archive

Connected to the tape robot (quota – virtually unlimited)

Given upon request for long term storage of files (in compressed format)

Backed up

Slow – especially to retrieve “old” data – and not available in compute nodes

/project

Large and fast on Cartesius. On Lisa, large but not so fast

Given upon request for special projects requiring lots of space

Not backed up, but permanent until the end of the associated project

Comparable in speed with /scratch on Caratesius. On Lisa, comparable to /home

42

Running jobs: first change your password

43

https://portal.surfsara.nl

https://portal.surfsara.nl/

User portal

44

User portal

45

User portal

46

Connecting to Cartesius or Lisa

47

Windows operating system

MobaXterm (recommended): https://mobaxterm.mobatek.net/

PLEASE DOWNLOAD THE PORTABLE EDITION !!!

Putty

MacOS

Terminal (preinstalled)

XQuartz (http://www.xquartz.org)

Linux

You are already well equipped!

https://mobaxterm.mobatek.net/
http://www.xquartz.org/

Connecting to Lisa

49

user@local:~$ ls
local-file.txt
user@local:~$ scp local_file.txt lgpu0000@lisa.surfsara.nl:
user@local:~$ scp lgpu0000@lisa.surfsara.nl:lisa_file.txt .
user@local:~$ ls
lisa-file.txt local-file.txt
user@local:~$ ssh lgpu0000@lisa.surfsara.nl
lgpu0000@lisa.surfsara.nl's password:
lgpu0000@login4:~$ ls
lisa-file.txt local-file.txt

user@local:~$ ssh lgpu0000@lisa.surfsara.nl
sdemo000@lisa.surfsara.nl's password:
sdemo000@login4:~$ ls
lisa-file.txt

When you log in with ssh, you access the login nodes

With scp you can transfer files to/from your local machine

mailto:sdemo000@cartesius.surfsara.nl
mailto:sdemo000@cartesius.surfsara.nl:cartesius_file.txt
mailto:sdemo000@cartesius.surfsara.nl
mailto:sdemo000@cartesius.surfsara.nl

Running jobs: how-to guide

Schedulers distribute work to batch nodes

Workflow:

1. You upload your data from your computer to the cluster system

2. You create a job script with the work steps

3. You submit the job script to the scheduler

4. The scheduler looks for available computers to run your work

5. When a batch node with the requirements you specified becomes available,
your work runs

6. When the job is finished, you download the results to your computer

Batch scheduler on Cartesius and Lisa: SLURM

50

Running jobs: useful commands of the SLURM scheduler

51

sbatch <jobscript> - submit a job to the scheduler

squeue -j <job_id> - inspect the status of job <job_id>

squeue –u <user_id> - inspect all jobs of user <user_id>

scancel <job_id> - cancel job <job_id> before it runs

scontrol show job <job_id> - show estimated job start

Running jobs: first example

Create a text file with exactly the first lines;
name the file “job.sh”

Submit this job with “sbatch job.sh” and look
the status with “squeue –u login_id”

Use “scontrol show job job_id” to find out
when your job will run

Look at your home-directory to see what
happens there; look at the files.

Which files were created? Look at those files.

Try to play with email notifications!

#SBATCH --mail-type=BEGIN,END

#SBATCH --mail-user=<your_email_address>

52

#!/bin/bash
#SBATCH --job-name=“firsttest"
#SBATCH --nodes=1
#SBATCH --ntasks=10
#SBATCH --time=00:01:00
#SBATCH --partition=normal

echo "Who am I?"
whoami
echo

echo "Where ?"
srun hostname
echo

sleep 120

date
echo "DONE"

Running jobs: best practices

53

Give the scheduler a realistic walltime estimate

Your home directory is slow. Use $TMPDIR.

Load software modules as part of your job script – this improves
reproducibility

Run parallel versions of your programs (and use “srun” to ask SLURM
to run multi-process applications)

Anatomy of a job script

54

Job scripts consist of:

the “shebang” line: #!/bin/bash

scheduler directives

command(s) that load software modules and set the environment

command(s) to prepare the input

command(s) that run your main task(s)

command(s) to save your output

Module management: useful commands

55

module avail - available modules in the system

module load <mod> - load <mod> in the shell environment

module list - show a list of all loaded modules

module unload <mod> - remove <mod> from the environment

module purge - unload all modules

module whatis <mod> - show information about <mod>

Example: a real job script

56

#!/bin/bash
#SBATCH –t 0:20:00
#SBATCH –N 1 –c 24

module load 2019
module load Python/2.7.14-foss-2017b

cp –r $HOME/run3 $TMPDIR

cd $TMPDIR/run3
python myscript.py input.dat

mkdir –p $HOME/run3/results
cp result.dat run3.log $HOME/run3/results

Running jobs: second example

Check the file “python.sh” in your home
directory:

linux-cluster-computing/cluster/batch

Submit this job with “sbatch python.sh”
and look the status with “squeue –u
login_id”

If you needed to use some input file or you
would generate an output file… where
would you put the copy commands for
scratch?

Now try the same with “pi.sh”… but first
compile the code! (./compilepi)

Can you play around with the variable
‘ncores’ and see some parallel efficiency?

57

#!/bin/bash
#SBATCH --job-name="python"
#SBATCH --nodes=1
#SBATCH --cpus-per-node=10
#SBATCH --time=00:10:00
#SBATCH --partition=normal

module purge
module load 2019
module load GCC

echo "OpenMP parallelism"

for ncores in {1..10}

do
export OMP_NUM_THREADS=$ncores
echo "CPUS: " $OMP_NUM_THREADS
echo "CPUS: " $OMP_NUM_THREADS >&2
./pi
echo "DONE "

done

Everything about jobs: user info pages

58

Go to:

https://userinfo.surfsara.nl

Click on the corresponding system:

Cartesius: Usage  Batch Usage (jobs)

Lisa: User guide  Creating and running jobs

https://userinfo.surfsara.nl/

Outline

Introduction to High Performance Computing

Definitions

Parallel programming

SURFsara facilities

Presentation

Systems and specifications

Running jobs

Hands-on exercises

Exercise available in your home directories (LisaGPUTutorials.txt)

60

THANK YOU FOR
YOUR ATTENTION

63

Carlos Teijeiro Barjas / Maxim Masterov

helpdesk@surfsara.nl

www.surf.nl

@SURF_onderzoek

Driving innovation together

	Slide Number 1
	Outline
	Outline
	High-performance computing (HPC) is …
	A computer is …
	A computer is …
	A larger computer actually is …
	A larger computer actually is …
	A larger computer actually is …
	A larger computer actually is …
	High-performance computing (HPC) …
	High-performance computing (HPC) …
	Outline
	SURFsara is part of SURF
	Location of SURFsara
	Activities at SURFsara
	Dutch national supercomputers: performance increase
	Schematic overview of a supercomputer
	Specific example: Lisa architecture
	Specific example: Cartesius architecture
	Specific example: Cartesius architecture
	Compute power on Cartesius
	Compute power on Cartesius
	Compute power on Cartesius
	Compute power on Cartesius
	Compute power on Lisa
	Compute power on Lisa
	File systems on Cartesius and Lisa
	File systems on Cartesius and Lisa
	Running jobs: first change your password
	User portal
	User portal
	User portal
	Connecting to Cartesius or Lisa
	Connecting to Lisa
	Running jobs: how-to guide
	Running jobs: useful commands of the SLURM scheduler
	Running jobs: first example
	Running jobs: best practices
	Anatomy of a job script
	Module management: useful commands
	Example: a real job script
	Running jobs: second example
	Everything about jobs: user info pages
	Outline
	Slide Number 63

