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Natural Language Processing (NLP)

€he New Hork Times

» machine translation (e.g. Google

Meet GPT-3. It Has Learned to Translate)
Code (and Blog and Argue). > dialogue systems (e.g. Apple’s Siri)

The latest natural-language system generates tweets, pens poetry, > toxic la nguage detection
summarizes emails, answers trivia questions, translates
languages and even writes its own computer programs.
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Bias in NLP!

e eEm = O
Translate Turn off instant translation

Bengali English Hungarian Detectlanguage ~ #,  English Spanish Hungarian ~

6 egy apolo. X  she'sanurse.
6 egy tudos. he is a scientist.
6 egy mémok. he is an engineer.
6 egy pék. she's a baker.
6 egy tanar. he is a teacher.
6 egy eskivoi szervez6. She is a wedding organizer.
6 egy vezérigazgatoja. he's a CEQ.
TP o<
<) = - 110/5000

'Image from Prates, Avelar, and Lamb [5].
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Introduction

How are undesirable biases learnt by LMs?

» What are the learning dynamics?
» What signals in the dataset can explain the bias?

» What is the relationship between measured bias in the parameters and biased behaviour?
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Method

» LSTM trained on Wikipedia text [4]
» 3 random seeds, shuffled datasets

» gender bias for occupations in LM pipeline
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How can we measure bias in LMs?

Gender bias for occupations in the LM pipeline
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task

Occupation
word

Language Model

Embedding bias Behaviour bias
» model parameters J » downstream task J

Dataset bias
» training corpus J
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How can we measure bias in LMs?

Embedding bias

he
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How can we measure bias in LMs?

Embedding bias?

father mother

brother e

3Ravfogel et al. [Classification Normal, 6].
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Embedding bias

A @ engiﬁ;ér

. nurse
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How can we measure bias in LMs?

Behaviour bias?

Sentence 1 Sentence 2 Semantic similarity
A man is walking A nurse is walking 0.2
A woman is walking A nurse is walking 0.6

» Bias = 0.2 - 0.6 = -0.4 (direction of “woman")

“Webster et al. [STS-B, 8]
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Embedding and Behaviour Bias
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Timeline: two granularities
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Timeline: two granularities
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Progression of embedding bias

T T T T T T 1
o 5,000 10,000 15000 20000 25000 30,000 3500040000 o 5 1o 15 20 25 30 35 40
timestep timestep
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[RESTLS

Progression of behaviour bias

[ 5.000 10000 15000 20000 25000 30000 35.00040.000 o 5 10 15 20 25 k) 35 40
timestep timestep
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Dataset bias: word-count statistics

» uni-lexical: occupation word frequency
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Dataset bias: word-count statistics

» uni-lexical: occupation word frequency
» “The nurse worked in the hospital.”
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Dataset bias: word-count statistics

» uni-lexical: occupation word frequency
» “The nurse worked in the hospital.”
» bi-lexical: co-occurrence with male words / co-occurrence with female words
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Dataset bias: word-count statistics

» uni-lexical: occupation word frequency
» “The nurse worked in the hospital.”

» bi-lexical: co-occurrence with male words / co-occurrence with female words
» “The janitor said he..."

Oskar van der Wal (ILLC) The learning dynamics of bias in language models 16 /41



Dataset bias: word-count statistics

» uni-lexical: occupation word frequency
» “The nurse worked in the hospital.”
» bi-lexical: co-occurrence with male words / co-occurrence with female words

» “The janitor said he..."
» “The janitor talked about her. ..’
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Correlation embedding bias with word-count stats

— uni
bi

Mean of correlation
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Correlation behaviour bias with word-count stats
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Results Feature Attribution

Feature Attributions
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Method

» Integrated Gradients [7]
> study role context in prediction “he” and “she™
» “The nurse/janitor lost the/his/her keys, because ...’
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Batch 3,851 embedding bias
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Batch 3,851 “the janitor”

the"'"
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theo 04
the0 04

the0 05

me(l 04

janitor® 01
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janitor0-0
janitor®-0
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sults Feature Attribution

Batch 3,851 “the nurse”
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Batch 36,751 embedding bias

batch apoch
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Results Feature Attribution

Batch 36,751 “the janitor”

the 004 janitor® 26
the 002 janitor?®
the0 08 janitor® 08
the0-0% janitor?2
the0° janitor®13
the 008 janitor® 12
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Batch 36,751 “the nurse”
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Epoch 40 embedding bias
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Results Feature Attribution

Epoch 40 “the janitor”
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Epoch 40 “the nurse”
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Results Feature Attribution

Discussion of results

» “nurse’ stronger bias than “janitor”

» contribution of “nurse” strong if no other or contradicting signal

» resembles (embedding) bias for these occupations
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Thank youl

Recap You can contact me anytime!

» bias is dynamic:

» female bias earlier > . . .
> between occupation words https://bias-barometer.github.io/

Our project website can be found here:

> different word-count stats explain bias
at different timesteps Oskar van der Wal

o.d.vanderwal@uva.nl
> < al th bi
measured bias aligns with biased https: //odvanderval .nl

behaviour /
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Labour statistics: % of female workers [following 9]

Oskar van der Wal (ILLC)

Occupation % | Occupation e
carpenter 21| editor 32
mechanician 4 | designers 54
construction worker 4 | accountant 6l
laborer 4 | auditor 6l
driver 6 | writer 63
sheriff 14 | baker a5
mover 18 | clerk 72
developer 20 | cashier 3
farmer 211 | counselors 73
guard 22 | attendant 16
chief 27 | teacher T8
janitor 34 | sewer &0
lawyer 35 | librarian B4
cook 38 | assistant B
physician 38 | cleaner 89
ced 319 | housekeeper | 89
analyst 41 | nurse 90
Manager 43 | receptionist | 90
SUPEEVISOT 44 | hairdressers | 92
salesperson 48 | secretary 95
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Correlation bias with labour statistics
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Problems with these challenge sets

> quality of benchmarks [1]
> dataset size [2]
» primarily focused on English language/culture

» language model still a black box
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Social and technical challenges for the field

Benchmarks Mitigation Interpretability
» developing good » debiasing » understanding how
sentences > effect of development models encode bias and
» multiple cultures and choices learn from text
languages > relationship intrinsic
» validation representation and

biased behaviour
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Intrinsic vs behaviour bias

Downstream
task

Occupation
word

Language Model

Behaviour bias

Intrinsic bias
» behaviour task

» parameters of the model
» closer to harm

» often one layer representation
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Future work: learning dynamics of intrinsic bias

Q- |
0 15,000

5,000 10,000
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Epoch 1

20,000 25,000 30.000 35,00040.000 [+] 5 10 15

The learning dynamics of bias in language models

Van der Wal, et al. (In Prep.)

Epoch 2-40

word

— janitor
chemist
worker
receptionist
nurse

20 25 30 35 40
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Future work: intrinsic vs behaviour bias

Van der Wal, et al. (In Prep.)

g Intrinsic bias Behaviour bias

occupation
— janitor
chemist
worker
receptionist
nurse

» Some evidence intrinsic bias does not correlate well with behaviour bias [3].
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