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Introduction

Natural Language Processing (NLP)

I machine translation (e.g. Google
Translate)

I dialogue systems (e.g. Apple’s Siri)
I toxic language detection
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Introduction

Bias in NLP1

1Image from Prates, Avelar, and Lamb [5].
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Introduction

How are undesirable biases learnt by LMs?

I What are the learning dynamics?
I What signals in the dataset can explain the bias?
I What is the relationship between measured bias in the parameters and biased behaviour?
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How can we measure bias in LMs?

Method

I LSTM trained on Wikipedia text [4]
I 3 random seeds, shuffled datasets
I gender bias for occupations in LM pipeline
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How can we measure bias in LMs?

Gender bias for occupations in the LM pipeline

Occupation
word

Downstream
task

+ + +

Language Model

Context

Dataset bias
I training corpus

Embedding bias
I model parameters

Behaviour bias
I downstream task
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How can we measure bias in LMs?

Embedding bias
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How can we measure bias in LMs?

Embedding bias2

3Ravfogel et al. [Classification Normal, 6].
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How can we measure bias in LMs?

Embedding bias
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How can we measure bias in LMs?

Behaviour bias3

Sentence 1 Sentence 2 Semantic similarity
A man is walking A nurse is walking 0.2
A woman is walking A nurse is walking 0.6

I Bias = 0.2 - 0.6 = -0.4 (direction of “woman”)

4Webster et al. [STS-B, 8]
Oskar van der Wal (ILLC) The learning dynamics of bias in language models 10 / 41



Results

Embedding and Behaviour Bias
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Results

Timeline: two granularities
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Results

Timeline: two granularities
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Results

Progression of embedding bias
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Results

Progression of behaviour bias
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Results

Dataset bias: word-count statistics

I uni-lexical: occupation word frequency

I “The nurse worked in the hospital.”
I bi-lexical: co-occurrence with male words / co-occurrence with female words

I “The janitor said he. . . ”
I “The janitor talked about her. . . ”

Oskar van der Wal (ILLC) The learning dynamics of bias in language models 16 / 41



Results

Dataset bias: word-count statistics

I uni-lexical: occupation word frequency
I “The nurse worked in the hospital.”

I bi-lexical: co-occurrence with male words / co-occurrence with female words

I “The janitor said he. . . ”
I “The janitor talked about her. . . ”

Oskar van der Wal (ILLC) The learning dynamics of bias in language models 16 / 41



Results

Dataset bias: word-count statistics

I uni-lexical: occupation word frequency
I “The nurse worked in the hospital.”

I bi-lexical: co-occurrence with male words / co-occurrence with female words

I “The janitor said he. . . ”
I “The janitor talked about her. . . ”

Oskar van der Wal (ILLC) The learning dynamics of bias in language models 16 / 41



Results

Dataset bias: word-count statistics

I uni-lexical: occupation word frequency
I “The nurse worked in the hospital.”

I bi-lexical: co-occurrence with male words / co-occurrence with female words
I “The janitor said he. . . ”

I “The janitor talked about her. . . ”

Oskar van der Wal (ILLC) The learning dynamics of bias in language models 16 / 41



Results

Dataset bias: word-count statistics

I uni-lexical: occupation word frequency
I “The nurse worked in the hospital.”

I bi-lexical: co-occurrence with male words / co-occurrence with female words
I “The janitor said he. . . ”
I “The janitor talked about her. . . ”

Oskar van der Wal (ILLC) The learning dynamics of bias in language models 16 / 41



Results

Correlation embedding bias with word-count stats
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Results

Correlation behaviour bias with word-count stats
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Results Feature Attribution

Feature Attributions
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Results Feature Attribution

Method

I Integrated Gradients [7]
I study role context in prediction “he” and “she”:

I “The nurse/janitor lost the/his/her keys, because . . . ”
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Results Feature Attribution

Batch 3,851 embedding bias
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Results Feature Attribution

Batch 3,851 “the janitor”

Oskar van der Wal (ILLC) The learning dynamics of bias in language models 22 / 41



Results Feature Attribution

Batch 3,851 “the nurse”
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Results Feature Attribution

Batch 36,751 embedding bias
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Results Feature Attribution

Batch 36,751 “the janitor”
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Results Feature Attribution

Batch 36,751 “the nurse”
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Results Feature Attribution

Epoch 40 embedding bias
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Results Feature Attribution

Epoch 40 “the janitor”
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Results Feature Attribution

Epoch 40 “the nurse”
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Results Feature Attribution

Discussion of results

I “nurse” stronger bias than “janitor”
I contribution of “nurse” strong if no other or contradicting signal
I resembles (embedding) bias for these occupations
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Conclusion

Thank you!

Recap
I bias is dynamic:

I female bias earlier
I between occupation words

I different word-count stats explain bias
at different timesteps

I measured bias aligns with biased
behaviour

You can contact me anytime!
Our project website can be found here:
I https://bias-barometer.github.io/

Oskar van der Wal
o.d.vanderwal@uva.nl

https://odvanderwal.nl
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Labour statistics: % of female workers [following 9]
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Correlation bias with labour statistics
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Problems with these challenge sets

I quality of benchmarks [1]
I dataset size [2]
I primarily focused on English language/culture
I language model still a black box

Oskar van der Wal (ILLC) The learning dynamics of bias in language models 37 / 41



Social and technical challenges for the field

Benchmarks
I developing good

sentences
I multiple cultures and

languages
I validation

Mitigation
I debiasing
I effect of development

choices

Interpretability
I understanding how

models encode bias and
learn from text

I relationship intrinsic
representation and
biased behaviour
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Intrinsic vs behaviour bias

Occupation
word

Downstream
task

+ + +

Language Model

Context

Intrinsic bias
I parameters of the model
I often one layer representation

Behaviour bias
I behaviour task
I closer to harm
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Future work: learning dynamics of intrinsic bias
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Future work: intrinsic vs behaviour bias

I Some evidence intrinsic bias does not correlate well with behaviour bias [3].
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