Extracting Grammar Rules from Neural Language Models

Jaap Jumelet & Jelle Zuidema

What do they 'know' about language?

• Syntactic **phenomena**

What do they 'know' about language?

- Syntactic **phenomena**
 - Subject-verb agreement:

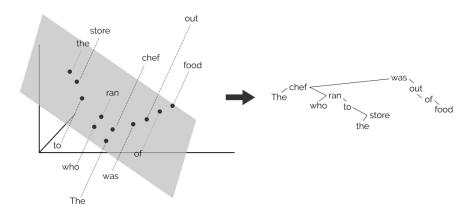
 $P_{\text{LM}}(are \mid The \text{ keys near that } \underline{table}) > P_{\text{LM}}(\underline{is} \mid The \text{ keys near that } \underline{table})$

What do they 'know' about language?

- Syntactic **phenomena**
 - Subject-verb agreement: $P_{LM}(are \mid The \ keys \ near \ that \ \underline{table}) > P_{LM}(\underline{is} \mid The \ keys \ near \ that \ \underline{table})$
 - $\circ \quad \mbox{Determiner-noun agreement:} \\ P_{\rm LM}(\textit{table} \mid \textit{The keys near that}) > P_{\rm LM}(\textit{tables} \mid \textit{The keys near that})$
 - ... Many more

What do they 'know' about language?

- Syntactic **structure**
 - Structural Probes



What do they 'know' about language?

Syntactic structure
 Structural Probes
 to

out

who

> store

food

store

was

whó

The

Hewitt et al. (2019)

What do they 'know' about language?

- Syntactic **structure**
 - Structural Probes
 - ✓ Easy to train
 - ✔ Applicable to many formalisms

What do they 'know' about language?

- Syntactic **structure**
 - Structural Probes
 - ✓ Easy to train
 - Applicable to many formalisms
 - ... but
 - X Probing is always **supervised**
 - X Did we interpret the model, or did the probe learn the task itself?
 - **X** Is the extracted structure even used for model **predictions**?

Project Goal

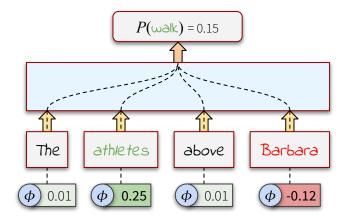
Can we extract grammatical structure from a model in a way that is:

• Unsupervised

• Reflective of model predictions

... to gain insights into a model's comprehension of the structural patterns that underlie the task it was trained on.

- Feature attributions
 - Explain model behaviour as a **sum** of **contributions**:



- Feature attributions
 - Explain model behaviour as a **sum** of **contributions**
 - Often explained in relation to a **baseline**:
 - odelta
 - zero-valued
 - random input

- Feature attributions
 - Explain model behaviour as a **sum** of **contributions**
 - Often explained in relation to a **baseline**
 - **Faithfulness** is hard to guarantee:
 - Are odd explanations indicative of odd model behaviour, or of a faulty explanation method?
 - How can we know the *true explanation* of a model?

What do we 'know' about language models?

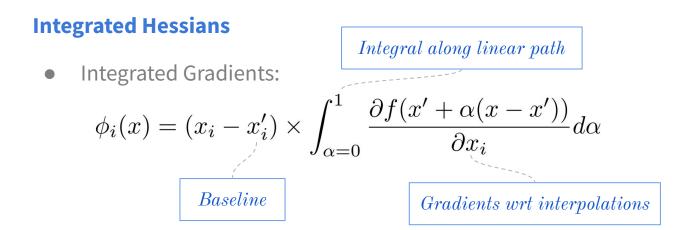
- Feature attributions
 - Explain model behaviour as a **sum** of **contributions**
 - Often explained in relation to a **baseline**
 - **Faithfulness** is hard to guarantee
 - **×** 'Flat' contributions represent a limited view of model behaviour:
 - What are the contributions of a sentiment classifier for

"This movie was not bad"?

• **Feature interactions** can provide more fine-grained insights

Integrated Hessians

Janizek et al. (2021)



Integrated Hessians

- Integrated Gradients
- Apply **IG** to itself:

$$\Gamma_{i,j}(x) = \phi_j(\phi_i(x))$$

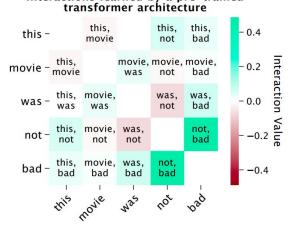
 $\Gamma_{\!\!i,j}$ represents how much feature j contributed to the contribution of feature i

Integrated Hessians

- Integrated Gradients
- Apply **IG** to itself:

 $\Gamma_{i,j}(x) = \phi_j(\phi_i(x))$

 $\Gamma_{\!\!i,\!j}$ represents how much feature j contributed to the contribution of feature i



Interactions learned by a pre-trained

Use Integrated Hessians to gain insights into the grammatical knowledge of a LM.

The Hurdle

We can't just blindly apply this to BERT and see what happens without better guarantees of **faithfulness**

The Solution

First test the setup on grey-box LMs:

- Trained on a simple task that is well understood
- Trained to 100% accuracy

Here:

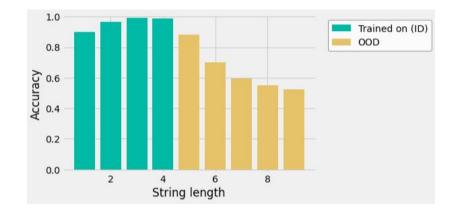
- Simple CFGs:
 - Palindromes: aabcCBAA
 - <u>Dyck</u>: ([(())()])

Setup

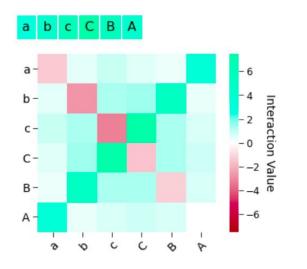
- Train LSTMs as **string classifiers**: was a string well-formed or not?
 - E.g. for palindromes:
 LSTM(abbBBA) = 1, LSTM(abbBAA) = 0
- Apply Integrated Hessians (IH) to the string classification
- Check if the IH interactions reflect the dependencies of the task

Palindromes

Task Performance not perfect yet:

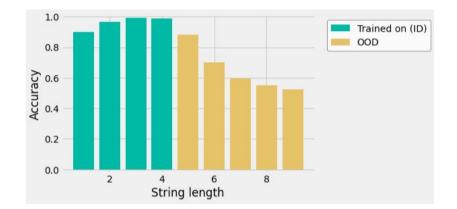


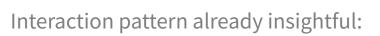
Interaction pattern already insightful:

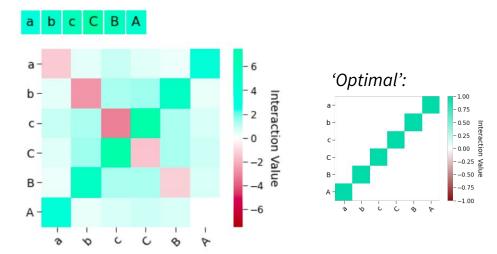


Palindromes

Task Performance not perfect yet:

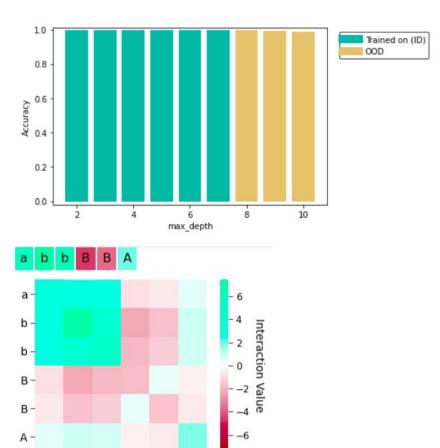






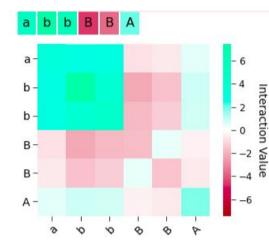
Dyck-2

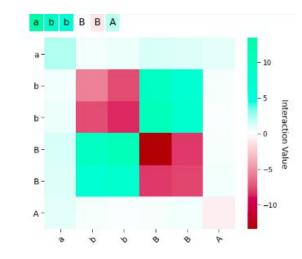
Task Performance (near) perfect:

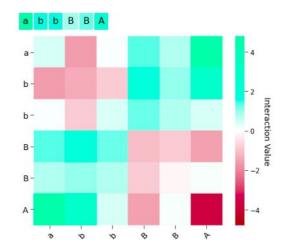


Instability of IH

When retraining with the same hyperparameters different interactions arise:





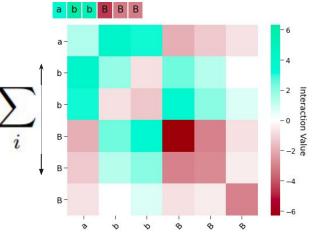


Evaluating Integrated Hessians

We can evaluate the obtained interactions with respect to the attributions of Integrated Gradients, which in turn can be compared to the output of the model

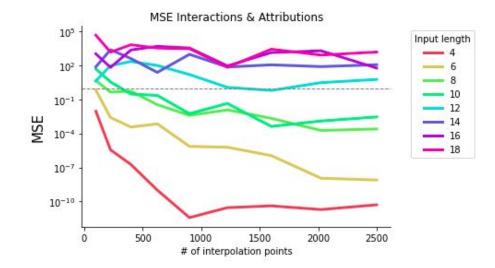
IG:
$$\sum_i \phi_i(x) = f(x) - f(x').$$

IH:
$$\sum_{i} \sum_{j} \Gamma_{i,j}(x) = f(x) - f(x').$$



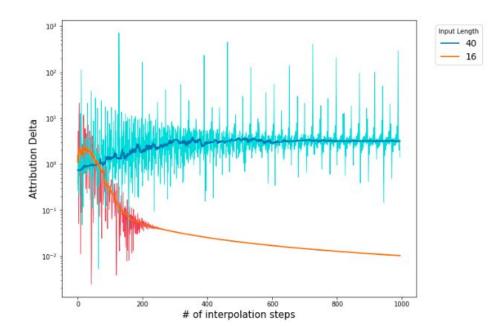
Evaluating Integrated Hessians

No convergence for longer input strings!



Evaluating Integrated Hessians

Integrated Gradients also fails on longer input!



What now?

- It turns out not only the faithfulness of a method to a model is of importance
- Because explanation methods often present an approximation to a complex quantity (Integral, Shapley values, etc.), the output of the method contains uncertainty as well

Future steps

- Reduce instability of IH on longer strings
- Experiment with more baselines
- Test on more tasks (both simpler and more complex -> NL)