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What do they ‘know’ about language?

● Syntactic phenomena

○ Subject-verb agreement:
PLM(are | The keys near that table) > PLM(is | The keys near that table)

○ Determiner-noun agreement:
PLM(table | The keys near that) > PLM(tables | The keys near that)

○ ... Many more
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Language Models and Grammar
What do they ‘know’ about language?

● Syntactic structure

○ Structural Probes

✔ Easy to train
✔ Applicable to many formalisms

... but
✗ Probing is always supervised
✗ Did we interpret the model, or did the probe learn the task itself?
✗ Is the extracted structure even used for model predictions? 



Project Goal

Can we extract grammatical structure from a model in a way that is:

○ Unsupervised

○ Reflective of model predictions

... to gain insights into a modelʼs comprehension of the structural 

patterns that underlie the task it was trained on.
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Language Models and Explanations
What do we ‘know’ about language models?

● Feature attributions

○ Explain model behaviour as a sum of contributions

○ Often explained in relation to a baseline

✗ Faithfulness is hard to guarantee

✗ ʻFlatʼ contributions represent a limited view of model behaviour:

· What are the contributions of a sentiment classifier for 

                  “This movie was not bad” ?

· Feature interactions can provide more fine-grained insights
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● Integrated Gradients:

Janizek et al. (2021)

Baseline

Integral along linear path

Gradients wrt interpolations
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The Plan

Use Integrated Hessians to gain insights into the grammatical knowledge of a LM.



The Hurdle

We canʼt just blindly apply this to BERT and see what happens without better 
guarantees of faithfulness



The Solution

First test the setup on grey-box LMs:

- Trained on a simple task that is well understood

- Trained to 100% accuracy

Here:

- Simple CFGs: 
- Palindromes: aabcCBAA
- Dyck: ([(())()])



Setup

● Train LSTMs as string classifiers: was a string well-formed or not?

○ E.g. for palindromes:

LSTM(abbBBA) = 1, LSTM(abbBAA) = 0

● Apply Integrated Hessians (IH) to the string classification

● Check if the IH interactions reflect the dependencies of the task



Palindromes

Task Performance not perfect yet:

Interaction pattern already insightful:
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Task Performance not perfect yet:

Interaction pattern already insightful:

ʻOptimalʼ:



Dyck-2

Task Performance (near) perfect:

Interaction pattern less insightful:



Instability of IH

When retraining with the same hyperparameters different interactions arise:



Evaluating Integrated Hessians

We can evaluate the obtained interactions with respect to the attributions of Integrated Gradients, 
which in turn can be compared to the output of the model

IG:

IH:



Evaluating Integrated Hessians

No convergence for longer input strings!



Evaluating Integrated Hessians

Integrated Gradients also fails on longer input!



What now?

● It turns out not only the faithfulness of a method to a model is of importance

● Because explanation methods often present an approximation to a complex 
quantity (Integral, Shapley values, etc.), the output of the method contains 
uncertainty as well

Future steps

● Reduce instability of IH on longer strings

● Experiment with more baselines

● Test on more tasks (both simpler and more complex -> NL)


