# Textual Entailment and Paraphrasing NLP1

Miguel Rios m.riosgaona@uva.nl University of Amsterdam

November 29, 2018

Applications of Textual Entailment

### Outline



#### Introduction

- Applications of Textual Entailment
- Levels of Representation
- 3 RTE Methods• Evaluation
- 4 Current Methe
  - NLI Datasets
  - Neural Network Models
  - Latent Variable Models
  - Drawbacks

Applications of Textual Entailment

### Introduction

 Textual entailment is defined as a directional relation between pairs of text expressions, the T "Text", and the H "Hypothesis".

### Introduction

- Textual entailment is defined as a directional relation between pairs of text expressions, the T "Text", and the H "Hypothesis".
- We say that T entails H if the meaning of H can be inferred from the meaning of T, as would typically be interpreted by people.
  - $\mathsf{T}\to\mathsf{H}$

### Introduction

- Textual entailment is defined as a directional relation between pairs of text expressions, the T "Text", and the H "Hypothesis".
- We say that T entails H if the meaning of H can be inferred from the meaning of T, as would typically be interpreted by people.
  - $\mathsf{T}\to\mathsf{H}$

T: The purchase of Houston-based LexCorp by BMI for \$2Bn prompted widespread sell-offs by traders as they sought to minimize exposure. H: BMI acquired an American company.

Applications of Textual Entailment

# Recognising Textual Entailment

• Recognition: identification of a thing or person from **previous** encounters or **knowledge**.

Applications of Textual Entailment

# Recognising Textual Entailment

- Recognition: identification of a thing or person from **previous** encounters or **knowledge**.
- Physicians are trained in medicine to recognise and treat a disease.

Recognising Textual Entailment

• RTE Challenge (Dagan and Glickman, 2005), provides the first benchmark.

# Recognising Textual Entailment

- RTE Challenge (Dagan and Glickman, 2005), provides the first benchmark.
- Participant methods decide for each entailment pair whether T entails H or not.

# Recognising Textual Entailment

- RTE Challenge (Dagan and Glickman, 2005), provides the first benchmark.
- Participant methods decide for each entailment pair whether T entails H or not.
- The annotation used for the entailment decision is **TRUE** if T entails H or **FALSE** otherwise.

# **Recognising Textual Entailment**

- RTE Challenge (Dagan and Glickman, 2005), provides the first benchmark.
- Participant methods decide for each entailment pair whether T entails H or not.
- The annotation used for the entailment decision is **TRUE** if T entails H or **FALSE** otherwise.

RTE can be **framed** as a classification problem, where the entailment relations are the classes, and the RTE benchmark provides the essential evidence to build a **supervised binary classifier** (Dagan et al., 2010)

Applications of Textual Entailment

# Applications of Textual Entailment

 RTE has been proposed as a generic task that captures major semantic inference needs across natural language processing applications.

Applications of Textual Entailment

# Applications of Textual Entailment

- RTE has been proposed as a generic task that captures major semantic inference needs across natural language processing applications.
- We can frame natural language processing tasks as recognition.

Input as T and generated output as H.

### Question Answering

• Question Answering system generates as output the best candidate answers. While the top candidate may not be the correct answer, the correct answer is in the set of returned candidates.

## Question Answering

• Question Answering system generates as output the best candidate answers. While the top candidate may not be the correct answer, the correct answer is in the set of returned candidates.

T/Q: Arabic, for example, is used densely across North Africa and from the Eastern Mediterranean to the Philippines, as the key language of the Arab world. H/A: Arabic is the primary language of the Philippines.

## Summarisation

• Identifying if a new sentence contains information already by a summary-in-progress (redundancy detection) can be framed as the current summary as T and the new sentence as H.

• Identifying if a new sentence contains information already by a summary-in-progress (redundancy detection) can be framed as the current summary as T and the new sentence as H.

T/S1: Google and NASA announced a working agreement, Wednesday, that could result in the Internet giant building a complex of up to 1 million square feet on NASA-owned property, adjacent to Moffett Field, near Mountain View.

H/S2: Google may build a campus on NASA property.

# Outline



#### Introduction

Applications of Textual Entailment

#### 2 Levels of Representation

3 RTE Methods• Evaluation

#### 4) Current Metho

- NLI Datasets
- Neural Network Models
- Latent Variable Models
- Drawbacks

### Challenge of RTE

T: The purchase of Houston-based LexCorp by BMI for \$2Bn prompted widespread sell-offs by traders as they sought to minimize exposure. H: BMI acquired an American company.

# Challenge of RTE

T: The purchase of Houston-based LexCorp by BMI for \$2Bn prompted widespread sell-offs by traders as they sought to minimize exposure. H: BMI acquired an American company.

To recognise **TRUE** entailment relation:

• "company" in the Hypothesis can match "LexCorp",

# Challenge of RTE

T: The purchase of Houston-based LexCorp by BMI for \$2Bn prompted widespread sell-offs by traders as they sought to minimize exposure. H: BMI acquired an American company.

- "company" in the Hypothesis can match "LexCorp",
- "based in Houston" implies "American",

# Challenge of RTE

T: The purchase of Houston-based LexCorp by BMI for \$2Bn prompted widespread sell-offs by traders as they sought to minimize exposure. H: BMI acquired an American company.

- "company" in the Hypothesis can match "LexCorp",
- "based in Houston" implies "American",
- identify the relation "purchase",

# Challenge of RTE

T: The purchase of Houston-based LexCorp by BMI for \$2Bn prompted widespread sell-offs by traders as they sought to minimize exposure. H: BMI acquired an American company.

- "company" in the Hypothesis can match "LexCorp",
- "based in Houston" implies "American",
- identify the relation "purchase",
- determine that "A purchased by B" implies "B acquires A".

### Levels of Representation

• Determining the equivalence or non-equivalence of the meanings of the T-H.

### Levels of Representation

- Determining the equivalence or non-equivalence of the meanings of the T-H.
- The representation (e.g. words, syntax, semantics) of the T-H pair that is used to extract features to train a supervised classifier.

# Lexical level

• Every assertion (word) in the representation of H is contained in the representation T.

| Text       |                              |                            |                            |         |             |                                      |   |
|------------|------------------------------|----------------------------|----------------------------|---------|-------------|--------------------------------------|---|
| John Smith | drove                        | to Seattle                 | and be                     | ought a | Honda Civic | 1                                    |   |
|            | John()<br>Smith()<br>Drove() | to()<br>Seattle()<br>and() | bought()<br>a()<br>Honda() | Civic() |             |                                      |   |
| Hypothe    | sis<br>John                  | Smith d                    | Irove to                   | Seattle |             | \<br> <br>                           |   |
|            |                              | John() to                  | o()<br>seattle()           |         |             |                                      |   |
|            |                              |                            |                            |         |             | <ul><li>E &lt; &lt; E &gt;</li></ul> | 3 |
|            |                              |                            | Rios R1                    | E       |             |                                      |   |

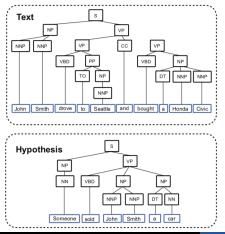
# Lexical level

• H and T sentences encode aspects of underlying meaning that cannot be captured by the purely lexical representation.

| Text       |                                                   | · · · · · · · · · · · · · · · · · · · |
|------------|---------------------------------------------------|---------------------------------------|
| John Smith | drove to Seatt                                    | le and bought a Honda Civic I         |
|            | John() to()<br>Smith() Seattle()<br>Drove() and() | bought() Civic()<br>a()<br>Honda()    |
|            |                                                   |                                       |
| Hypothe    | sis                                               | drove to Seattle                      |

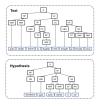
### Structural level

• Syntactic structure provides cues for the underlying meaning of a sentence.



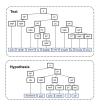
# Structural level

• If T contains the same structure (i.e, dependency edges), the system will predict TRUE and otherwise FALSE.



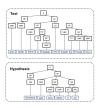
### Structural level

- If T contains the same structure (i.e, dependency edges), the system will predict TRUE and otherwise FALSE.
- "John" and "drove," but the two words are **separated** by a sequence of dependency edges.



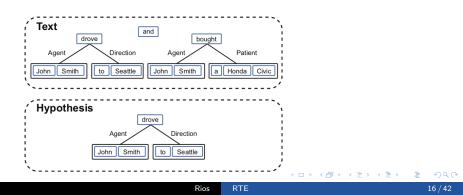
### Structural level

- If T contains the same structure (i.e, dependency edges), the system will predict TRUE and otherwise FALSE.
- "John" and "drove," but the two words are **separated** by a sequence of dependency edges.
- Given the expressiveness of the dependency representation, many possible sequences of edges that could represent connection, and many other sequences that do not.



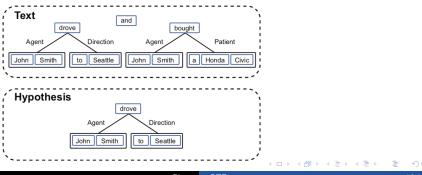
### Semantic level

 Semantic role labelling, grouping of words into "arguments" (entity such as a person or place) and "predicates" (a predicate being a verb representing the state of some entity).



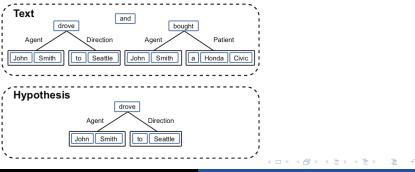
### Semantic level

- Semantic role labelling, grouping of words into "arguments" (entity such as a person or place) and "predicates" (a predicate being a verb representing the state of some entity).
- Immediate connections between arguments and predicates.



### Semantic level

- Semantic role labelling, grouping of words into "arguments" (entity such as a person or place) and "predicates" (a predicate being a verb representing the state of some entity).
- Immediate connections between arguments and predicates.
- "John" is an argument of the predicate "drove"



Knowledge Acquisition for RTE

• T: The U.S. citizens elected their new president Obama. H: Obama was born in the U.S.

Knowledge Acquisition for RTE

- T: The U.S. citizens elected their new president Obama. H: Obama was born in the U.S.
- Assumed **background knowledge**: "U.S. presidents should be naturally born in the U.S."

#### Knowledge Acquisition for RTE

• Knowledge is a lexical-semantic relation between two words.

- Knowledge is a lexical-semantic relation between two words.
- I enlarged my **stock**. and I enlarged my **inventory**. **synonym**

- Knowledge is a lexical-semantic relation between two words.
- I enlarged my **stock**. and I enlarged my **inventory**. **synonym**
- I have a cat. entails I have a pet. hyponymy

- Knowledge is a lexical-semantic relation between two words.
- I enlarged my stock. and I enlarged my inventory. synonym
- I have a cat. entails I have a pet. hyponymy
- But also meaning implication between more complex structures than just lexical terms.
   X causes Y → Y is a symptom of X

## Knowledge Acquisition for RTE

• WordNet specifies lexical-semantic relations between lexical items such as hyponymy, synonymy, and derivation. chair  $\rightarrow$  furniture

# Knowledge Acquisition for RTE

- WordNet specifies lexical-semantic relations between lexical items such as hyponymy, synonymy, and derivation. chair  $\rightarrow$  furniture
- FrameNet is a lexicographic resource for frames that are events and includes information on the predicates and argument relevant for that specific event. The attack frame, and specifies events: 'assailant', a 'victim', a 'weapon', etc.

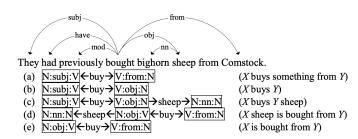
 $\mathsf{cure}\;X\to X\;\mathsf{recover}$ 

- WordNet specifies lexical-semantic relations between lexical items such as hyponymy, synonymy, and derivation. chair → furniture
- FrameNet is a lexicographic resource for frames that are events and includes information on the predicates and argument relevant for that specific event. The attack frame, and specifies events: 'assailant', a 'victim', a 'weapon', etc. cure X → X recover
- Wikipedia articles for identifying is a relations. Jim Carrey  $\rightarrow$  actor

## Knowledge Acquisition for RTE

• Extended Distributional Hypothesis: If two paths tend to occur in similar contexts, the meanings of the paths tend to be similar.

- Extended Distributional Hypothesis: If two paths tend to occur in similar contexts, the meanings of the paths tend to be similar.
- X solves Y Y is solved by X X finds a solution to Y



Evaluation

#### Outline



#### Introduction

• Applications of Textual Entailment

Levels of Representation



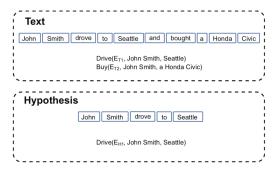
#### Current Met

- NLI Datasets
- Neural Network Models
- Latent Variable Models
- Drawbacks

Evaluation

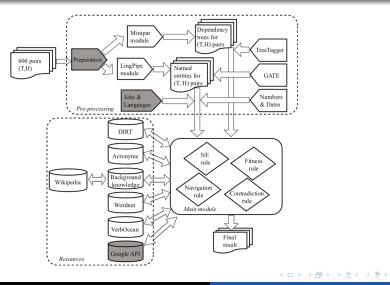
## Recognising Textual Entailment Methods

• RTE depend on the representation (e.g. words, syntax, semantics) of the T-H pair that is used to extract features to train a supervised classifier.



Evaluation

#### Recognising Textual Entailment Methods

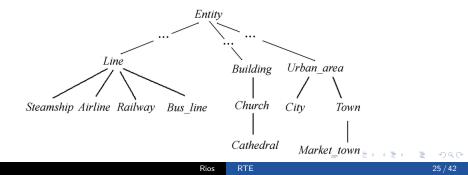


Rios F

Evaluation

### Similarity-based approaches

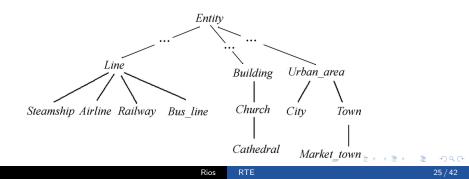
• Pair with a strong similarity score holds a positive entailment relation.



Evaluation

## Similarity-based approaches

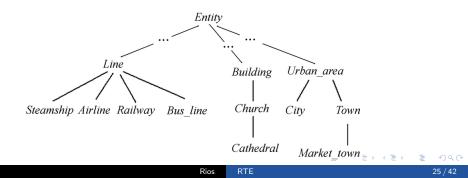
- Pair with a strong similarity score holds a positive entailment relation.
- Wordnet similarity.



Evaluation

## Similarity-based approaches

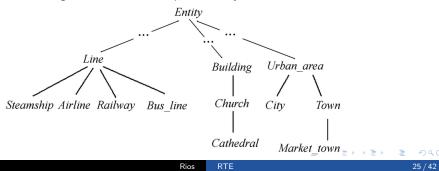
- Pair with a strong similarity score holds a positive entailment relation.
- Wordnet similarity.
- String similarity.



Evaluation

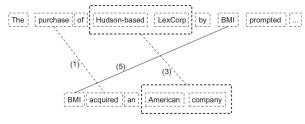
## Similarity-based approaches

- Pair with a strong similarity score holds a positive entailment relation.
- Wordnet similarity.
- String similarity.
- Similarity scores computed from different linguistic levels. The goal is to find complementary features.



Evaluation

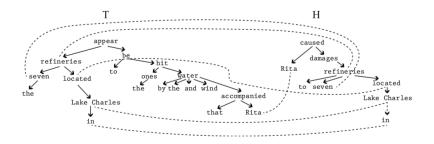
## Alignment-based approaches



- (1,purchase,acquired)
   (3,Hudson-based LexCorp, American company),
   (5,BMI,BMI)
- $\rho_4 = \text{purchase of } \overline{X} \text{ by } \overline{Y} \rightarrow \overline{Y} \text{ acquired } \overline{X}$
- $\rho_5 = \overline{Z:Noun} \text{ of } \overline{X} \text{ by } \overline{Y} \rightarrow \overline{Y} \overline{Z:Verb} \overline{X}$

Evaluation

#### Alignment-based approaches



æ

э

Evaluation

#### Formal Logic approaches

• Search for whether or not the entailment holds by finding proofs with a theorem prover.

Text: John bought a Jeep.

Hyp: John owns a car.

 $\begin{array}{l} \textbf{World Knowledge:}\\ 1. \ \forall \ X \ Jeep(X) \rightarrow car(X)\\ (a \ Jeep \ is \ a \ car)\\ 2. \ \forall \ X,Y \ buy(X,Y) \rightarrow own(X,Y)\\ (if \ X \ buys \ Y, \ then \ X \ owns \ Y) \end{array}$ 

**Proof:** Initial state of belief (Text):  $\exists A, B \text{ John}(A) \land \text{Jeep}(B) \land \text{buy}(A, B)$ (John bought a Jeep)

 $\begin{array}{l} Target \ assertion: \\ \exists \ C,D \ John(C) \ \land \ car(D) \ \land \ own(C,D) \end{array}$ 

1. apply rule 1 with Text clause "Jeep(B)": Jeep(B)  $\rightarrow$  car(B)

State of belief is now:  $\exists A, B \text{ John}(A) \land car(B) \land buy(A, B)$ 

2. apply rule 2 with Text clause "buy(A,B)": buy(A,B)  $\rightarrow$  own(A,B)

 $\begin{array}{l} \text{State of belief is now:} \\ \exists \ A,B \ John(A) \ \land \ car(B) \ \land \ own(A,B) \end{array}$ 

<ロ> <同> <同> <同> < 三> < 三>

Evaluation

#### Formal Logic approaches

- Search for whether or not the entailment holds by finding proofs with a theorem prover.
- Lack of background knowledge (recall vs. precision) which not many true decisions could be found.

Text: John bought a Jeep.

Hyp: John owns a car.

World Knowledge: 1.  $\forall X \text{Jeep}(X) \rightarrow \text{car}(X)$ (a Jeep is a car) 2.  $\forall X,Y \text{buy}(X,Y) \rightarrow \text{own}(X,Y)$ (if X buys Y, then X owns Y)

 $\begin{array}{l} \textbf{Proof: Initial state of belief (Text):} \\ \exists A,B John(A) \land Jeep(B) \land buy(A,B) \\ (John bought a Jeep) \end{array}$ 

Target assertion:  $\exists C,D John(C) \land car(D) \land own(C,D)$ 

1. apply rule 1 with Text clause "Jeep(B)": Jeep(B)  $\rightarrow$  car(B)

State of belief is now:  $\exists A, B \text{ John}(A) \land car(B) \land buy(A, B)$ 

2. apply rule 2 with Text clause "buy(A,B)": buy(A,B)  $\rightarrow$  own(A,B)

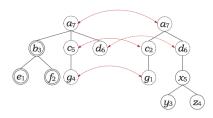
State of belief is now:  $\exists A,B John(A) \land car(B) \land own(A,B)$ 

<ロ> <同> <同> <同> < 三> < 三>

Evaluation

#### Edit distance-based approaches

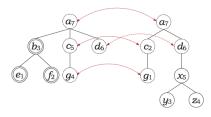
• T entails H if there is a sequence of transformations applied to T such that we can obtain H with an overall cost below a certain threshold.



Evaluation

#### Edit distance-based approaches

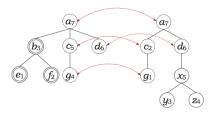
- T entails H if there is a **sequence of transformations** applied to T such that we can obtain H with an overall cost below a certain **threshold**.
- Insertion, Substitution, and Deletion.



Evaluation

### Edit distance-based approaches

- T entails H if there is a **sequence of transformations** applied to T such that we can obtain H with an overall cost below a certain **threshold**.
- Insertion, Substitution, and Deletion.
- Alternative for expensive theorem provers.



Evaluation

#### Evaluation





æ

<≣⇒

Evaluation

- Accuracy
- RTE-3 corpus **1,600** T-H pairs information extraction, information retrieval, question answering, and summarisation.

Evaluation

- Accuracy
- RTE-3 corpus **1,600** T-H pairs information extraction, information retrieval, question answering, and summarisation.
- The lexical baseline, between 55% and 58% accuracy

Evaluation

- Accuracy
- RTE-3 corpus **1,600** T-H pairs information extraction, information retrieval, question answering, and summarisation.
- The lexical baseline, between 55% and 58% accuracy
- RTE-3 higher scores all system entries suggesting an easier entailment corpus

Evaluation

- Accuracy
- RTE-3 corpus **1,600** T-H pairs information extraction, information retrieval, question answering, and summarisation.
- The lexical baseline, between 55% and 58% accuracy
- RTE-3 higher scores all system entries suggesting an easier entailment corpus
- RTE-4 and RTE-5 increase the difficulty by adding irrelevant signals (additional words, phrases, and sentences).

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

### Outline



#### Introduction

• Applications of Textual Entailment

Levels of Representation





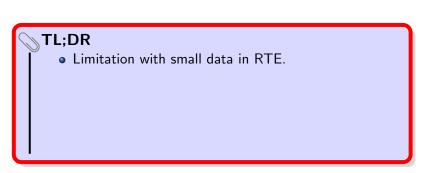
#### **Current Methods**

- NLI Datasets
- Neural Network Models
- Latent Variable Models
- Drawbacks

э

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

### Current Methods



æ

< ∃ >

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

#### Current Methods



- Limitation with small data in RTE.
- Availability of large NLI data.

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

#### Current Methods

#### TL;DR

- Limitation with small data in RTE.
- Availability of large NLI data.
- Flexibility of Neural Network models.

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

#### Current Methods

#### TL;DR

- Limitation with small data in RTE.
- Availability of large NLI data.
- Flexibility of Neural Network models.
- Lack of knowledge in NN models .

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

#### Current Methods

#### TL;DR

- Limitation with small data in RTE.
- Availability of large NLI data.
- Flexibility of Neural Network models.
- Lack of knowledge in NN models .
- Induce structure or representation given NLI task.

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

#### SNLI

• Flickr30k corpus for image captioning domaim. Annotated pairs of texts at sentence level

< A >

- ∢ ⊒ →

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

# SNLI

- Flickr30k corpus for image captioning domaim. Annotated pairs of texts at sentence level
- The relations (i.e. 3-way classification labels) are: *entailment, contradiction,* and *neutral.*

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

# SNLI

- Flickr30k corpus for image captioning domaim. Annotated pairs of texts at sentence level
- The relations (i.e. 3-way classification labels) are: *entailment, contradiction,* and *neutral.*
- 550, 152 training, 10K development, and 10k test.

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

# SNLI

- Flickr30k corpus for image captioning domaim. Annotated pairs of texts at sentence level
- The relations (i.e. 3-way classification labels) are: *entailment, contradiction,* and *neutral.*
- 550, 152 training, 10K development, and 10k test.
- Premise: A soccer game with multiple males playing. Hypothesis: Some men are playing a sport.

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

#### **MNLI**

Multiple genres

classifiers only learn **regularities** over annotated data, leading to **poor generalization** beyond the domain of the training data

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

### MNLI

Multiple genres

classifiers only learn **regularities** over annotated data, leading to **poor generalization** beyond the domain of the training data

• *matched* (5 in domain genres) 392,702 training, 10k *matched* development,

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

### MNLI

Multiple genres

classifiers only learn **regularities** over annotated data, leading to **poor generalization** beyond the domain of the training data

- *matched* (5 in domain genres) 392,702 training, 10k *matched* development,
- 10k mismatched (5 out of domain genres) development.

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

## MNLI

Multiple genres

classifiers only learn **regularities** over annotated data, leading to **poor generalization** beyond the domain of the training data

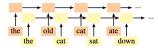
- *matched* (5 in domain genres) 392,702 training, 10k *matched* development,
- 10k mismatched (5 out of domain genres) development.
- T: 8 million in relief in the form of emergency housing.
   H: The 8 million dollars for emergency housing was still not enough to solve the problem.

#### Government

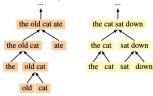
NLI Datasets Neural Network Models Latent Variable Models Drawbacks

## Neural Network Models

• Embeddings like glove or elmo, for fine tuning.



(a) A conventional sequence-based RNN for two sentences.

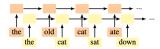


(b) A conventional TreeRNN for two sentences.

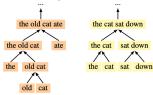
NLI Datasets Neural Network Models Latent Variable Models Drawbacks

# Neural Network Models

- Embeddings like glove or elmo, for fine tuning.
- Sentence representations.



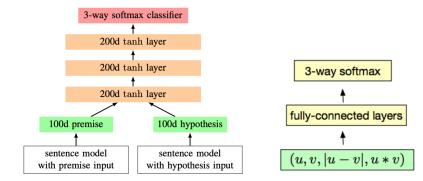
(a) A conventional sequence-based RNN for two sentences.



(b) A conventional TreeRNN for two sentences.

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

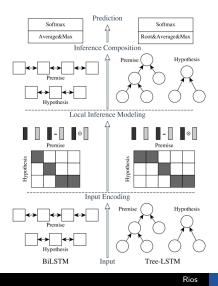
# **BiLSMT** composition



- 4 同 6 4 日 6 4 日 6

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

## **ESIM**



37 / 42

æ

<ロ> <同> <同> < 同> < 同>

Latent Variable Models

## Latent Structure Induction

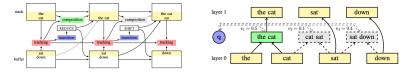
I saw the man with the telescope I saw the man with the telescope

(a) Two parse trees correspond to two distinct interpretations for the sentence in example (1).



He swung at the brute with his sword . He swung at the brute with his sword .

(b) Parses generated by at ST-Gumbel model (left) and the Stanford Parser (right).



NLI Datasets Neural Network Models Latent Variable Models Drawbacks

## Deep Generative Models

 Model that generates hypothesis and decision given a text and a stochastic embedding of the hypothesis-decision pair.

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

## Deep Generative Models

- Model that generates hypothesis and decision given a text and a stochastic embedding of the hypothesis-decision pair.
- Models to learn from mixed-domain NLI data
   e.g. by capitalising on lexical domain-dependent patterns.

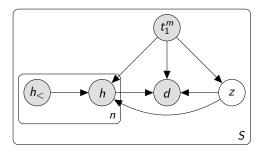
NLI Datasets Neural Network Models Latent Variable Models Drawbacks

## Deep Generative Models

- Model that generates hypothesis and decision given a text and a stochastic embedding of the hypothesis-decision pair.
- Models to learn from mixed-domain NLI data
   e.g. by capitalising on lexical domain-dependent patterns.
- Performance of standard classifiers tend to vary across domains and especially out of domain.

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

## Deep Generative Models



$$Z_i | t_1^m \sim \mathcal{N}(\mu(s_1^m), \sigma^2(s_1^m))$$
  

$$H_i | z_1^m \sim Cat(f(z_1^m, t_1^m; \theta))$$
  

$$D_j | z_1^m, h_1^n \sim Cat(g(z_1^m, t_1^m, h_1^n; \theta))$$

æ

NLI Datasets Neural Network Models Latent Variable Models Drawbacks

## Deep Generative Models

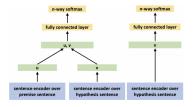
| Model                                | Dev              |                  |
|--------------------------------------|------------------|------------------|
|                                      | matched          | mismatched       |
| ESIM <sub>mnli</sub>                 | $74.39\pm0.11$   | $74.05\pm0.21$   |
| $+ \mathcal{N}$ -VAE <sub>50z</sub>  | $74.89 \pm 0.25$ | $74.07\pm0.37$   |
| $+ \mathcal{N}$ -VAE <sub>100z</sub> | $74.82 \pm 0.28$ | $73.91 \pm 0.59$ |
| + N-VAE <sub>256z</sub>              | $74.87\pm0.15$   | $74.08\pm0.16$   |
| - disentanglement                    | $74.47 \pm 0.13$ | $73.88\pm0.55$   |
| + S-VAE <sub>10z,1.0k</sub>          | $74.82 \pm 0.11$ | $74.59\pm0.02$   |

æ

<ロト <部ト < 注ト < 注ト

Introduction NLI Datasets Levels of Representation Neural Network Models RTE Methods Latent Variable Models Current Methods Drawbacks

#### Drawbacks



| Premise       | A woman selling bamboo sticks talking to two men on a loading dock. |
|---------------|---------------------------------------------------------------------|
| Entailment    | There are at least three people on a loading dock.                  |
| Neutral       | A woman is selling bamboo sticks to help provide for her family.    |
| Contradiction | A woman is <b>not</b> taking money for any of her sticks.           |

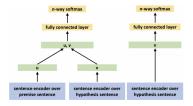
#### • Entailment: animal, instrument, and outdoors.

æ

< 日 > < 同 > < 三 > < 三 >

Introduction NLI Datasets Levels of Representation Neural Network Models RTE Methods Latent Variable Models Current Methods Drawbacks

## Drawbacks



| Premise       | A woman selling bamboo sticks talking to two men on a loading dock. |
|---------------|---------------------------------------------------------------------|
| Entailment    | There are at least three people on a loading dock.                  |
| Neutral       | A woman is selling bamboo sticks to help provide for her family.    |
| Contradiction | A woman is <b>not</b> taking money for any of her sticks.           |

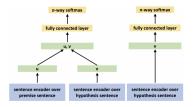
- Entailment: animal, instrument, and outdoors.
- Neutral: Modifiers (tall, sad, popular) and superlatives (first, favorite, most)

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

글 > - < 글 >

Introduction NLI Datasets Levels of Representation Neural Network Models RTE Methods Latent Variable Models Current Methods Drawbacks

## Drawbacks



| Premise       | A woman selling bamboo sticks talking to two men on a loading dock. |
|---------------|---------------------------------------------------------------------|
| Entailment    | There are at least three people on a loading dock.                  |
| Neutral       | A woman is selling bamboo sticks to help provide for her family.    |
| Contradiction | A woman is <b>not</b> taking money for any of her sticks.           |

- Entailment: animal, instrument, and outdoors.
- Neutral: Modifiers (tall, sad, popular) and superlatives (first, favorite, most)
- Contradiction: Negation words, nobody, no, never and nothing