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Compositional semantics

Compositional semantics

I Principle of Compositionality: meaning of each whole
phrase derivable from meaning of its parts.

I Sentence structure conveys some meaning
I Deep grammars: model semantics alongside syntax, one

semantic composition rule per syntax rule
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Compositional semantics

Semantic composition is non-trivial
I Similar syntactic structures may have different meanings:

it barks

it rains; it snows – pleonastic pronouns

I Different syntactic structures may have the same meaning:
Kim seems to sleep.

It seems that Kim sleeps.

I Not all phrases are interpreted compositionally, e.g. idioms:
red tape

kick the bucket

but they can be interpreted compositionally too, so we can
not simply block them.
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Compositional semantics

Semantic composition is non-trivial

I Elliptical constructions where additional meaning arises
through composition, e.g. logical metonymy:

fast programmer

fast plane

I Meaning transfer and additional connotations that arise
through composition, e.g. metaphor

I cant buy this story.

This sum will buy you a ride on the train.

I Recursion
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Compositional semantics

Recursion
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Compositional semantics

Compositional semantic models

1. Compositional distributional semantics
I model composition in a vector space
I unsupervised
I general-purpose representations

2. Compositional semantics in neural networks
I supervised
I task-specific representations
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Compositional distributional semantics

Compositional distributional semantics

Can distributional semantics be extended to account for the
meaning of phrases and sentences?

I Language can have an infinite number of sentences, given
a limited vocabulary

I So we can not learn vectors for all phrases and sentences
I and need to do composition in a distributional space
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Compositional distributional semantics

1. Vector mixture models

Mitchell and Lapata, 2010.
Composition in

Distributional Models of

Semantics

Models:

I Additive

I Multiplicative
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Compositional distributional semantics

Additive and multiplicative models

I correlate with human similarity judgments about
adjective-noun, noun-noun, verb-noun and noun-verb pairs

I but... commutative, hence do not account for word order
John hit the ball = The ball hit John!

I more suitable for modelling content words, would not port
well to function words:
e.g. some dogs; lice and dogs; lice on dogs
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Compositional distributional semantics

2. Lexical function models

Distinguish between:

I words whose meaning is
directly determined by their
distributional behaviour, e.g.
nouns

I words that act as functions
transforming the distributional
profile of other words, e.g.,
verbs, adjectives and
prepositions
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Compositional distributional semantics

Lexical function models
Baroni and Zamparelli, 2010. Nouns are vectors, adjectives are matrices:

Representing adjective-noun constructions in semantic space

Adjectives as lexical functions

old dog = old(dog)

I Adjectives are parameter matrices (Aold , Afurry , etc.).

I Nouns are vectors (house, dog, etc.).

I Composition is simply old dog = Aold ⇥ dog.
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Compositional distributional semantics

Learning adjective matrices
For each adjective, learn a set of parameters that allow to predict the
vectors of adjective-noun phrases

Training set:
house old house
dog old dog
car ! old car
cat old cat
toy old toy
... ...

Test set:
elephant ! old elephant
mercedes ! old mercedes
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Compositional distributional semantics

Learning adjective matrices

1. Obtain a distributional vector nj for each noun nj in the lexicon.

2. Collect adjective noun pairs (ai , nj) from the corpus.

3. Obtain a distributional vector pij of each pair (ai , nj) from the
same corpus using a conventional DSM.

4. The set of tuples {(nj ,pij)}j represents a dataset D(ai) for the
adjective ai .

5. Learn matrix Ai from D(ai) using linear regression.

Minimize the squared error loss:

L(Ai) =
X

j2D(ai )

kpij � Ainjk2
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Compositional distributional semantics

Verbs as higher-order tensors

Different patterns of subcategorization, i.e. how many (and
what kind of) arguments the verb takes

I Intransitive verbs: only subject
Kim slept

modelled as a matrix (second-order tensor): N ⇥ M

I Transitive verbs: subject and object
Kim loves her dog

modelled as a third-order tensor: N ⇥ M ⇥ K
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Compositional distributional semantics

Polysemy in lexical function models

Generally:

I use single representation for all senses

I assume that ambiguity can be handled as long as contextual
information is available

Exceptions:

I Kartsaklis and Sadrzadeh (2013): homonymy poses problems
and is better handled with prior disambiguation

I Gutierrez et al (2016): literal and metaphorical senses better
handled by separate models

I However, this is still an open research question.
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Compositional distributional semantics

Modelling metaphor in lexical function models
Gutierrez et al (2016). Literal and Metaphorical Senses in Compositional

Distributional Semantic Models.

I trained separate lexical functions for literal and metaphorical
senses of adjectives

I mapping from literal to metaphorical sense as a linear
transformation

I model can identify metaphorical expressions:

e.g. brilliant person

I and interpret them

brilliant person: clever person

brilliant person: genius
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Compositional semantics in neural networks

Compositional semantics in neural networks

I Supervised learning framework, i.e. train compositional
representations for a specific task

I taking word representations as input
I Possible tasks: sentiment analysis; natural language

inference; paraphrasing; machine translation etc.
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Compositional semantics in neural networks

Compositional semantics in neural networks

I recurrent neural networks (e.g. LSTM): sequential
processing, i.e. no sentence structure

Natural Language Processing: Part II Overview of Natural Language Processing (L90): ACS Lecture 9

Neural networks in pictures

Recurrent Neural Networks

http://colah.github.io/posts/
2015-08-Understanding-LSTMs/

I recursive neural networks (e.g. tree LSTM): model
compositional semantics alongside syntax
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Tree Recursive Neural Networks

Joost Bastings
bastings.github.io
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Recap

2

● Training basics

○ SGD

○ Backpropagation

○ Cross Entropy Loss

● Bag of Words models: BOW, CBOW, Deep CBOW

○ Can encode a sentence of arbitrary length, but loses word order

● Sequence models: RNN and LSTM

○ Sensitive to word order

○ RNN has vanishing gradient problem, LSTM deals with this

○ LSTM has input, forget, and output gates that control information flow



Exploiting tree structure
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Instead of treating our input as a sequence, we can take an alternative approach: 

assume a tree structure and use the principle of compositionality.

The meaning (vector) of a sentence is determined by:

1. the meanings of its words and

2. the rules that combine them

Adapted from Stanford cs224n.



Constituency Parse
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http://demo.allennlp.org/constituency-parsing 

Can we obtain a sentence vector using the tree structure given by a parse?

http://demo.allennlp.org/constituency-parsing


Recurrent vs Tree Recursive NN

5

I loved this movie

this movielovedI

RNNs cannot capture phrases without prefix context 
and often capture too much of last words in final vector

Tree Recursive neural 
networks require a parse 
tree for each sentence

Adapted from Stanford cs224n.



Practical II data set: Stanford Sentiment Treebank (SST)

6

              3                                                                     
  ____________|____________________                                                  
 |                                 4                                                
 |        _________________________|______________________________________________   
 |       4                                                                        | 
 |    ___|______________                                                          |  
 |   |                  4                                                         | 
 |   |         _________|__________                                               |  
 |   |        |                    3                                              | 
 |   |        |               _____|______________________                        |  
 |   |        |              |                            4                       | 
 |   |        |              |            ________________|_______                |  
 |   |        |              |           |                        2               | 
 |   |        |              |           |                 _______|___            |  
 |   |        3              |           |                |           2           | 
 |   |    ____|_____         |           |                |        ___|_____      |  
 |   |   |          4        |           3                |       2         |     | 
 |   |   |     _____|___     |      _____|_______         |    ___|___      |     |  
 2   2   2    3         2    2     3             2        2   2       2     2     2 
 |   |   |    |         |    |     |             |        |   |       |     |     |  
 It  's  a  lovely     film with lovely     performances  by Buy     and Accorsi  .

sentiment label for root node



A naive recursive NN

7

Combine every two children (left and right) into a parent node p:

p = tanh( Wleftxleft + Wrightxright + b )

a bit simplistic and
does not work well for 
longer sentences

Richard Socher et al. Parsing natural scenes and natural language with recursive neural networks. ICML 2011.

xleft xright

tanh



Better idea: generalize LSTM to tree structure
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Use the idea of LSTM (gates, memory cell) but allow for multiple inputs (node children)

Proposed by 3 groups in the same summer :-)

● Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved Semantic 

Representations From Tree-Structured Long Short-Term Memory Networks. ACL 2015.

○ Child-Sum Tree LSTM

○ N-ary Tree LSTM

● Phong Le and Willem Zuidema. 

Compositional distributional semantics with long short term memory. *SEM 2015.

● Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. 

Long short-term memory over recursive structures. ICML 2015.



⊙o
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Child-Sum Tree LSTM
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h1c1 hN cN

x

u

parent c

first child

parent h

ĥ = ∑h

⊙f1 ⊙fN

Nth child



Child-Sum Tree LSTM
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useful for encoding 
dependency trees
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⊙o

N-ary Tree LSTM

11

As seen in 
Practical II

left child

left hleft c right h right cx

u

parent c

right childword

parent h

⊙fl ⊙fr



N-ary Tree LSTM
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useful for encoding 
constituency trees



Transition Sequence Representation
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Building a tree with a transition sequence

14

We can describe a binary tree using a shift-reduce transition sequence

(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

We start with a buffer (queue) and an empty stack:

stack = [] 

buffer = queue([I, loved, this, movie])

Now we follow the transition sequence:

if SHIFT (S): take first word (leftmost) of the buffer, push it to the stack

if REDUCE (R): pop top 2 words from the stack and reduce them into one new node



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer I loved this movie
h c h c h c h c



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved this movie
h c h c h c



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved

this movie
h c h c



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved

this

movie
h c



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved

this

movie



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved

this

this movie

movie

this movie

Tree LSTM



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved this movie

loved this movie

loved this movie

Tree LSTM



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I loved this movie

I loved this movie

Tree LSTM

I loved this movie

this is your root node 
for classification

practical II explains how 
to obtain this sequence



Mini-batches
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SGD vs GD
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SGD:

for epoch in 1..E
  for each training example
    compute loss (forward pass)
    compute gradient of loss (backward)
    update parameters
  end for
end for

Gradient Descent (GD):

for epoch in 1..E
  for each training example
    compute loss (forward pass)
    compute gradient of loss (backward)
    accumulate gradient
  end for
  update parameters
end for

● fast, but high variance
● might find better optimum 

because of variance

Source: Neubig. 

Mini-batch SGD 
strikes a balance 

between these two

● slow, but more stable (not overly 
influenced by most recent training 
example)

● can get stuck in local optimum



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer It was boring *PAD*
h c h c h c h c

I loved this movie



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer *PAD*
h c

movie

I

loved

this

It

was

boring



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer *PAD*
h c

I

loved

this

It

was boring

movie



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer *PAD*
h c

I

loved

this movie

It was boring

this movie

Tree LSTM

It was boring

this movie

was boringIt



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer *PAD*
h c

I

loved this movie

It was boring



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer *PAD*
h c

It was boringI loved this movie



Summary
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Summary

32

● Tree-based models: Child-Sum & N-ary Tree LSTM

○ Generalize LSTM to tree structures 

○ Exploit compositionality, but require a parse tree

○ Transition sequence

● Mini-batch SGD
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Discourse structure

Document structure and discourse structure

I Most types of document are highly structured, implicitly or
explicitly:

I Scientific papers: conventional structure (differences
between disciplines).

I News stories: first sentence is a summary.
I Blogs, etc etc

I Topics within documents.
I Relationships between sentences.
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Discourse structure

Rhetorical relations

Max fell. John pushed him.

can be interpreted as:
1. Max fell because John pushed him.

EXPLANATION
or

2 Max fell and then John pushed him.
NARRATION

Implicit relationship: discourse relation or rhetorical relation
because, and then are examples of cue phrases
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Discourse structure

Rhetorical relations

Analysis of text with rhetorical relations generally gives a binary
branching structure:

I nucleus (the main phrase) and satellite (the subsidiary
phrase: e.g., EXPLANATION, JUSTIFICATION

Max fell because John pushed him.

I equal weight: e.g., NARRATION

Max fell and Kim kept running.
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Discourse structure

Coherence

Discourses have to have connectivity to be coherent:

Kim got into her car. Sandy likes apples.

Can be OK in context:

Kim got into her car. Sandy likes apples, so Kim thought she’d
go to the farm shop and see if she could get some.

27 / 45



Natural Language Processing 1

Discourse structure

Coherence

Discourses have to have connectivity to be coherent:

Kim got into her car. Sandy likes apples.

Can be OK in context:

Kim got into her car. Sandy likes apples, so Kim thought she’d
go to the farm shop and see if she could get some.

27 / 45



Natural Language Processing 1

Discourse structure

Coherence in interpretation

Discourse coherence assumptions can affect interpretation:

John likes Bill. He gave him an expensive Christmas present.

If EXPLANATION - ‘he’ is probably Bill.
If JUSTIFICATION (supplying evidence for another sentence),
‘he’ is John.
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Discourse structure

Factors influencing discourse interpretation

1. Cue phrases (e.g. because, and)
2. Punctuation (also prosody) and text structure.

Max fell (John pushed him) and Kim laughed.
Max fell, John pushed him and Kim laughed.

3. Real world content:
Max fell. John pushed him as he lay on the ground.

4. Tense and aspect.
Max fell. John had pushed him.
Max was falling. John pushed him.

Discourse parsing: hard problem, but ‘surfacy techniques’
(punctuation and cue phrases) work to some extent.
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Referring expressions and anaphora

Co-reference and referring expressions

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an hour
being charmed in the historian’s Oxford study.

referent a real world entity that some piece of text (or
speech) refers to. the actual Prof. Ferguson

referring expressions bits of language used to perform
reference by a speaker. ‘Niall Ferguson’, ‘he’, ‘him’

antecedent the text initially evoking a referent. ‘Niall Ferguson’
anaphora the phenomenon of referring to an antecedent.
cataphora pronouns appear before the referent (rare)

What about a snappy dresser?
31 / 45
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Referring expressions and anaphora

Pronoun resolution

I Identifying the referents of pronouns
I Anaphora resolution: generally only consider cases which

refer to antecedent noun phrases.

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an hour
being charmed in the historian’s Oxford study.
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Algorithms for anaphora resolution

Anaphora resolution as supervised classification

I instances: potential pronoun/antecedent pairings
I class is TRUE/FALSE
I training data labelled with correct pairings
I candidate antecedents are all NPs in current sentence and

preceeding 5 sentences (excluding pleonastic pronouns)

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an hour
being charmed in the historian’s Oxford study.
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Algorithms for anaphora resolution

Hard constraints: Pronoun agreement

I A little girl is at the door — see what she wants, please?

I My dog has hurt his foot — he is in a lot of pain.

I * My dog has hurt his foot — it is in a lot of pain.

Complications:

I I don’t know who the new lecturer will be, but I’m sure they’ll
make changes to the course.

I The team played really well, but now they are all very tired.

I Kim and Sandy are asleep: they are very tired.
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Algorithms for anaphora resolution

Hard constraints: Reflexives

I Johni cut himselfi shaving. (himself = John, subscript
notation used to indicate this)

I # Johni cut himj shaving. (i 6= j — a very odd sentence)

Reflexive pronouns must be coreferential with a preceeding
argument of the same verb, non-reflexive pronouns cannot be.
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Algorithms for anaphora resolution

Hard constraints: Pleonastic pronouns

Pleonastic pronouns are semantically empty, and don’t refer:
I It is snowing
I It is not easy to think of good examples.
I It is obvious that Kim snores.
I It bothers Sandy that Kim snores.
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Algorithms for anaphora resolution

Soft preferences: Salience

I Recency: More recent antecedents are preferred. They
are more accessible.

Kim has a big car. Sandy has a smaller one. Lee

likes to drive it.

I Grammatical role: Subjects > objects > everything else:
Fred went to the shopping centre with Bill. He

bought a CD.

I Repeated mention: Entities that have been mentioned
more frequently are preferred.
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Algorithms for anaphora resolution

Soft preferences: Salience

I Parallelism Entities which share the same role as the
pronoun in the same sort of sentence are preferred:

Bill went with Fred to the Grafton Centre. Kim

went with him to Lion Yard. Him=Fred

I Coherence effects: The pronoun resolution may depend on
the rhetorical / discourse relation that is inferred.

Bill likes Fred. He has a great sense of humour.
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Algorithms for anaphora resolution

Features
Cataphoric Binary: t if pronoun before antecedent.

Number agreement Binary: t if pronoun compatible with
antecedent.

Gender agreement Binary: t if gender agreement.
Same verb Binary: t if the pronoun and the candidate

antecedent are arguments of the same verb.
Sentence distance Discrete: { 0, 1, 2 . . . }
Grammatical role Discrete: { subject, object, other } The role of

the potential antecedent.
Parallel Binary: t if the potential antecedent and the

pronoun share the same grammatical role.
Linguistic form Discrete: { proper, definite, indefinite, pronoun }
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Algorithms for anaphora resolution

Feature vectors

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an hour
being charmed in the historian’s Oxford study.

pron ante cat num gen same dist role par form
him Niall F. f t t f 1 subj f prop
him Ste. M. f t t t 0 subj f prop
him he t t t f 0 subj f pron
he Niall F. f t t f 1 subj t prop
he Ste. M. f t t f 0 subj t prop
he him f t t f 0 obj f pron
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Algorithms for anaphora resolution

Training data, from human annotation

class cata num gen same dist role par form
TRUE f t t f 1 subj f prop
FALSE f t t t 0 subj f prop
FALSE t t t f 0 subj f pron
FALSE f t t f 1 subj t prop
TRUE f t t f 0 subj t prop
FALSE f t t f 0 obj f pron
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Algorithms for anaphora resolution

Problems with simple classification model

I Cannot implement ‘repeated mention’ effect.
I Cannot use information from previous links.

Not really pairwise: need a discourse model with real world
entities corresponding to clusters of referring expressions.
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Algorithms for anaphora resolution

Evaluation

I link accuracy, i.e. percentage of correct links.

But:
I Identification of non-pleonastic pronouns and antecendent

NPs should be part of the evaluation.
I Binary linkages don’t allow for chains:

Sally met Andrew in town and took him to the new

restaurant. He was impressed.

Multiple evaluation metrics exist because of such problems.
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Algorithms for anaphora resolution
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