Natural Language Processing 1 Lecture 7: Word embeddings and sentence representations

Katia Shutova

ILLC University of Amsterdam

19 November 2018

1/29

Distributional semantic models

- 1. Count-based models:
 - Explicit vectors: dimensions are elements in the context
 - Iong sparse vectors with interpretable dimensions
- 2. Prediction-based models:
 - Train a model to predict plausible contexts for a word
 - learn word representations in the process
 - short dense vectors with latent dimensions

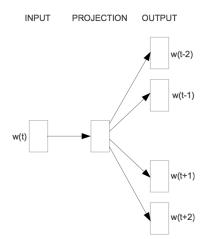
Prediction-based distributional models

Mikolov et. al. 2013. *Efficient Estimation of Word Representations in Vector Space*.

word2vec: Skip-gram model

- inspired by work on neural language models
- train a neural network to predict neighboring words
- learn dense embeddings for the words in the training corpus in the process

Skip-gram



Slide credit: Tomas Mikolov

Skip-gram

Intuition: words with similar meanings often occur near each other in texts

Given a word w_t:

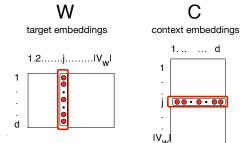
- Predict each neighbouring word
 - in a context window of 2L words
 - from the current word.
- For L = 2, we predict its 4 neighbouring words:

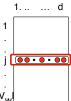
$$[w_{t-2}, w_{t-1}, w_{t+1}, w_{t+2}]$$

Skip-gram: Parameter matrices

Learn 2 embeddings for each word $w_i \in V_w$:

- word embedding v, in word matrix W
- context embedding c, in context matrix C



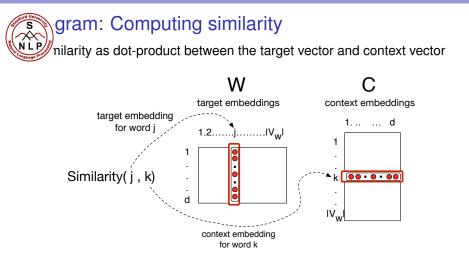


Skip-gram: Setup

- Walk through the corpus pointing at word w(t), whose index in the vocabulary is j — we will call it w_i
- ► our goal is to predict w(t + 1), whose index in the vocabulary is k we will call it w_k
- to do this, we need to compute

$p(w_k|w_j)$

Intuition behind skip-gram: to compute this probability we need to compute similarity between w_i and w_k



Slide credit: Dan Jurafsky

Skip-gram: Similarity as dot product

Remember cosine similarity?

$$cos(v1, v2) = \frac{\sum v1_k * v2_k}{\sqrt{\sum v1_k^2} * \sqrt{\sum v2_k^2}} = \frac{v1 \cdot v2}{||v1||||v2||}$$

It's just a normalised dot product.

Skip-gram: Similar vectors have a high dot product

 $Similarity(c_k, v_j) \propto c_k \cdot v_j$

Skip-gram: Compute probabilities

Compute similarity as a dot product

Similarity
$$(c_k, v_j) \propto c_k \cdot v_j$$

- Normalise to turn this into a probability
- by passing through a softmax function:

$$oldsymbol{arphi}(oldsymbol{w}_k|oldsymbol{w}_j) = rac{oldsymbol{e}^{oldsymbol{c}_k\cdotoldsymbol{v}_j}}{\sum_{i\in V}oldsymbol{e}^{oldsymbol{c}_i\cdotoldsymbol{v}_j}}$$

Skip-gram: Learning

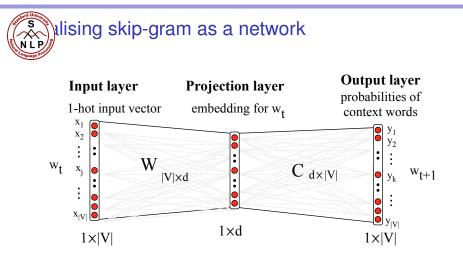
- Start with some initial embeddings (usually random)
- At training time, walk through the corpus
- iteratively make the embeddings for each word
 - more like the embeddings of its neighbors
 - less like the embeddings of other words.

Skip-gram: Objective

Learn parameters C and W that maximize the overall corpus probability:

$$\arg \max \prod_{(w_j, w_k) \in D} p(w_k | w_j)$$
$$p(w_k | w_j) = \frac{e^{c_k \cdot v_j}}{\sum_{i \in V} e^{c_i \cdot v_j}}$$

$$\arg\max\sum_{(w_j,w_k)\in D}\log p(w_k|w_j) = \sum_{(w_j,w_k)\in D}(\log e^{c_k\cdot v_j} - \log\sum_{c_i\in V}e^{c_i\cdot v_j})$$

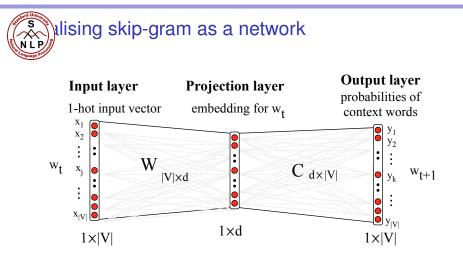


Slide credit: Dan Jurafsky

Natural Language Processing 1

- A vector of length |V|
- 1 for the target word and 0 for other words
- So if "bear" is vocabulary word 5
- The one-hot vector is [0,0,0,0,1,0,0,0,0,.....0]

 $0 \ 0 \ 0 \ 0 \ 0 \ \dots \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ \dots \ 0 \ 0 \ 0 \ 0$



Slide credit: Dan Jurafsky

Skip-gram with negative sampling

Problem with softmax: expensive to compute the denominator for the whole vocabulary

$$\mathcal{D}(\mathbf{w}_k | \mathbf{w}_j) = rac{\mathbf{e}^{\mathbf{c}_k \cdot \mathbf{v}_j}}{\sum_{i \in V} \mathbf{e}^{\mathbf{c}_i \cdot \mathbf{v}_j}}$$

Approximate the denominator: negative sampling

- At training time, walk through the corpus
- for each target word and positive context
- sample k noise samples or negative samples, i.e. other words

Skip-gram with negative sampling

Objective in training:

 Make the word like the context words lemon, a [tablespoon of apricot preserves or] jam.

 C_1 C_2 W C_3 C_4

And not like the k negative examples

[cement idle dear coaxial apricot attendant whence forever puddle]

 n_1 n_2 n_3 n_4 W n_5 n_6 n_7 n_8

Skip-gram with negative sampling: Training examples

Convert the dataset into word pairs:

Positive (+)

(apricot, tablespoon) (apricot, of) (apricot, jam) (apricot, or)

Negative (-)

```
(apricot, cement)
(apricot, idle)
(apricot, attendant)
(apricot, dear)
```

Skip-gram with negative sampling

- instead of treating it as a multi-class problem (and returning a probability distribution over the whole vocabulary)
- return a probability that word w_k is a valid context for word w_i

$$egin{aligned} & P(+|w_j,w_k) \ & P(-|w_j,w_k) = 1 - P(+|w_j,w_k) \end{aligned}$$

Skip-gram with negative sampling

model similarity as dot product

 $Similarity(c_k, v_j) \propto c_k \cdot v_j$

turn this into a probability using the sigmoid function:

$$\sigma(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{x}}}$$

$$P(+|w_j, w_k) = \frac{1}{1 + e^{-c_k \cdot v_j}}$$

$$P(-|w_j, w_k) = 1 - P(+|w_j, w_k) = 1 - \frac{1}{1 + e^{-c_k \cdot v_j}} = \frac{1}{1 + e^{c_k \cdot v_j}}$$

Skip-gram with negative sampling

model similarity as dot product

 $Similarity(c_k, v_j) \propto c_k \cdot v_j$

turn this into a probability using the sigmoid function:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$P(+|w_j, w_k) = \frac{1}{1 + e^{-c_k \cdot v_j}}$$

$$P(-|w_j, w_k) = 1 - P(+|w_j, w_k) = 1 - \frac{1}{1 + e^{-c_k \cdot v_j}} = \frac{1}{1 + e^{c_k \cdot v_j}}$$

Skip-gram with negative sampling: Objective

- make the word like the context words
- and not like the negative examples

$$\arg \max \prod_{(w_j, w_k) \in D_+} p(+|w_k, w_j) \prod_{(w_j, w_k) \in D_-} p(-|w_k, w_j)$$

 $\arg \max \sum_{(w_j, w_k) \in D_+} \log p(+|w_k, w_j) + \sum_{(w_j, w_k) \in D_-} \log p(-|w_k, w_j) =$

$$\arg \max \sum_{(w_j, w_k) \in D_+} \log \frac{1}{1 + e^{-c_k \cdot v_j}} + \sum_{(w_j, w_k) \in D_-} \log \frac{1}{1 + e^{c_k \cdot v_j}}$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q ()
21/29

Skip-gram with negative sampling: Objective

- make the word like the context words
- and not like the negative examples

$$\arg \max \prod_{(w_j, w_k) \in D_+} p(+|w_k, w_j) \prod_{(w_j, w_k) \in D_-} p(-|w_k, w_j)$$

 $\arg \max \sum_{(w_j, w_k) \in D_+} \log p(+|w_k, w_j) + \sum_{(w_j, w_k) \in D_-} \log p(-|w_k, w_j) =$

$$\arg\max\sum_{(w_j,w_k)\in D_+}\log\frac{1}{1+e^{-c_k\cdot v_j}}+\sum_{(w_j,w_k)\in D_-}\log\frac{1}{1+e^{c_k\cdot v_j}}$$

Skip-gram with negative sampling: Objective

- make the word like the context words
- and not like the negative examples

$$\arg \max \prod_{(w_j, w_k) \in D_+} p(+|w_k, w_j) \prod_{(w_j, w_k) \in D_-} p(-|w_k, w_j)$$

$$\arg \max \sum_{(w_j, w_k) \in D_+} \log p(+|w_k, w_j) + \sum_{(w_j, w_k) \in D_-} \log p(-|w_k, w_j) =$$

$$\arg \max \sum_{(w_j, w_k) \in D_+} \log \frac{1}{1 + e^{-c_k \cdot v_j}} + \sum_{(w_j, w_k) \in D_-} \log \frac{1}{1 + e^{c_k \cdot v_j}}$$

Properties of embeddings

They capture similarity

FRANCE	JESUS	XBOX	REDDISH	SCRATCHED	MEGABITS
454	1973	6909	11724	29869	87025
AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GERMANY	CHRIST	MSX	PINKISH	PUNCHED	BIT/S
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	SEGA	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	PSNUMBER	GREYISH	SCRAPED	KBIT/S
NORWAY	VISHNU	HD	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	GBIT/S
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

Slide credit: Ronan Collobert

Properties of embeddings

They capture analogy

Analogy task: a is to b as c is to d

The system is given words *a*, *b*, *c*, and it needs to find *d*.

"apple" is to "apples" as "car" is to ? "man" is to "woman" as "king" is to ?

Solution: capture analogy via vector offsets

$$a-b \approx c-d$$

 $man - woman \approx king - queen$ $d_w = argmax \cos(a - b, c - d')$

Properties of embeddings

They capture analogy

Analogy task: *a* is to *b* as *c* is to *d* The system is given words *a*, *b*, *c*, and it needs to find *d*.

"apple" is to "apples" as "car" is to ? "man" is to "woman" as "king" is to ?

Solution: capture analogy via vector offsets

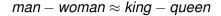
$$a-b \approx c-d$$

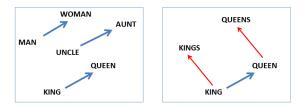
$$man - woman pprox king - queen$$

 $d_w = \operatorname*{argmax}_{d'_w \in V} cos(a - b, c - d')$

Properties of embeddings

Capture analogy via vector offsets





Mikolov et al. 2013. *Linguistic Regularities in Continuous Space Word Representations*

Properties of embeddings

They capture a range of semantic relations

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Mikolov et al. 2013. *Efficient Estimation of Word Representations in Vector Space*

Word embeddings in practice

Word2vec is often used for pretraining in other tasks.

- It will help your models start from an informed position
- Requires only plain text which we have a lot of
- Is very fast and easy to use
- Already pretrained vectors also available (trained on 100B words)

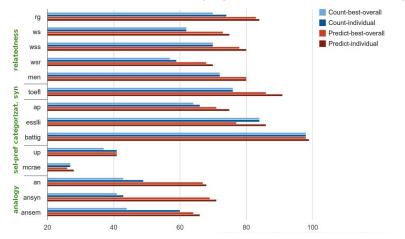
However, for best performance it is important to continue training, fine-tuning the embeddings for a specific task.

Count-based models vs. skip-gram word embeddings

Baroni et. al. 2014. Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors.

- Comparison of count-based and neural word vectors on 5 types of tasks and 14 different datasets:
 - 1. Semantic relatedness
 - 2. Synonym detection
 - 3. Concept categorization
 - 4. Selectional preferences
 - 5. Analogy recovery

Count-based models vs. skip-gram word embeddings



Some of these findings were later disputed by Levy et. al. 2015. *Improving Distributional Similarity with Lessons Learned from Word Embeddings*

28/29

Acknowledgement

Some slides were adapted from Dan Jurafsky

・ロト ・ 一部 ト ・ 目 ・ ・ 目 ・ の へ ()
29/29

Encoding Sentences with **Recurrent** and **Tree Recursive** Neural Networks

Joost Bastings
bastings.github.io

Today

How do we learn a **representation** of a **sentence** with a **neural network**?

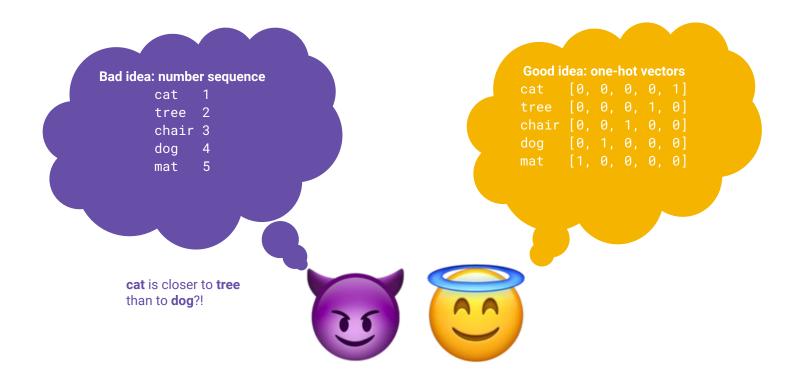
How do we make a **prediction** from that representation, e.g. **sentiment**?

A vector space of words and sentences

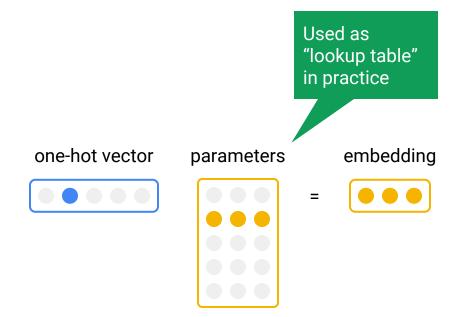
Х

Turning words into numbers

We want to **feed words** to a neural network How to turn **words** into **numbers**?

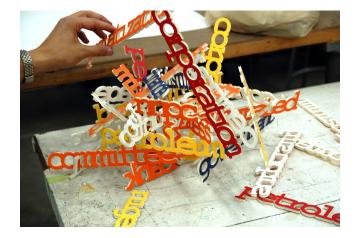


One-hot vectors select word embeddings



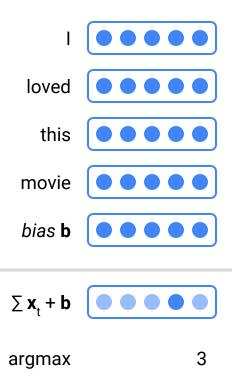
Bag of Words

Bag of Words at CMU



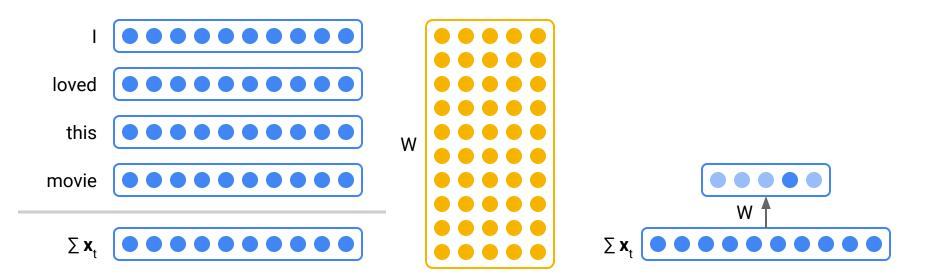
Bag of Words

Sum word embeddings, add bias

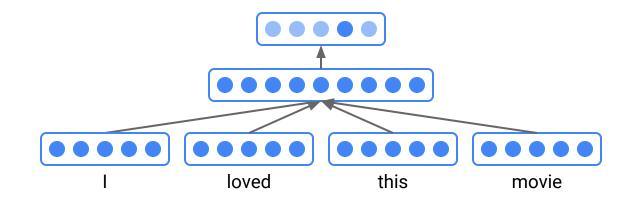


Continuous Bag of Words (CBOW)

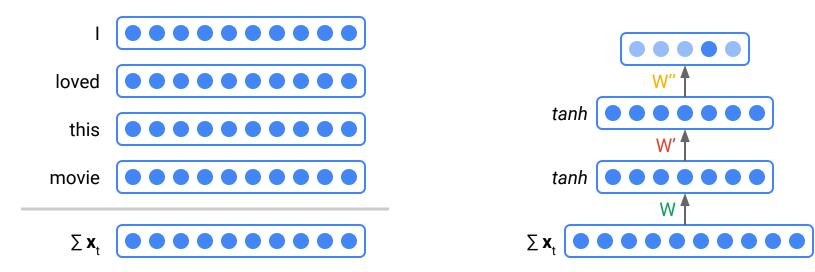
Sum word embeddings, project to 5D using W, add bias: W ($\sum x_{+}$) + b



Why not this?



Deep CBOW



11

Softmax

We don't need a softmax for **prediction**, there we simply take the **argmax**

$$\mathbf{o} = [-0.1, 0.1, 0.1, 2.4, 0.2]$$

 $softmax(o_i) = exp(o_i) / \sum_i exp(o_i)$

This makes **o** sum to 1.0: softmax(**o**) = [0.0589, 0.0720, 0.0720, **0.7177**, 0.0795]

Training a neural network

We train our network with Stochastic Gradient Descent (SGD):

- 1. Sample a training example
- 2. Forward pass
 - a. Compute network activations, output vector
- 3. Compute loss
 - a. Compare output vector with true label using a loss function
- 4. Backward pass (backpropagation)
 - a. Compute gradient of loss w.r.t. parameters
- 5. Take a small step in the opposite direction of the gradient

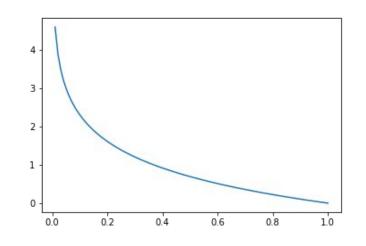
Cross Entropy Loss

Given:

 $\hat{\mathbf{y}} = [0.1, 0.1, 0.1, 0.5, 0.2]$ output vector (after softmax) from forward pass $\mathbf{y} = [0, 0, 0, 1, 0]$ target / label ($y_3 = 1$)

When our output is categorical (i.e. a number of classes), we can use a Cross Entropy loss:

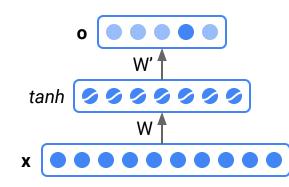
```
CE(\mathbf{y}, \hat{\mathbf{y}}) = -\sum y_i \log \hat{y}_i
SparseCE(y = 3, \hat{\mathbf{y}}) = - log \hat{y}_y
torch.nn.CrossEntropyLoss
works like this and does the
softmax on o for you!
```



Backpropagation example

the **chain rule** is your friend! L = f(g(x)) $\delta L/\delta x = \delta f(g(x))/\delta g(x) + \delta g(x)/\delta x$

ŷ = softmax(**o**)



$$\hat{\mathbf{y}} = [0.1, 0.1, 0.1, 0.5, 0.2]$$

 $\mathbf{y} = [0, 0, 0, 1, 0]$

loss L =
$$CE(\hat{y}, y) = -\log(\hat{y}_3) = -\log(0.5)$$

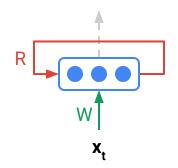
compute gradients, e.g. for W': $\delta L/\delta W' = \delta L/\delta o \delta o/\delta W'$ $\delta L/\delta o = \delta L/\delta \hat{y} \delta \hat{y}/\delta o$ $= -1/\hat{y}_3 \delta softmax(o)/\delta o$

update weights: W' = W' - eta * δL/δW'

Recurrent Neural Network (RNN)

RNNs model **sequential data** - one input \mathbf{x}_{t} per time step t

h,



Recurrent Neural Network (RNN)

Example:

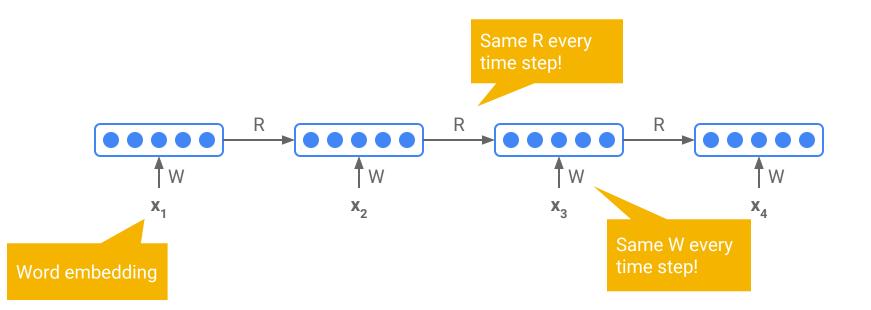
the cat sat on the mat \mathbf{x}_1 \mathbf{x}_2 \mathbf{x}_3 \mathbf{x}_4 \mathbf{x}_5 \mathbf{x}_6

Let's compute the RNN state after reading in this sentence.

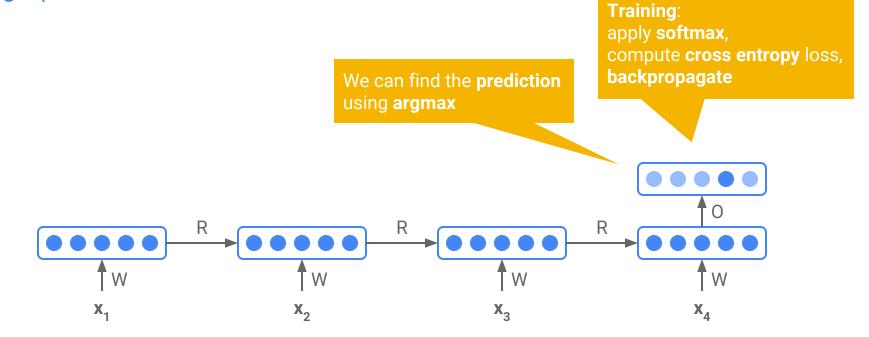
Remember:

 $h_{t} = f(x_{t'}, h_{t-1})$

$$h_{1} = f(\mathbf{x}_{1}, \mathbf{h}_{0}) h_{2} = f(\mathbf{x}_{2}, f(\mathbf{x}_{1}, \mathbf{h}_{0})) h_{3} = f(\mathbf{x}_{3}, f(\mathbf{x}_{2}, f(\mathbf{x}_{1}, \mathbf{h}_{0}))) \vdots h_{6} = f(\mathbf{x}_{6}, f(\mathbf{x}_{5}, f(\mathbf{x}_{4}, \ldots)))$$



Making a prediction

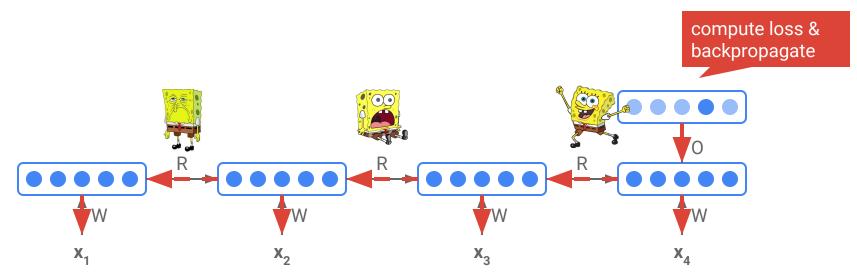


The vanishing gradient problem

Simple RNNs are hard to train because of the vanishing gradient problem.

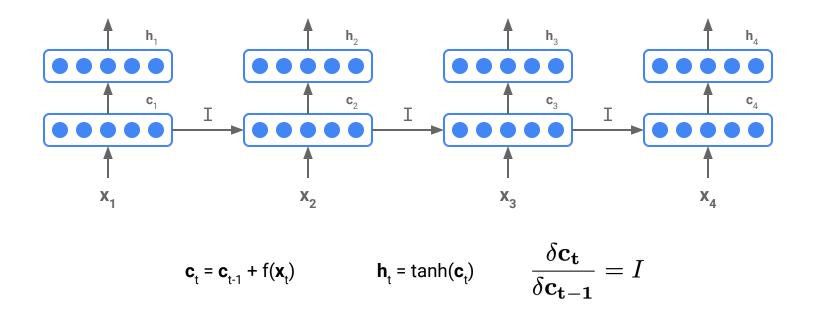
During backpropagation, gradients can quickly become small,

as they repeatedly go through multiplications (R) & non-linear functions (e.g. sigmoid or tanh)



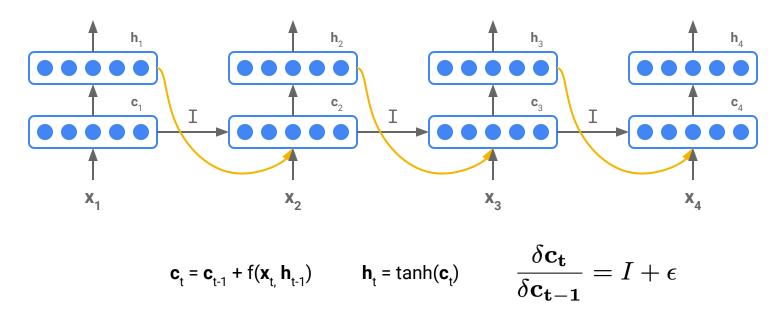
Intuition to solving the vanishing gradient

Let's use an extra vector, cell state **c**



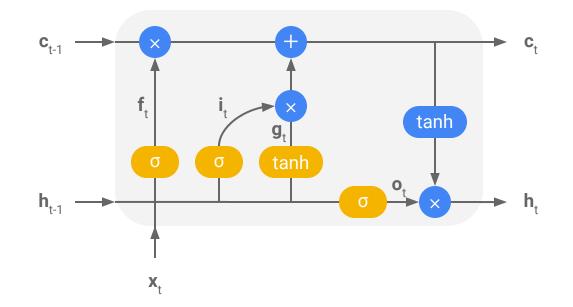
A small improvement

Better gradient propagation is possible when you use **additive** rather than multiplicative/highly non-linear recurrent dynamics

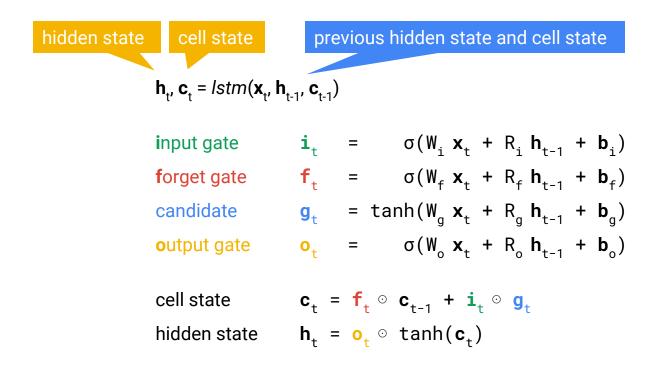


Long Short-Term Memory (LSTM)

LSTMs are a special kind of RNN that can deal with long-term dependencies in the data



Long Short-Term Memory (LSTM)



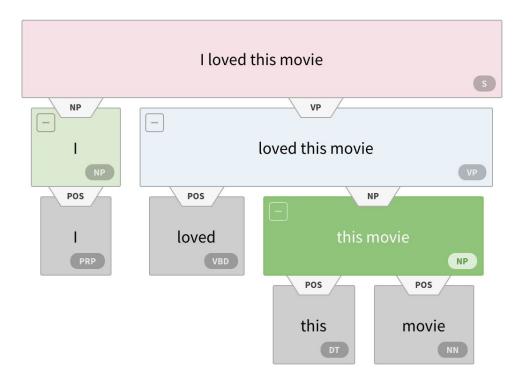
Instead of treating our input as a **sequence**, we can take an alternative approach: assume a **tree structure** and use the principle of **compositionality**.

The meaning (vector) of a sentence is determined by:

- 1. the meanings of its **words** and
- 2. the **rules** that combine them

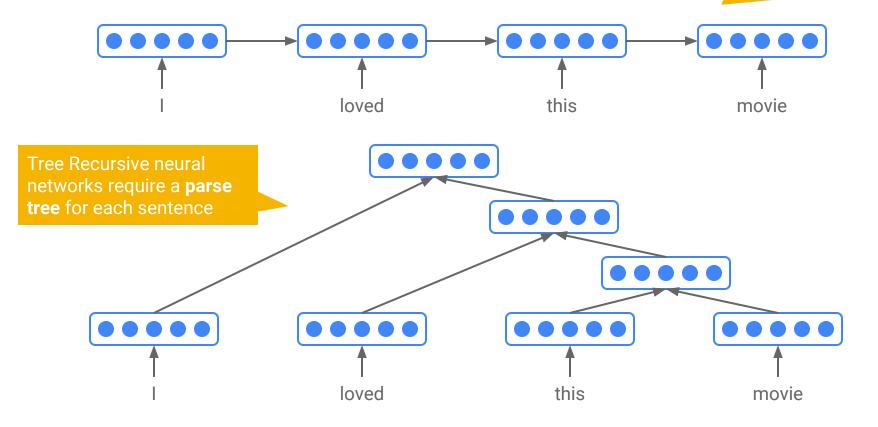
Constituency Parse

Can we obtain a sentence vector using the tree structure given by a parse?



Recurrent vs Tree Recursive NN

RNNs cannot capture phrases **without prefix context** and often capture too much of **last words** in final vector



Practical II data set: Stanford Sentiment Treebank (SST)



A naive recursive NN

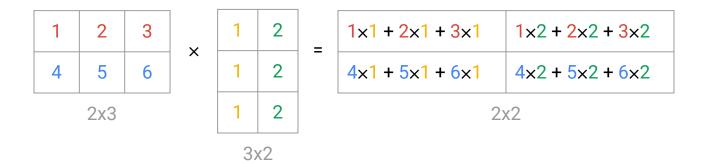


Richard Socher et al. Parsing natural scenes and natural language with recursive neural networks. ICML 2011.

Tree LSTM next time!

Recap: Matrix Multiplication

Rows multiply with columns



Recap: Activation functions

