
Natural Language Processing 1

Natural Language Processing 1
Lecture 7: Word embeddings and sentence representations

Katia Shutova

ILLC
University of Amsterdam

19 November 2018

1 / 29

Natural Language Processing 1

Semantics with dense vectors

Distributional semantic models

1. Count-based models:
I Explicit vectors: dimensions are elements in the context
I long sparse vectors with interpretable dimensions

2. Prediction-based models:
I Train a model to predict plausible contexts for a word
I learn word representations in the process
I short dense vectors with latent dimensions

2 / 29

Natural Language Processing 1

Semantics with dense vectors

Prediction-based distributional models

Mikolov et. al. 2013. Efficient Estimation of Word Representations in
Vector Space.

word2vec: Skip-gram model

I inspired by work on neural language models

I train a neural network to predict neighboring words

I learn dense embeddings for the words in the training corpus in
the process

3 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram

Slide credit: Tomas Mikolov
4 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram

Intuition: words with similar meanings often occur near each
other in texts

Given a word wt :
I Predict each neighbouring word

I in a context window of 2L words
I from the current word.

I For L = 2, we predict its 4 neighbouring words:

[wt�2, wt�1, wt+1, wt+2]

5 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram: Parameter matrices
Learn 2 embeddings for each word wj 2 Vw :

I word embedding v , in word matrix W
I context embedding c, in context matrix C

Dan%Jurafsky

Intuition:'similarity'as'dot<product
between'a'target'vector'and'context'vector

1
.
.
k
.
.

|Vw|

1.2…….j………|Vw|

1
.
.
.
d

W

context embedding
for word k

C
1. .. … d

target embeddings context embeddings

Similarity(j , k)

target embedding
for word j

22

j

6 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram: Setup

I Walk through the corpus pointing at word w(t), whose
index in the vocabulary is j — we will call it wj

I our goal is to predict w(t + 1), whose index in the
vocabulary is k — we will call it wk

I to do this, we need to compute

p(wk |wj)

I Intuition behind skip-gram: to compute this probability we
need to compute similarity between wj and wk

7 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram: Computing similarity
Similarity as dot-product between the target vector and context vector

Dan%Jurafsky

Intuition:'similarity'as'dot<product
between'a'target'vector'and'context'vector

1
.
.
k
.
.

|Vw|

1.2…….j………|Vw|

1
.
.
.
d

W

context embedding
for word k

C
1. .. … d

target embeddings context embeddings

Similarity(j , k)

target embedding
for word j

22

Slide credit: Dan Jurafsky

8 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram: Similarity as dot product

I Remember cosine similarity?

cos(v1, v2) =
P

v1k ⇤ v2kqP
v12

k ⇤
qP

v22
k

=
v1 · v2

||v1||||v2||

It’s just a normalised dot product.

I Skip-gram: Similar vectors have a high dot product

Similarity(ck , vj) / ck · vj

9 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram: Compute probabilities

I Compute similarity as a dot product

Similarity(ck , vj) / ck · vj

I Normalise to turn this into a probability
I by passing through a softmax function:

p(wk |wj) =
eck ·vj

P
i2V eci ·vj

10 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram: Learning

I Start with some initial embeddings (usually random)
I At training time, walk through the corpus
I iteratively make the embeddings for each word

I more like the embeddings of its neighbors
I less like the embeddings of other words.

11 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram: Objective

Learn parameters C and W that maximize the overall corpus
probability:

arg max
Y

(wj ,wk)2D

p(wk |wj)

p(wk |wj) =
eck ·vj

P
i2V eci ·vj

arg max
X

(wj ,wk)2D

log p(wk |wj) =
X

(wj ,wk)2D

(log eck ·vj �log
X

ci2V

eci ·vj)

12 / 29

Natural Language Processing 1

Semantics with dense vectors

Visualising skip-gram as a network

Dan%Jurafsky

Visualizing'W'and'C'as'a'network'for'doing'
error'backprop

Input layer Projection layer Output layer

wt wt+1

1-hot input vector

1⨉d1⨉|V|

embedding for wt
probabilities of
context words

C d ⨉ |V|

x1
x2

xj

x|V|

y1
y2

yk

y|V|

W
|V|⨉d

1⨉|V|
27

Slide credit: Dan Jurafsky

13 / 29

Natural Language Processing 1

Semantics with dense vectors

One hot vectors

I A vector of length |V|
I 1 for the target word and 0 for other words
I So if “bear” is vocabulary word 5
I The one-hot vector is [0,0,0,0,1,0,0,0,0.........0]

Dan%Jurafsky

One<hot'vectors

• A%vector%of%length%|V|%
• 1%for%the%target%word%and%0%for%other%words
• So%if%“popsicle”%is%vocabulary%word%5
• The%one<hot'vector'is
• [0,0,0,0,1,0,0,0,0…….0]

28

0 0 0 0 0 … 0 0 0 0 1 0 0 0 0 0 … 0 0 0 0

w0 wj w|V|w1

14 / 29

Natural Language Processing 1

Semantics with dense vectors

Visualising skip-gram as a network

Dan%Jurafsky

Visualizing'W'and'C'as'a'network'for'doing'
error'backprop

Input layer Projection layer Output layer

wt wt+1

1-hot input vector

1⨉d1⨉|V|

embedding for wt
probabilities of
context words

C d ⨉ |V|

x1
x2

xj

x|V|

y1
y2

yk

y|V|

W
|V|⨉d

1⨉|V|
27

Slide credit: Dan Jurafsky

15 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling

Problem with softmax: expensive to compute the denominator for the
whole vocabulary

p(wk |wj) =
eck ·vj

P
i2V eci ·vj

Approximate the denominator: negative sampling

I At training time, walk through the corpus

I for each target word and positive context

I sample k noise samples or negative samples, i.e. other words

16 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling

I Objective in training:

I Make the word like the context words
lemon, a [tablespoon of apricot preserves or] jam.

c1 c2 w c3 c4
I And not like the k negative examples

[cement idle dear coaxial apricot attendant whence forever puddle]

n1 n2 n3 n4 w n5 n6 n7 n8

17 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling: Training examples
Convert the dataset into word pairs:

I Positive (+)

(apricot, tablespoon)
(apricot, of)
(apricot, jam)
(apricot, or)

I Negative (-)

(apricot, cement)
(apricot, idle)
(apricot, attendant)
(apricot, dear)
...

18 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling

I instead of treating it as a multi-class problem (and returning a
probability distribution over the whole vocabulary)

I return a probability that word wk is a valid context for word wj

P(+|wj , wk)

P(�|wj , wk) = 1 � P(+|wj , wk)

19 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling

I model similarity as dot product

Similarity(ck , vj) / ck · vj

I turn this into a probability using the sigmoid function:

�(x) =
1

1 + e�x

P(+|wj , wk) =
1

1 + e�ck ·vj

P(�|wj , wk) = 1�P(+|wj , wk) = 1� 1
1 + e�ck ·vj

=
1

1 + eck ·vj

20 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling

I model similarity as dot product

Similarity(ck , vj) / ck · vj

I turn this into a probability using the sigmoid function:

�(x) =
1

1 + e�x

P(+|wj , wk) =
1

1 + e�ck ·vj

P(�|wj , wk) = 1�P(+|wj , wk) = 1� 1
1 + e�ck ·vj

=
1

1 + eck ·vj

20 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling: Objective

I make the word like the context words

I and not like the negative examples

arg max
Y

(wj ,wk)2D+

p(+|wk , wj)
Y

(wj ,wk)2D�

p(�|wk , wj)

arg max
X

(wj ,wk)2D+

log p(+|wk , wj) +
X

(wj ,wk)2D�

log p(�|wk , wj) =

arg max
X

(wj ,wk)2D+

log
1

1 + e�ck ·vj
+

X

(wj ,wk)2D�

log
1

1 + eck ·vj

21 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling: Objective

I make the word like the context words

I and not like the negative examples

arg max
Y

(wj ,wk)2D+

p(+|wk , wj)
Y

(wj ,wk)2D�

p(�|wk , wj)

arg max
X

(wj ,wk)2D+

log p(+|wk , wj) +
X

(wj ,wk)2D�

log p(�|wk , wj) =

arg max
X

(wj ,wk)2D+

log
1

1 + e�ck ·vj
+

X

(wj ,wk)2D�

log
1

1 + eck ·vj

21 / 29

Natural Language Processing 1

Semantics with dense vectors

Skip-gram with negative sampling: Objective

I make the word like the context words

I and not like the negative examples

arg max
Y

(wj ,wk)2D+

p(+|wk , wj)
Y

(wj ,wk)2D�

p(�|wk , wj)

arg max
X

(wj ,wk)2D+

log p(+|wk , wj) +
X

(wj ,wk)2D�

log p(�|wk , wj) =

arg max
X

(wj ,wk)2D+

log
1

1 + e�ck ·vj
+

X

(wj ,wk)2D�

log
1

1 + eck ·vj

21 / 29

Natural Language Processing 1

Semantics with dense vectors

Properties of embeddings

They capture similarity
COLLOBERT, WESTON, BOTTOU, KARLEN, KAVUKCUOGLU AND KUKSA

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025

AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA PSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S

SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Table 7: Word embeddings in the word lookup table of the language model neural network LM1
trained with a dictionary of size 100,000. For each column the queried word is followed
by its index in the dictionary (higher means more rare) and its 10 nearest neighbors (using
the Euclidean metric, which was chosen arbitrarily).

and semantic properties of the neighbors are clearly related to those of the query word. These
results are far more satisfactory than those reported in Table 7 for embeddings obtained using purely
supervised training of the benchmark NLP tasks.

4.5 Semi-supervised Benchmark Results

Semi-supervised learning has been the object of much attention during the last few years (see
Chapelle et al., 2006). Previous semi-supervised approaches for NLP can be roughly categorized as
follows:

• Ad-hoc approaches such as Rosenfeld and Feldman (2007) for relation extraction.

• Self-training approaches, such as Ueffing et al. (2007) for machine translation, and McClosky
et al. (2006) for parsing. These methods augment the labeled training set with examples from
the unlabeled data set using the labels predicted by the model itself. Transductive approaches,
such as Joachims (1999) for text classification can be viewed as a refined form of self-training.

• Parameter sharing approaches such as Ando and Zhang (2005); Suzuki and Isozaki (2008).
Ando and Zhang propose a multi-task approach where they jointly train models sharing cer-
tain parameters. They train POS and NER models together with a language model (trained on
15 million words) consisting of predicting words given the surrounding tokens. Suzuki and
Isozaki embed a generative model (Hidden Markov Model) inside a CRF for POS, Chunking
and NER. The generative model is trained on one billion words. These approaches should
be seen as a linear counterpart of our work. Using multilayer models vastly expands the
parameter sharing opportunities (see Section 5).

Our approach simply consists of initializing the word lookup tables of the supervised networks
with the embeddings computed by the language models. Supervised training is then performed as
in Section 3.5. In particular the supervised training stage is free to modify the lookup tables. This
sequential approach is computationally convenient because it separates the lengthy training of the

2514

Slide credit: Ronan Collobert

22 / 29

Natural Language Processing 1

Semantics with dense vectors

Properties of embeddings
They capture analogy

Analogy task: a is to b as c is to d
The system is given words a, b, c, and it needs to find d .

“apple” is to “apples” as “car”‘ is to ?
“man” is to “woman” as “king” is to ?

Solution: capture analogy via vector offsets

a � b ⇡ c � d

man � woman ⇡ king � queen

dw = argmax
d 0

w2V
cos(a � b, c � d 0)

23 / 29

Natural Language Processing 1

Semantics with dense vectors

Properties of embeddings
They capture analogy

Analogy task: a is to b as c is to d
The system is given words a, b, c, and it needs to find d .

“apple” is to “apples” as “car”‘ is to ?
“man” is to “woman” as “king” is to ?

Solution: capture analogy via vector offsets

a � b ⇡ c � d

man � woman ⇡ king � queen

dw = argmax
d 0

w2V
cos(a � b, c � d 0)

23 / 29

Natural Language Processing 1

Semantics with dense vectors

Properties of embeddings
Capture analogy via vector offsets

man � woman ⇡ king � queen

Figure 2: Left panel shows vector offsets for three word
pairs illustrating the gender relation. Right panel shows
a different projection, and the singular/plural relation for
two words. In high-dimensional space, multiple relations
can be embedded for a single word.

provided. We have explored several related meth-
ods and found that the proposed method performs
well for both syntactic and semantic relations. We
note that this measure is qualitatively similar to rela-
tional similarity model of (Turney, 2012), which pre-
dicts similarity between members of the word pairs
(xb, xd), (xc, xd) and dis-similarity for (xa, xd).

6 Experimental Results

To evaluate the vector offset method, we used
vectors generated by the RNN toolkit of Mikolov
(2012). Vectors of dimensionality 80, 320, and 640
were generated, along with a composite of several
systems, with total dimensionality 1600. The sys-
tems were trained with 320M words of Broadcast
News data as described in (Mikolov et al., 2011a),
and had an 82k vocabulary. Table 2 shows results
for both RNNLM and LSA vectors on the syntactic
task. LSA was trained on the same data as the RNN.
We see that the RNN vectors capture significantly
more syntactic regularity than the LSA vectors, and
do remarkably well in an absolute sense, answering
more than one in three questions correctly. 2

In Table 3 we compare the RNN vectors with
those based on the methods of Collobert and We-
ston (2008) and Mnih and Hinton (2009), as imple-
mented by (Turian et al., 2010) and available online
3 Since different words are present in these datasets,
we computed the intersection of the vocabularies of
the RNN vectors and the new vectors, and restricted
the test set and word vectors to those. This resulted
in a 36k word vocabulary, and a test set with 6632

2Guessing gets a small fraction of a percent.
3http://metaoptimize.com/projects/wordreprs/

Method Adjectives Nouns Verbs All
LSA-80 9.2 11.1 17.4 12.8
LSA-320 11.3 18.1 20.7 16.5
LSA-640 9.6 10.1 13.8 11.3
RNN-80 9.3 5.2 30.4 16.2
RNN-320 18.2 19.0 45.0 28.5
RNN-640 21.0 25.2 54.8 34.7
RNN-1600 23.9 29.2 62.2 39.6

Table 2: Results for identifying syntactic regularities for
different word representations. Percent correct.

Method Adjectives Nouns Verbs All
RNN-80 10.1 8.1 30.4 19.0
CW-50 1.1 2.4 8.1 4.5
CW-100 1.3 4.1 8.6 5.0
HLBL-50 4.4 5.4 23.1 13.0
HLBL-100 7.6 13.2 30.2 18.7

Table 3: Comparison of RNN vectors with Turian’s Col-
lobert and Weston based vectors and the Hierarchical
Log-Bilinear model of Mnih and Hinton. Percent correct.

questions. Turian’s Collobert and Weston based vec-
tors do poorly on this task, whereas the Hierarchical
Log-Bilinear Model vectors of (Mnih and Hinton,
2009) do essentially as well as the RNN vectors.
These representations were trained on 37M words
of data and this may indicate a greater robustness of
the HLBL method.

We conducted similar experiments with the se-
mantic test set. For each target word pair in a rela-
tion category, the model measures its relational sim-
ilarity to each of the prototypical word pairs, and
then uses the average as the final score. The results
are evaluated using the two standard metrics defined
in the task, Spearman’s rank correlation coefficient
� and MaxDiff accuracy. In both cases, larger val-
ues are better. To compare to previous systems, we
report the average over all 69 relations in the test set.

From Table 4, we see that as with the syntac-
tic regularity study, the RNN-based representations
perform best. In this case, however, Turian’s CW
vectors are comparable in performance to the HLBL
vectors. With the RNN vectors, the performance im-
proves as the number of dimensions increases. Sur-
prisingly, we found that even though the RNN vec-

749

Mikolov et al. 2013. Linguistic Regularities in Continuous Space
Word Representations

24 / 29

Natural Language Processing 1

Semantics with dense vectors

Properties of embeddings
They capture a range of semantic relationsTable 8: Examples of the word pair relationships, using the best word vectors from Table 4 (Skip-
gram model trained on 783M words with 300 dimensionality).

Relationship Example 1 Example 2 Example 3
France - Paris Italy: Rome Japan: Tokyo Florida: Tallahassee
big - bigger small: larger cold: colder quick: quicker

Miami - Florida Baltimore: Maryland Dallas: Texas Kona: Hawaii
Einstein - scientist Messi: midfielder Mozart: violinist Picasso: painter
Sarkozy - France Berlusconi: Italy Merkel: Germany Koizumi: Japan

copper - Cu zinc: Zn gold: Au uranium: plutonium
Berlusconi - Silvio Sarkozy: Nicolas Putin: Medvedev Obama: Barack

Microsoft - Windows Google: Android IBM: Linux Apple: iPhone
Microsoft - Ballmer Google: Yahoo IBM: McNealy Apple: Jobs

Japan - sushi Germany: bratwurst France: tapas USA: pizza

assumes exact match, the results in Table 8 would score only about 60%). We believe that word
vectors trained on even larger data sets with larger dimensionality will perform significantly better,
and will enable the development of new innovative applications. Another way to improve accuracy is
to provide more than one example of the relationship. By using ten examples instead of one to form
the relationship vector (we average the individual vectors together), we have observed improvement
of accuracy of our best models by about 10% absolutely on the semantic-syntactic test.

It is also possible to apply the vector operations to solve different tasks. For example, we have
observed good accuracy for selecting out-of-the-list words, by computing average vector for a list of
words, and finding the most distant word vector. This is a popular type of problems in certain human
intelligence tests. Clearly, there is still a lot of discoveries to be made using these techniques.

6 Conclusion

In this paper we studied the quality of vector representations of words derived by various models on
a collection of syntactic and semantic language tasks. We observed that it is possible to train high
quality word vectors using very simple model architectures, compared to the popular neural network
models (both feedforward and recurrent). Because of the much lower computational complexity, it
is possible to compute very accurate high dimensional word vectors from a much larger data set.
Using the DistBelief distributed framework, it should be possible to train the CBOW and Skip-gram
models even on corpora with one trillion words, for basically unlimited size of the vocabulary. That
is several orders of magnitude larger than the best previously published results for similar models.

An interesting task where the word vectors have recently been shown to significantly outperform the
previous state of the art is the SemEval-2012 Task 2 [11]. The publicly available RNN vectors were
used together with other techniques to achieve over 50% increase in Spearman’s rank correlation
over the previous best result [31]. The neural network based word vectors were previously applied
to many other NLP tasks, for example sentiment analysis [12] and paraphrase detection [28]. It can
be expected that these applications can benefit from the model architectures described in this paper.

Our ongoing work shows that the word vectors can be successfully applied to automatic extension
of facts in Knowledge Bases, and also for verification of correctness of existing facts. Results
from machine translation experiments also look very promising. In the future, it would be also
interesting to compare our techniques to Latent Relational Analysis [30] and others. We believe that
our comprehensive test set will help the research community to improve the existing techniques for
estimating the word vectors. We also expect that high quality word vectors will become an important
building block for future NLP applications.

10

Mikolov et al. 2013. Efficient Estimation of Word Representations in
Vector Space

25 / 29

Natural Language Processing 1

Semantics with dense vectors

Word embeddings in practice

Word2vec is often used for pretraining in other tasks.

I It will help your models start from an informed position
I Requires only plain text - which we have a lot of
I Is very fast and easy to use
I Already pretrained vectors also available (trained on 100B

words)

However, for best performance it is important to continue
training, fine-tuning the embeddings for a specific task.

26 / 29

Natural Language Processing 1

Semantics with dense vectors

Count-based models vs. skip-gram word embeddings

Baroni et. al. 2014. Don’t count, predict! A systematic comparison of
context-counting vs. context-predicting semantic vectors.

I Comparison of count-based and neural word vectors on 5 types
of tasks and 14 different datasets:

1. Semantic relatedness
2. Synonym detection
3. Concept categorization
4. Selectional preferences
5. Analogy recovery

27 / 29

Natural Language Processing 1

Semantics with dense vectors

Count-based models vs. skip-gram word embeddingsCount-based vs neural

Some of these conclusions are challenged by:
Levy et. al. 2015. Improving Distributional Similarity with Lessons Learned from Word Embeddings.Some of these findings were later disputed by Levy et. al. 2015. Improving

Distributional Similarity with Lessons Learned from Word Embeddings
28 / 29

Natural Language Processing 1

Semantics with dense vectors

Acknowledgement

Some slides were adapted from Dan Jurafsky

29 / 29

Encoding Sentences with Recurrent
and Tree Recursive Neural Networks

Joost Bastings
bastings.github.io

1

Today
How do we learn a representation of a
sentence with a neural network?

How do we make a prediction from that
representation, e.g. sentiment?

2

A vector space of words and sentences

3

car

cat

dog
my four-legged friend

x

y

Turning words into numbers

4

We want to feed words to a neural network
How to turn words into numbers?

cat is closer to tree
than to dog?!

Bad idea: number sequence
cat 1
tree 2
chair 3
dog 4
mat 5

Good idea: one-hot vectors
cat [0, 0, 0, 0, 1]
tree [0, 0, 0, 1, 0]
chair [0, 0, 1, 0, 0]
dog [0, 1, 0, 0, 0]
mat [1, 0, 0, 0, 0]

One-hot vectors select word embeddings

5

=

one-hot vector

Used as
“lookup table”
in practice

parameters embedding

Bag of Words

6

Bag of Words at CMU

7https://tinyurl.com/cmu-bagofwords

https://tinyurl.com/cmu-bagofwords

Bag of Words

8

I

loved

this

movie

bias b

∑ xt + b

argmax 3

Sum word embeddings, add bias

Continuous Bag of Words (CBOW)

9

I

loved

this

movie

∑ xt

W

Sum word embeddings, project to 5D using W, add bias: W (∑ xt) + b

∑ xt

W

Note that a bias term (of size 5) is added to the final output vector (not shown). Also, this is not the same as word2vec CBOW!

Why not this?

10

I loved this movie

11

Deep CBOW

I

loved

this

movie

∑ xt

tanh

W’’ tanh(W’ tanh(W (∑ xt) + b) + b’) + b’’

tanh

∑ xt

W

W’

W’’

Note that a bias term is added whenever we multiply with a W (not shown)

Softmax

12

o = [-0.1, 0.1, 0.1, 2.4, 0.2]

softmax(oi) = exp(oi) / ∑j exp(oj)

This makes o sum to 1.0:

softmax(o) = [0.0589, 0.0720, 0.0720, 0.7177, 0.0795]

We don’t need a softmax
for prediction, there we
simply take the argmax

Training a neural network

13

We train our network with Stochastic Gradient Descent (SGD):

1. Sample a training example
2. Forward pass

a. Compute network activations, output vector
3. Compute loss

a. Compare output vector with true label using a loss function
4. Backward pass (backpropagation)

a. Compute gradient of loss w.r.t. parameters
5. Take a small step in the opposite direction of the gradient

Cross Entropy Loss

14

Given:

ŷ = [0.1, 0.1, 0.1, 0.5, 0.2] output vector (after softmax) from forward pass
y = [0, 0, 0, 1, 0] target / label (y3 = 1)

When our output is categorical (i.e. a number of classes), we can use a Cross Entropy loss:

CE(y, ŷ) = - ∑ yi log ŷi

SparseCE(y = 3, ŷ) = - log ŷy

torch.nn.CrossEntropyLoss
works like this and does the
softmax on o for you!

Backpropagation example

15

tanh

x

W

W’

ŷ = [0.1, 0.1, 0.1, 0.5, 0.2]
y = [0, 0, 0, 1, 0]

loss L = CE(ŷ, y) = -log(ŷ3) = -log(0.5)

compute gradients, e.g. for W’:
δL/δW’ = δL/δo δo/δW’
δL/δo = δL/δŷ δŷ/δo
 = -1/ŷ3 δsoftmax(o)/δo

update weights:
W’ = W’ - eta * δL/δW’

o

ŷ = softmax(o)

the chain rule is your friend!
L = f(g(x))
δL/δx = δf(g(x))/δg(x) ⋅ δg(x)/δx

Sequences

16

Recurrent Neural Network (RNN)

17
Elman (1990). Finding structure in time.

ht = f(xt, ht−1)

= 𝜎(Wxt + Rht-1 + b)
R

W

xt

++

RNNs model sequential data - one input xt per time step t

Example:
the cat sat on the mat
x1 x2 x3 x4 x5 x6

Let’s compute the RNN state after reading in
this sentence.

Remember:
ht = f(xt, ht-1)

Recurrent Neural Network (RNN)

18
Elman (1990)

h1 = f(x1, h0)
h2 = f(x2, f(x1, h0))
h3 = f(x3, f(x2, f(x1, h0)))
…
h6 = f(x6, f(x5, f(x4, ...)))

Unfolding the RNN

19

x1 x2 x3 x4

R R R

W W W W

Same R every
time step!

Same W every
time step!Word embedding

Making a prediction

20

x1 x2 x3 x4

R R R

W W W W

O

We can find the prediction
using argmax

Training:
apply softmax,
compute cross entropy loss,
backpropagate

O
R R R

The vanishing gradient problem

21

Simple RNNs are hard to train because of the vanishing gradient problem.

During backpropagation, gradients can quickly become small,

as they repeatedly go through multiplications (R) & non-linear functions (e.g. sigmoid or tanh)

x1 x2 x3 x4

W W W W

compute loss &
backpropagate

For more details see: Kyunghyun Cho. Natural Language Understanding with Distributed Representation. Section 4.3.

Let’s use an extra vector, cell state c

Intuition to solving the vanishing gradient

22

x1 x2 x3 x4

I I I
c1 c2 c3 c4

h1 h2 h3 h4

Adapted from Dyer, LxMLS 2016.

ct = ct-1 + f(xt) ht = tanh(ct)

ct = ct-1 + f(xt, ht-1) ht = tanh(ct)

A small improvement

23

x1 x2 x3 x4

I I I
c1 c2 c3 c4

h1 h2 h3 h4

Adapted from Dyer, LxMLS 2016.

Better gradient propagation is
possible when you use additive
rather than multiplicative/highly
non-linear recurrent dynamics

Long Short-Term Memory (LSTM)

24

LSTMs are a special kind of RNN that can deal with long-term dependencies in the data

tanh

⨉ ＋

tanh

σ σ

σ

⨉

⨉

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Long Short-Term Memory (LSTM)

25

ht, ct = lstm(xt, ht-1, ct-1)

input gate it = σ(Wi xt + Ri ht−1 + bi)

forget gate ft = σ(Wf xt + Rf ht−1 + bf)

candidate gt = tanh(Wg xt + Rg ht−1 + bg)

output gate ot = σ(Wo xt + Ro ht−1 + bo)

cell state ct = ft ⊙ ct−1 + it ⊙ gt
hidden state ht = ot ⊙ tanh(ct)

hidden state cell state previous hidden state and cell state

Trees

26

Exploiting tree structure

27

Instead of treating our input as a sequence, we can take an alternative approach:

assume a tree structure and use the principle of compositionality.

The meaning (vector) of a sentence is determined by:

1. the meanings of its words and

2. the rules that combine them

Adapted from Stanford cs224n.

Constituency Parse

28
http://demo.allennlp.org/constituency-parsing

Can we obtain a sentence vector using the tree structure given by a parse?

http://demo.allennlp.org/constituency-parsing

Recurrent vs Tree Recursive NN

29

I loved this movie

this movielovedI

RNNs cannot capture phrases without prefix context
and often capture too much of last words in final vector

Tree Recursive neural
networks require a parse
tree for each sentence

Adapted from Stanford cs224n.

Practical II data set: Stanford Sentiment Treebank (SST)

30

 3
 ____________|____________________
 | 4
 | _________________________|__
 | 4 |
___	______________							
	4							
	_________	__________						
		3						
		_____	______________________					
			4					
			________________	_______				
				2				
				_______	___			
	3			2				
	____	_____			___	_____		
		4	3	2				
		_____	___	_____	_______	___	___	
2 2 2 3 2 2 3 2 2 2 2 2 2								
 It 's a lovely film with lovely performances by Buy and Accorsi .

sentiment label for root node

A naive recursive NN

31

Combine every two children (left and right) into a parent node p:

p = tanh(Wleftxleft + Wrightxright + b)

a bit simplistic and
does not work well for
longer sentences

Richard Socher et al. Parsing natural scenes and natural language with recursive neural networks. ICML 2011.

xleft xright

tanh

Tree LSTM next time!

32

Extra

33

Recap: Matrix Multiplication

34

1 2 3

4 5 6

1 2

1 2

1 2

⨉ =

2x3

3x2

1⨉1 + 2⨉1 + 3⨉1 1⨉2 + 2⨉2 + 3⨉2

4⨉1 + 5⨉1 + 6⨉1 4⨉2 + 5⨉2 + 6⨉2

Rows multiply with columns

2x2

Recap: Activation functions

35

	Semantics with dense vectors

