Foundations of Bayesian NLP

MSc Artificial Intelligence

Lecturer: Wilker Aziz
Institute for Logic, Language, and Computation

2018

The problem with MLE

Motivating example from Liang and Klein (2007)

- mixture of Gaussians trained via EM

The problem with MLE

Motivating example from Liang and Klein (2007)

- mixture of Gaussians trained via EM

The problem with MLE

Motivating example from Liang and Klein (2007)

- mixture of Gaussians trained via EM

The problem with MLE

Motivating example from Liang and Klein (2007)

- mixture of Gaussians trained via EM

The problem with MLE

Motivating example from Liang and Klein (2007)

- mixture of Gaussians trained via EM

- as the capacity of the model increases (more clusters), training likelihood strictly improves

The problem with MLE

Motivating example from Liang and Klein (2007)

- mixture of Gaussians trained via EM

- as the capacity of the model increases (more clusters), training likelihood strictly improves
- but what happens with test likelihood?

The problem with MLE

Motivating example from Liang and Klein (2007)

- mixture of Gaussians trained via EM

- as the capacity of the model increases (more clusters), training likelihood strictly improves
- but what happens with test likelihood?

The problem with MLE

That's why you were told to always do model selection

- on heldout set
- preferably via cross-validation

The problem with MLE

That's why you were told to always do model selection

- on heldout set
- preferably via cross-validation

Can you see limitations of this approach?

The problem with MLE

That's why you were told to always do model selection

- on heldout set
- preferably via cross-validation

Can you see limitations of this approach?

- availability of data
- representativeness of heldout set
- discrete optimisation: combinatorial search over models

NLP1

Preliminaries

Bayesian modelling

Applications

Conventions

- N observations

$$
\mathbf{x}=\left\langle x_{1}, \ldots, x_{N}\right\rangle
$$

Conventions

- N observations

$$
\mathbf{x}=\left\langle x_{1}, \ldots, x_{N}\right\rangle
$$

- i th observation $x_{i} \in\{1, \ldots, K\}$

Conventions

- N observations
$\mathbf{x}=\left\langle x_{1}, \ldots, x_{N}\right\rangle$
- i th observation $x_{i} \in\{1, \ldots, K\}$
- all but the i th observation \mathbf{x}_{-i}

Conventions

- N observations
$\mathbf{x}=\left\langle x_{1}, \ldots, x_{N}\right\rangle$
- i th observation $x_{i} \in\{1, \ldots, K\}$
- all but the i th observation \mathbf{x}_{-i}
- N cluster indicators
$\mathbf{z}=\left\langle z_{1}, \ldots, z_{N}\right\rangle$

Conventions

- N observations
$\mathbf{x}=\left\langle x_{1}, \ldots, x_{N}\right\rangle$
- i th observation $x_{i} \in\{1, \ldots, K\}$
- all but the i th observation \mathbf{x}_{-i}
- N cluster indicators
$\mathbf{z}=\left\langle z_{1}, \ldots, z_{N}\right\rangle$
- i th cluster indicator $z_{i} \in\{1, \ldots, C\}$

Conventions

- N observations
$\mathbf{x}=\left\langle x_{1}, \ldots, x_{N}\right\rangle$
- i th observation $x_{i} \in\{1, \ldots, K\}$
- all but the i th observation \mathbf{x}_{-i}
- N cluster indicators
$\mathbf{z}=\left\langle z_{1}, \ldots, z_{N}\right\rangle$
- i th cluster indicator $z_{i} \in\{1, \ldots, C\}$
- all but the i th cluster assignment \mathbf{z}_{-i}

Conventions

- N observations
$\mathbf{x}=\left\langle x_{1}, \ldots, x_{N}\right\rangle$
- i th observation $x_{i} \in\{1, \ldots, K\}$
- all but the i th observation \mathbf{x}_{-i}
- N cluster indicators
$\mathbf{z}=\left\langle z_{1}, \ldots, z_{N}\right\rangle$
- i th cluster indicator $z_{i} \in\{1, \ldots, C\}$
- all but the i th cluster assignment \mathbf{z}_{-i}
- Parameter vector

$$
\theta=\left\langle\theta_{1}, \ldots, \theta_{K}\right\rangle
$$

Conventions

- N observations
$\mathbf{x}=\left\langle x_{1}, \ldots, x_{N}\right\rangle$
- i th observation $x_{i} \in\{1, \ldots, K\}$
- all but the i th observation \mathbf{x}_{-i}
- N cluster indicators
$\mathbf{z}=\left\langle z_{1}, \ldots, z_{N}\right\rangle$
- i th cluster indicator $z_{i} \in\{1, \ldots, C\}$
- all but the i th cluster assignment \mathbf{z}_{-i}
- Parameter vector $\theta=\left\langle\theta_{1}, \ldots, \theta_{K}\right\rangle$
- Collection of parameter vectors $\boldsymbol{\theta}=\left\langle\theta^{(1)}, \ldots, \theta^{(C)}\right\rangle$

Mixture model

Let's assume x to be 1 of K, and z to be 1 of C

- categorical likelihood

Mixture model

Let's assume x to be 1 of K, and z to be 1 of C

- categorical likelihood
- uniform prior over mixture components, i.e. mixing weights are fixed and uniform

Mixture model

Let's assume x to be 1 of K, and z to be 1 of C

- categorical likelihood
- uniform prior over mixture components, i.e. mixing weights are fixed and uniform
- $\theta^{(c)} \in \Delta_{K-1}$

Mixture model

Let's assume x to be 1 of K, and z to be 1 of C

- categorical likelihood
- uniform prior over mixture components, i.e. mixing weights are fixed and uniform
- $\theta^{(c)} \in \Delta_{K-1}$

For $i=1, \ldots, N$

$$
Z_{i} \sim \mathcal{U}(C)
$$

Mixture model

Let's assume x to be 1 of K, and z to be 1 of C

- categorical likelihood
- uniform prior over mixture components, i.e. mixing weights are fixed and uniform
- $\theta^{(c)} \in \Delta_{K-1}$

For $i=1, \ldots, N$

$$
\begin{align*}
Z_{i} & \sim \mathcal{U}(C) \\
X_{i} \mid \boldsymbol{\theta}, \mathbf{z}_{-i}, z_{i}=c & \sim \operatorname{Cat}\left(\theta^{(c)}\right) \tag{1}
\end{align*}
$$

Mixture model

Let's assume x to be 1 of K, and z to be 1 of C

- categorical likelihood
- uniform prior over mixture components, i.e. mixing weights are fixed and uniform
- $\theta^{(c)} \in \Delta_{K-1}$

For $i=1, \ldots, N$

$$
\begin{align*}
Z_{i} & \sim \mathcal{U}(C) \\
X_{i} \mid \boldsymbol{\theta}, \mathbf{z}_{-i}, z_{i}=c & \sim \operatorname{Cat}\left(\theta^{(c)}\right) \tag{1}
\end{align*}
$$

What is a sensible conditional distribution $X \mid \theta^{(c)} \sim \operatorname{Cat}\left(\theta^{(c)}\right)$?

What makes a good conditional?

$$
c=1 \text { (the blue cluster), } K=4
$$

What makes a good conditional?

$c=1$ (the blue cluster), $K=4$

What makes a good conditional?

$c=1$ (the blue cluster), $K=4$

What makes a good conditional?

$c=1$ (the blue cluster), $K=4$

Can you make any assumptions before observing data?

Bayes rule

What does Bayes rule tell you?

$$
\underbrace{P(h \mid d)}_{\text {posterior }}=
$$

Bayes rule

What does Bayes rule tell you?

$$
\underbrace{P(h \mid d)}_{\text {posterior }}=\frac{\overbrace{P(d \mid h)}^{\text {likelihood }} \overbrace{P(h)}^{\text {prior }}}{\underbrace{P(d)}_{\text {evidence }}}
$$

Bayes rule

What does Bayes rule tell you?

$$
\begin{equation*}
\underbrace{P(h \mid d)}_{\text {posterior }}=\frac{\overbrace{P(d \mid h)}^{\text {likelihood }} \overbrace{P(h)}^{\text {prior }}}{\underbrace{P(d)}_{\text {evidence }}} \propto P(d \mid h) P(h) \tag{2}
\end{equation*}
$$

Bayes rule

What does Bayes rule tell you?

$$
\begin{equation*}
\underbrace{P(h \mid d)}_{\text {posterior }}=\frac{\overbrace{P(d \mid h)}^{\text {likelihood }} \overbrace{P(h)}^{\text {prior }}}{\underbrace{P(d)}_{\text {evidence }}} \propto P(d \mid h) P(h) \tag{2}
\end{equation*}
$$

- the likelihood tells you how well a hypothesis h explains the observed data d;

Bayes rule

What does Bayes rule tell you?

$$
\begin{equation*}
\underbrace{P(h \mid d)}_{\text {posterior }}=\frac{\overbrace{P(d \mid h)}^{\text {likelihood }} \overbrace{P(h)}^{\text {prior }}}{\underbrace{P(d)}_{\text {evidence }}} \propto P(d \mid h) P(h) \tag{2}
\end{equation*}
$$

- the likelihood tells you how well a hypothesis h explains the observed data d;
- the prior tells you how much h conforms to expectations about what a good hypothesis looks like regardless of observed data;

Bayes rule

What does Bayes rule tell you?

$$
\begin{equation*}
\underbrace{P(h \mid d)}_{\text {posterior }}=\frac{\overbrace{P(d \mid h)}^{\text {likelihood }} \overbrace{P(h)}^{\text {prior }}}{\underbrace{P(d)}_{\text {evidence }}} \propto P(d \mid h) P(h) \tag{2}
\end{equation*}
$$

- the likelihood tells you how well a hypothesis h explains the observed data d;
- the prior tells you how much h conforms to expectations about what a good hypothesis looks like regardless of observed data;
- the evidence tells you how well your model \mathcal{M} explains the data, i.e. $P(d)$ is actually $P(d \mid \mathcal{M})$

Bayes rule

What does Bayes rule tell you?

$$
\begin{equation*}
\underbrace{P(h \mid d)}_{\text {posterior }}=\frac{\overbrace{P(d \mid h)}^{\text {likelihood }} \overbrace{P(h)}^{\text {prior }}}{\underbrace{P(d)}_{\text {evidence }}} \propto P(d \mid h) P(h) \tag{2}
\end{equation*}
$$

- the likelihood tells you how well a hypothesis h explains the observed data d;
- the prior tells you how much h conforms to expectations about what a good hypothesis looks like regardless of observed data;
- the evidence tells you how well your model \mathcal{M} explains the data, i.e. $P(d)$ is actually $P(d \mid \mathcal{M})$
- the posterior updates our beliefs about hypotheses in light of observed data.

Maximum likelihood estimation

An optimisation problem based on the (log-)likelihood function

$$
h^{\star}=\underset{h}{\arg \max } P(d \mid h)
$$

Maximum likelihood estimation

An optimisation problem based on the (log-)likelihood function

$$
\begin{equation*}
h^{\star}=\underset{h}{\arg \max } P(d \mid h)=\underset{h}{\arg \max } \underbrace{\log P(d \mid h)}_{\mathcal{L}(h)} \tag{3}
\end{equation*}
$$

Maximum likelihood estimation

An optimisation problem based on the (log-)likelihood function

$$
\begin{equation*}
h^{\star}=\underset{h}{\arg \max } P(d \mid h)=\underset{h}{\arg \max } \underbrace{\log P(d \mid h)}_{\mathcal{L}(h)} \tag{3}
\end{equation*}
$$

- all hypotheses are equally likely a priori;

Maximum likelihood estimation

An optimisation problem based on the (log-)likelihood function

$$
\begin{equation*}
h^{\star}=\underset{h}{\arg \max } P(d \mid h)=\underset{h}{\arg \max } \underbrace{\log P(d \mid h)}_{\mathcal{L}(h)} \tag{3}
\end{equation*}
$$

- all hypotheses are equally likely a priori;
- can be approached by coordinate ascent methods;

Maximum likelihood estimation

An optimisation problem based on the (log-)likelihood function

$$
\begin{equation*}
h^{\star}=\underset{h}{\arg \max } P(d \mid h)=\underset{h}{\arg \max } \underbrace{\log P(d \mid h)}_{\mathcal{L}(h)} \tag{3}
\end{equation*}
$$

- all hypotheses are equally likely a priori;
- can be approached by coordinate ascent methods;
- local optimality guarantees;

All the same a priori

Before data, MLE is equally happy with the hypotheses on the left

Constraining MLE

Maximum a posteriori

$$
\begin{align*}
h^{\star} & =\underset{h}{\arg \max } P(d \mid h) P(h) \\
& =\underset{h}{\arg \max } \log P(d \mid h)+\log P(h) \tag{4}
\end{align*}
$$

- perhaps fine if $P(h)$ has a single narrow peak

Constraining MLE

Maximum a posteriori

$$
\begin{align*}
h^{\star} & =\underset{h}{\arg \max } P(d \mid h) P(h) \\
& =\underset{h}{\arg \max } \log P(d \mid h)+\log P(h)
\end{align*}
$$

- perhaps fine if $P(h)$ has a single narrow peak
- priors often indicate preference for a subset of hypotheses over another, multiple peaks make optimisation considerably harder

Constraining MLE

Maximum a posteriori

$$
\begin{align*}
h^{\star} & =\underset{h}{\arg \max } P(d \mid h) P(h) \\
& =\underset{h}{\arg \max } \log P(d \mid h)+\log P(h)
\end{align*}
$$

- perhaps fine if $P(h)$ has a single narrow peak
- priors often indicate preference for a subset of hypotheses over another, multiple peaks make optimisation considerably harder
- still a point estimate, teaches us very little about the overall model (set of assumptions)

Constraining MLE

Maximum a posteriori

$$
\begin{align*}
h^{\star} & =\underset{h}{\arg \max } P(d \mid h) P(h) \\
& =\underset{h}{\arg \max } \log P(d \mid h)+\log P(h) \tag{4}
\end{align*}
$$

- perhaps fine if $P(h)$ has a single narrow peak
- priors often indicate preference for a subset of hypotheses over another, multiple peaks make optimisation considerably harder
- still a point estimate, teaches us very little about the overall model (set of assumptions)
"I read before that Bayesian priors are just like regularisers,

Constraining MLE

Maximum a posteriori

$$
\begin{align*}
h^{\star} & =\underset{h}{\arg \max } P(d \mid h) P(h) \\
& =\underset{h}{\arg \max } \log P(d \mid h)+\log P(h) \tag{4}
\end{align*}
$$

- perhaps fine if $P(h)$ has a single narrow peak
- priors often indicate preference for a subset of hypotheses over another, multiple peaks make optimisation considerably harder
- still a point estimate, teaches us very little about the overall model (set of assumptions)
"I read before that Bayesian priors are just like regularisers, I even know that a Gaussian prior is just L_{2} regularisation"

Constraining MLE

Maximum a posteriori

$$
\begin{align*}
h^{\star} & =\underset{h}{\arg \max } P(d \mid h) P(h) \\
& =\underset{h}{\arg \max } \log P(d \mid h)+\log P(h) \tag{4}
\end{align*}
$$

- perhaps fine if $P(h)$ has a single narrow peak
- priors often indicate preference for a subset of hypotheses over another, multiple peaks make optimisation considerably harder
- still a point estimate, teaches us very little about the overall model (set of assumptions)
"I read before that Bayesian priors are just like regularisers, I even know that a Gaussian prior is just L_{2} regularisation"
- that only covers the specification of a prior

Constraining MLE

Maximum a posteriori

$$
\begin{align*}
h^{\star} & =\underset{h}{\arg \max } P(d \mid h) P(h) \\
& =\underset{h}{\arg \max } \log P(d \mid h)+\log P(h) \tag{4}
\end{align*}
$$

- perhaps fine if $P(h)$ has a single narrow peak
- priors often indicate preference for a subset of hypotheses over another, multiple peaks make optimisation considerably harder
- still a point estimate, teaches us very little about the overall model (set of assumptions)
"I read before that Bayesian priors are just like regularisers, I even know that a Gaussian prior is just L_{2} regularisation"
- that only covers the specification of a prior
- Bayesian modelling does not end at prior specification you need the crucial part: posterior inference

NLP1

Preliminaries

Bayesian modelling Dirichlet-Multinomial model Applications

A Bayesian model

Bayesian

In a Bayesian model, parameters are no different from data

- they are random variables much like data

A Bayesian model

Frequentist

Bayesian

In a Bayesian model, parameters are no different from data

- they are random variables much like data
- only they are not observed

A Bayesian model

Frequentist

Bayesian

In a Bayesian model, parameters are no different from data

- they are random variables much like data
- only they are not observed

Bayesians do condition on deterministic quantities

- β here are called hyperparameters

A Bayesian model

Frequentist

Bayesian

In a Bayesian model, parameters are no different from data

- they are random variables much like data
- only they are not observed

Bayesians do condition on deterministic quantities

- β here are called hyperparameters
- but most Bayesians leave those fixed (no search!)

A Bayesian model

Frequentist

Bayesian

In a Bayesian model, parameters are no different from data

- they are random variables much like data
- only they are not observed

Bayesians do condition on deterministic quantities

- β here are called hyperparameters
- but most Bayesians leave those fixed (no search!)

We will study an example that illustrates important concepts
Dirichlet-Multinomial model

Dirichlet distribution

A distribution over the open simplex of K-dimensional vectors we denote the simplex by

$$
\begin{equation*}
\Delta_{K-1}=\left\{\theta \in \mathbb{R}_{>0}^{K}: \sum_{k=1}^{K} \theta_{k}=1\right\} \subseteq \mathbb{R}_{>0}^{K} \tag{5}
\end{equation*}
$$

Use this notebook and this wikpage to learn more

Count vector

For observations \mathbf{x}, where x_{i} is 1 of K define $n^{(\mathbf{x})}$ as the K-dimensional vector such that

$$
\begin{equation*}
n_{k}=\sum_{i=1}^{N}\left[x_{i}=k\right] \tag{6}
\end{equation*}
$$

Count vector

For observations \mathbf{x}, where x_{i} is 1 of K define $n^{(\mathbf{x})}$ as the K-dimensional vector such that

$$
\begin{equation*}
n_{k}=\sum_{i=1}^{N}\left[x_{i}=k\right] \tag{6}
\end{equation*}
$$

Example: for $K=3$ and $N=6$

$$
\begin{aligned}
\mathbf{x} & =\left\langle x_{1}=2, x_{2}=3, x_{3}=1, x_{4}=2, x_{5}=2, x_{6}=3\right\rangle \\
n^{(\mathbf{x})} & =
\end{aligned}
$$

Count vector

For observations \mathbf{x}, where x_{i} is 1 of K define $n^{(\mathbf{x})}$ as the K-dimensional vector such that

$$
\begin{equation*}
n_{k}=\sum_{i=1}^{N}\left[x_{i}=k\right] \tag{6}
\end{equation*}
$$

Example: for $K=3$ and $N=6$

$$
\begin{aligned}
\mathbf{x} & =\left\langle x_{1}=2, x_{2}=3, x_{3}=1, x_{4}=2, x_{5}=2, x_{6}=3\right\rangle \\
n^{(\mathbf{x})} & =\left\langle n_{1}=1, n_{2}=3, n_{3}=2\right\rangle
\end{aligned}
$$

Gamma function

A generalisation of the factorial function to \mathbb{R}

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} \epsilon^{z-1} \exp (-\epsilon) \mathrm{d} \epsilon \tag{7}
\end{equation*}
$$

Properties

- $\Gamma(n)=(n-1)$! for positive integer n
- $\Gamma(z)=(z-1) \Gamma(z-1)$

Dirchlet-Multinomial

Model

$$
\begin{align*}
\theta \mid \beta & \sim \operatorname{Dir}(\beta) \\
X_{i} \mid \theta & \sim \operatorname{Cat}(\theta) \quad \text { for } i=1, \ldots, N \tag{8}
\end{align*}
$$

Dirchlet-Multinomial

Model

$$
\begin{align*}
\theta \mid \beta & \sim \operatorname{Dir}(\beta) \\
X_{i} \mid \theta & \sim \operatorname{Cat}(\theta) \quad \text { for } i=1, \ldots, N \tag{8}
\end{align*}
$$

Joint distribution

$$
\begin{align*}
P(\mathbf{x}, \theta \mid \beta) & =P(\theta) P(\mathbf{x} \mid \theta) \\
& =\operatorname{Dir}(\theta \mid \beta) \operatorname{Mult}\left(n^{(\mathbf{x})} \mid \theta, N\right) \tag{9}
\end{align*}
$$

Multinomial likelihood

For $\theta \in \Delta_{K-1}$

$$
P(\mathbf{x} \mid \theta)=\operatorname{Mult}\left(n^{(\mathbf{x})} \mid \theta, N\right)
$$

Multinomial likelihood

For $\theta \in \Delta_{K-1}$

$$
\begin{aligned}
P(\mathbf{x} \mid \theta) & =\operatorname{Mult}\left(n^{(\mathbf{x})} \mid \theta, N\right) \\
& =\frac{N!}{\prod_{k=1}^{K} n_{k}!} \prod_{k=1}^{K} \theta_{k}^{n_{k}}
\end{aligned}
$$

Multinomial likelihood

For $\theta \in \Delta_{K-1}$

$$
\begin{aligned}
P(\mathbf{x} \mid \theta) & =\operatorname{Mult}\left(n^{(\mathbf{x})} \mid \theta, N\right) \\
& =\frac{N!}{\prod_{k=1}^{K} n_{k}!} \prod_{k=1}^{K} \theta_{k}^{n_{k}} \\
& =\frac{\Gamma\left(\sum_{k=1}^{K} n_{k}+1\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+1\right)} \prod_{k=1}^{K} \theta_{k}^{n_{k}}
\end{aligned}
$$

Multinomial likelihood

For $\theta \in \Delta_{K-1}$

$$
\begin{align*}
P(\mathbf{x} \mid \theta) & =\operatorname{Mult}\left(n^{(\mathbf{x})} \mid \theta, N\right) \\
& =\frac{N!}{\prod_{k=1}^{K} n_{k}!} \prod_{k=1}^{K} \theta_{k}^{n_{k}} \tag{10}\\
& =\frac{\Gamma\left(\sum_{k=1}^{K} n_{k}+1\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+1\right)} \prod_{k=1}^{K} \theta_{k}^{n_{k}}
\end{align*}
$$

Example: for $K=3$ and $N=6$

$$
\begin{gathered}
\quad \theta=\left\langle\theta_{1}=0.2, \theta_{2}=0.3, \theta_{3}=0.5\right\rangle \\
\mathbf{x}=\left\langle x_{1}=2, x_{2}=3, x_{3}=1, x_{4}=2, x_{5}=2, x_{6}=3\right\rangle \\
n^{(\mathbf{x})}=\left\langle n_{1}=1, n_{2}=3, n_{3}=2\right\rangle \\
\quad P(\mathbf{x} \mid \theta)=\frac{\Gamma(\ldots)}{\prod \cdots} \theta_{1}^{1} \times \theta_{2}^{3} \times \theta_{3}^{2}
\end{gathered}
$$

Dirichlet prior

For $\beta \in \mathbb{R}_{>0}^{K}$

$$
\operatorname{Dir}(\theta \mid \beta)=\frac{\Gamma\left(\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\beta_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1}
$$

Dirichlet prior

For $\beta \in \mathbb{R}_{>0}^{K}$

$$
\begin{align*}
\operatorname{Dir}(\theta \mid \beta) & =\frac{\Gamma\left(\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\beta_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1} \tag{11}\\
& \propto \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1}
\end{align*}
$$

Dirichlet prior

For $\beta \in \mathbb{R}_{>0}^{K}$

$$
\begin{align*}
\operatorname{Dir}(\theta \mid \beta) & =\frac{\Gamma\left(\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\beta_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1} \tag{11}\\
& \propto \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1}
\end{align*}
$$

We call

$$
\int_{\Delta_{K-1}} \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1}=\frac{\prod_{k=1}^{K} \Gamma\left(\beta_{k}\right)}{\Gamma\left(\sum_{k=1}^{K} \beta_{k}\right)}
$$

the Dirichlet normaliser

Posterior

$$
P(\theta \mid \mathbf{x}, \beta) \propto
$$

Posterior

$$
P(\theta \mid \mathbf{x}, \beta) \propto P(\mathbf{x} \mid \theta) P(\theta \mid \beta)
$$

Posterior

$$
P(\theta \mid \mathbf{x}, \beta) \propto P(\mathbf{x} \mid \theta) P(\theta \mid \beta)
$$

$$
\propto \underbrace{\frac{\Gamma\left(\sum_{k=1}^{K} n_{k}+1\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+1\right)} \prod_{k=1}^{K} \theta_{k}^{n_{k}}}_{\operatorname{Mult}\left(n^{(\mathbf{x})} \mid \theta\right)} \times
$$

Posterior

$$
P(\theta \mid \mathbf{x}, \beta) \propto P(\mathbf{x} \mid \theta) P(\theta \mid \beta)
$$

$$
\propto \underbrace{\frac{\Gamma\left(\sum_{k=1}^{K} n_{k}+1\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+1\right)} \prod_{k=1}^{K} \theta_{k}^{n_{k}}}_{\operatorname{Mult}\left(n^{(\mathbf{x})} \mid \theta\right)} \times \underbrace{\frac{\Gamma\left(\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\beta_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1}}_{\operatorname{Dir}(\theta \mid \beta)}
$$

Posterior

$$
P(\theta \mid \mathbf{x}, \beta) \propto P(\mathbf{x} \mid \theta) P(\theta \mid \beta)
$$

$$
\propto \underbrace{\frac{\Gamma\left(\sum_{k=1}^{K} n_{k}+1\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+1\right)} \prod_{k=1}^{K} \theta_{k}^{n_{k}}}_{\operatorname{Mult}\left(n^{(\mathbf{x})} \mid \theta\right)} \times \underbrace{\frac{\Gamma\left(\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\beta_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1}}_{\operatorname{Dir}(\theta \mid \beta)}
$$

$$
\propto \prod_{k=1}^{K} \theta_{k}^{n_{k}} \times
$$

Posterior

$$
P(\theta \mid \mathbf{x}, \beta) \propto P(\mathbf{x} \mid \theta) P(\theta \mid \beta)
$$

$$
\propto \underbrace{\frac{\Gamma\left(\sum_{k=1}^{K} n_{k}+1\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+1\right)} \prod_{k=1}^{K} \theta_{k}^{n_{k}}}_{\operatorname{Mult}\left(n^{(\mathbf{x})} \mid \theta\right)} \times \underbrace{\frac{\Gamma\left(\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\beta_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1}}_{\operatorname{Dir}(\theta \mid \beta)}
$$

$$
\propto \prod_{k=1}^{K} \theta_{k}^{n_{k}} \times \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1}
$$

Posterior

$$
\begin{aligned}
P(\theta \mid \mathbf{x}, \beta) & \propto P(\mathbf{x} \mid \theta) P(\theta \mid \beta) \\
& \propto \underbrace{\frac{\Gamma\left(\sum_{k=1}^{K} n_{k}+1\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+1\right)} \prod_{k=1}^{K} \theta_{k}^{n_{k}}}_{\operatorname{Mult}\left(n^{(\mathbf{x})} \mid \theta\right)} \times \underbrace{\frac{\Gamma\left(\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\beta_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1}}_{\operatorname{Dir}(\theta \mid \beta)} \\
& \propto \prod_{k=1}^{K} \theta_{k}^{n_{k}} \times \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1} \\
& =\prod_{k=1}^{K} \theta_{k}^{n_{k}+\beta_{k}-1}
\end{aligned}
$$

Posterior

$$
\begin{aligned}
P(\theta \mid \mathbf{x}, \beta) & \propto P(\mathbf{x} \mid \theta) P(\theta \mid \beta) \\
& \propto \underbrace{\frac{\Gamma\left(\sum_{k=1}^{K} n_{k}+1\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+1\right)} \prod_{k=1}^{K} \theta_{k}^{n_{k}}}_{\operatorname{Mult}\left(n^{(\mathbf{x})} \mid \theta\right)} \times \underbrace{\frac{\Gamma\left(\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\beta_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1}}_{\operatorname{Dir}(\theta \mid \beta)} \\
& \propto \prod_{k=1}^{K} \theta_{k}^{n_{k}} \times \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1} \\
& =\prod_{k=1}^{K} \theta_{k}^{n_{k}+\beta_{k}-1} \propto \operatorname{Dir}\left(\theta \mid n^{(\mathbf{x})}+\beta\right)
\end{aligned}
$$

Posterior

$$
\begin{aligned}
P(\theta \mid \mathbf{x}, \beta) & \propto P(\mathbf{x} \mid \theta) P(\theta \mid \beta) \\
& \propto \underbrace{\frac{\Gamma\left(\sum_{k=1}^{K} n_{k}+1\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+1\right)} \prod_{k=1}^{K} \theta_{k}^{n_{k}}}_{\operatorname{Mult}\left(n^{(\mathbf{x})} \mid \theta\right)} \times \underbrace{\frac{\Gamma\left(\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\beta_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1}}_{\operatorname{Dir}(\theta \mid \beta)} \\
& \propto \prod_{k=1}^{K} \theta_{k}^{n_{k}} \times \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1} \\
& =\prod_{k=1}^{K} \theta_{k}^{n_{k}+\beta_{k}-1} \propto \operatorname{Dir}\left(\theta \mid n^{(\mathbf{x})}+\beta\right)
\end{aligned}
$$

Thus

Posterior

$$
\begin{aligned}
P(\theta \mid \mathbf{x}, \beta) & \propto P(\mathbf{x} \mid \theta) P(\theta \mid \beta) \\
& \propto \underbrace{\frac{\Gamma\left(\sum_{k=1}^{K} n_{k}+1\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+1\right)} \prod_{k=1}^{K} \theta_{k}^{n_{k}}}_{\operatorname{Mult}\left(n^{(\mathbf{x})} \mid \theta\right)} \times \underbrace{\frac{\Gamma\left(\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(\beta_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1}}_{\operatorname{Dir}(\theta \mid \beta)} \\
& \propto \prod_{k=1}^{K} \theta_{k}^{n_{k}} \times \prod_{k=1}^{K} \theta_{k}^{\beta_{k}-1} \\
& =\prod_{k=1}^{K} \theta_{k}^{n_{k}+\beta_{k}-1} \propto \operatorname{Dir}\left(\theta \mid n^{(\mathbf{x})}+\beta\right)
\end{aligned}
$$

Thus

$$
\begin{equation*}
P(\theta \mid \mathbf{x}, \beta)=\underbrace{\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)}}_{\frac{1}{\text { normaliser }} \text { of } \operatorname{Dir}\left(n^{(\mathbf{x})}+\beta\right)} \prod_{k=1}^{K} \theta_{k}^{n_{k}+\beta_{k}-1} \tag{12}
\end{equation*}
$$

Posterior predictive distribution

Suppose a new data point $x_{N+1}=j$ is available

$$
P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} P\left(\theta, x_{N+1} \mid \mathbf{x}, \beta\right) \mathrm{d} \theta
$$

Posterior predictive distribution

Suppose a new data point $x_{N+1}=j$ is available

$$
\begin{aligned}
& P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} P\left(\theta, x_{N+1} \mid \mathbf{x}, \beta\right) \mathrm{d} \theta \\
& =\int_{\Delta_{K-1}} \underbrace{P\left(x_{N+1}=j \mid \theta\right)}_{\text {likelihood }} \underbrace{P(\theta \mid \mathbf{x}, \beta)}_{\text {posterior }} \mathrm{d} \theta
\end{aligned}
$$

Posterior predictive distribution (cont.)

Suppose a new data point $x_{N+1}=j$ is available

$$
P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} \underbrace{P\left(x_{N+1}=j \mid \theta\right)}_{\text {likelihood }} \underbrace{P(\theta \mid \mathbf{x}, \beta)}_{\text {posterior }} \mathrm{d} \theta
$$

Posterior predictive distribution (cont.)

Suppose a new data point $x_{N+1}=j$ is available

$$
\begin{aligned}
& P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} \underbrace{P\left(x_{N+1}=j \mid \theta\right)}_{\text {likelihood }} \underbrace{P(\theta \mid \mathbf{x}, \beta)}_{\text {posterior }} \mathrm{d} \theta \\
& =\int_{\Delta_{K-1}} \theta_{j} \times
\end{aligned}
$$

Posterior predictive distribution (cont.)

Suppose a new data point $x_{N+1}=j$ is available

$$
\begin{aligned}
& P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} \underbrace{P\left(x_{N+1}=j \mid \theta\right)}_{\text {likelihood }} \underbrace{P(\theta \mid \mathbf{x}, \beta)}_{\text {posterior }} \mathrm{d} \theta \\
& =\int_{\Delta_{K-1}} \theta_{j} \times \underbrace{\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{n_{k}+\beta_{k}-1} \mathrm{~d} \theta}_{\text {constant wrt } \theta}
\end{aligned}
$$

Posterior predictive distribution (cont.)

Suppose a new data point $x_{N+1}=j$ is available

$$
\begin{align*}
& P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} \underbrace{P\left(x_{N+1}=j \mid \theta\right)}_{\text {likelihood }} \underbrace{P(\theta \mid \mathbf{x}, \beta)}_{\text {posterior }} \mathrm{d} \theta \\
& =\int_{\Delta_{K-1}} \theta_{j} \times \underbrace{\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{n_{k}+\beta_{k}-1} \mathrm{~d} \theta}_{\text {constant wrt } \theta} \\
& =\underbrace{\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)}}_{\text {constant wrt } \theta} \int_{\Delta_{K-1}} \theta_{j} \times
\end{align*}
$$

Posterior predictive distribution (cont.)

Suppose a new data point $x_{N+1}=j$ is available

$$
\begin{aligned}
& P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} \underbrace{P\left(x_{N+1}=j \mid \theta\right)}_{\text {likelihood }} \underbrace{P(\theta \mid \mathbf{x}, \beta)}_{\text {posterior }} \mathrm{d} \theta \\
& =\int_{\Delta_{K-1}} \theta_{j} \times \underbrace{\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)}}_{\text {constant wrt } \theta} \prod_{k=1}^{K} \theta_{k}^{n_{k}+\beta_{k}-1} \mathrm{~d} \theta \\
& =\underbrace{\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)}}_{\text {constant wrt } \theta} \int_{\Delta_{K-1}} \theta_{j} \times \underbrace{\theta_{j}^{n_{j}+\beta_{j}-1} \prod_{k \neq j} \theta_{k}^{n_{k}+\beta_{k}-1}}_{\prod_{k=1}^{K} \theta_{k}^{n_{k}+\beta_{k}-1}} \mathrm{~d} \theta
\end{aligned}
$$

Posterior predictive distribution (cont.)

Suppose a new data point $x_{N+1}=j$ is available

$$
\begin{aligned}
& P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} \underbrace{P\left(x_{N+1}=j \mid \theta\right)}_{\text {likelihood }} \underbrace{P(\theta \mid \mathbf{x}, \beta)}_{\text {posterior }} \mathrm{d} \theta \\
& =\int_{\Delta_{K-1}} \theta_{j} \times \frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \prod_{k=1}^{K} \theta_{k}^{n_{k}+\beta_{k}-1} \mathrm{~d} \theta \\
& =\underbrace{\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)}}_{\text {constant wrt } \theta} \int_{\Delta_{K-1}} \theta_{j} \times \underbrace{\theta_{j}^{n_{j}+\beta_{j}-1} \prod_{k \neq j} \theta_{k}^{n_{k}+\beta_{k}-1}}_{\prod_{k=1}^{K} \theta_{k}^{n_{k}+\beta_{k}-1}} \mathrm{~d} \theta \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \int_{\Delta_{K-1}} \theta_{j}^{n_{j}+\beta_{j}} \prod_{k \neq j} \theta_{k}^{n_{k}+\beta_{k}-1} \mathrm{~d} \theta
\end{aligned}
$$

Posterior predictive distribution (cont.)

$$
\begin{aligned}
& P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} \underbrace{P\left(x_{N+1}=j \mid \theta\right)}_{\text {likelihood }} \underbrace{P(\theta \mid \mathbf{x}, \beta)}_{\text {posterior }} \mathrm{d} \theta \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \int_{\Delta_{K-1}} \theta_{j}^{n_{j}+\beta_{j}} \prod_{k \neq j} \theta_{k}^{n_{k}+\beta_{k}-1} \mathrm{~d} \theta
\end{aligned}
$$

Posterior predictive distribution (cont.)

$$
\begin{aligned}
& P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} \underbrace{P\left(x_{N+1}=j \mid \theta\right)}_{\text {likelihood }} \underbrace{P(\theta \mid \mathbf{x}, \beta)}_{\text {posterior }} \mathrm{d} \theta \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \underbrace{\int_{\Delta_{K-1}} \theta_{j}^{n_{j}+\beta_{j}} \prod_{k \neq j} \theta_{k}^{n_{k}+\beta_{k}-1} \mathrm{~d} \theta}_{\text {Dir normaliser }}
\end{aligned}
$$

Posterior predictive distribution (cont.)

$$
\begin{aligned}
& P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} \underbrace{P\left(x_{N+1}=j \mid \theta\right)}_{\text {likelihood }} \underbrace{P(\theta \mid \mathbf{x}, \beta)}_{\text {posterior }} \mathrm{d} \theta \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \underbrace{\int_{\Delta_{K-1}} \theta_{j}^{n_{j}+\beta_{j}} \prod_{k \neq j} \theta_{k}^{n_{k}+\beta_{k}-1} \mathrm{~d} \theta}_{\text {Dir normaliser }} \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \underbrace{}
\end{aligned}
$$

Posterior predictive distribution (cont.)

$$
\begin{aligned}
& P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} \underbrace{P\left(x_{N+1}=j \mid \theta\right)}_{\text {likelihood }} \underbrace{P(\theta \mid \mathbf{x}, \beta)}_{\text {posterior }} \mathrm{d} \theta \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \underbrace{\int_{\Delta_{K-1}} \theta_{j}^{n_{j}+\beta_{j}} \prod_{k \neq j} \theta_{k}^{n_{k}+\beta_{k}-1} \mathrm{~d} \theta}_{\text {Dir normaliser }} \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}+1\right)}{}
\end{aligned}
$$

Posterior predictive distribution (cont.)

$$
\begin{aligned}
& P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} \underbrace{P\left(x_{N+1}=j \mid \theta\right)}_{\text {likelihood }} \underbrace{P(\theta \mid \mathbf{x}, \beta)}_{\text {posterior }} \mathrm{d} \theta \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \underbrace{\int_{\Delta_{K-1}} \theta_{j}^{n_{j}+\beta_{j}} \prod_{k \neq j} \theta_{k}^{n_{k}+\beta_{k}-1} \mathrm{~d} \theta}_{\text {Dir normaliser }} \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \frac{\Gamma\left(n_{j}+\beta_{j}+1\right) \prod_{k \neq j} \Gamma\left(n_{k}+\beta_{k}\right)}{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}+1\right)}
\end{aligned}
$$

Posterior predictive distribution (cont.)

$$
\begin{aligned}
& P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} \underbrace{P\left(x_{N+1}=j \mid \theta\right)}_{\text {likelihood }} \underbrace{P(\theta \mid \mathbf{x}, \beta)}_{\text {posterior }} \mathrm{d} \theta \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \underbrace{\int_{j}^{n_{j}+\beta_{j}} \prod_{k \neq j} \theta_{k}^{n_{k}+\beta_{k}-1} \mathrm{~d} \theta}_{\Delta_{K-1}} \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \frac{\Gamma\left(n_{j}+\beta_{j}+1\right) \prod_{k \neq j} \Gamma\left(n_{k}+\beta_{k}\right)}{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}+1\right)} \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \frac{\left(n_{j}+\beta_{j}\right) \Gamma\left(n_{j}+\beta_{j}\right) \prod_{k \neq j} \Gamma\left(n_{k}+\beta_{k}\right)}{\left(N+\sum_{k=1}^{K} \beta_{k}\right) \Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}
\end{aligned}
$$

Posterior predictive distribution (cont.)

$$
\begin{aligned}
& P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} \underbrace{P\left(x_{N+1}=j \mid \theta\right)}_{\text {likelihood }} \underbrace{P(\theta \mid \mathbf{x}, \beta)}_{\text {posterior }} \mathrm{d} \theta \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \underbrace{\int_{\Delta_{K-1}} \theta_{j}^{n_{j}+\beta_{j}} \prod_{k \neq j} \theta_{k}^{n_{k}+\beta_{k}-1} \mathrm{~d} \theta}_{\text {Dir normaliser }} \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \frac{\Gamma\left(n_{j}+\beta_{j}+1\right) \prod_{k \neq j} \Gamma\left(n_{k}+\beta_{k}\right)}{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}+1\right)} \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \frac{\left(n_{j}+\beta_{j}\right) \Gamma\left(n_{j}+\beta_{j}\right) \prod_{k \neq j} \Gamma\left(n_{k}+\beta_{k}\right)}{\left(N+\sum_{k=1}^{K} \beta_{k}\right) \Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)} \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \frac{\left(n_{j}+\beta_{j}\right) \Gamma\left(n_{j}+\beta_{j}\right) \prod_{k \neq j} \Gamma\left(n_{k}+\beta_{k}\right)}{\left(N+\sum_{k=1}^{K} \beta_{k}\right) \Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}
\end{aligned}
$$

Posterior predictive distribution (cont.)

$$
\begin{aligned}
& P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\int_{\Delta_{K-1}} \underbrace{P\left(x_{N+1}=j \mid \theta\right)}_{\text {likelihood }} \underbrace{P(\theta \mid \mathbf{x}, \beta)}_{\text {posterior }} \mathrm{d} \theta \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \underbrace{\int_{\Delta_{K-1}} \theta_{j}^{n_{j}+\beta_{j}} \prod_{k \neq j} \theta_{k}^{n_{k}+\beta_{k}-1} \mathrm{~d} \theta}_{\text {Dir normaliser }} \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \frac{\Gamma\left(n_{j}+\beta_{j}+1\right) \prod_{k \neq j} \Gamma\left(n_{k}+\beta_{k}\right)}{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}+1\right)} \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \frac{\left(n_{j}+\beta_{j}\right) \Gamma\left(n_{j}+\beta_{j}\right) \prod_{k \neq j} \Gamma\left(n_{k}+\beta_{k}\right)}{\left(N+\sum_{k=1}^{K} \beta_{k}\right) \Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)} \\
& =\frac{\Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)}{\prod_{k=1}^{K} \Gamma\left(n_{k}+\beta_{k}\right)} \frac{\left(n_{j}+\beta_{j}\right) \Gamma\left(n_{j}+\beta_{j}\right) \prod_{k \neq j} \Gamma\left(n_{k}+\beta_{k}\right)}{\left(N+\sum_{k=1}^{K} \beta_{k}\right) \Gamma\left(N+\sum_{k=1}^{K} \beta_{k}\right)} \\
& =\frac{n_{j}+\beta_{j}}{N+\sum_{k=1}^{K} \beta_{k}}
\end{aligned}
$$

Dirchlet-Multinomial (overview)

Joint distribution

$$
\begin{align*}
P(\mathbf{x}, \theta \mid \beta) & =P(\theta) P(\mathbf{x} \mid \theta) \\
& =\operatorname{Dir}(\theta \mid \beta) \operatorname{Mult}\left(n^{(\mathbf{x})} \mid \theta, N\right) \tag{13}
\end{align*}
$$

Posterior

$$
\begin{equation*}
P(\theta \mid \mathbf{x}, \beta)=\operatorname{Dir}\left(\theta \mid n^{(\mathbf{x})}+\beta\right) \tag{14}
\end{equation*}
$$

Predictive posterior

$$
\begin{equation*}
P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\frac{n_{j}+\beta_{j}}{N+\sum_{k=1}^{K} \beta_{k}} \tag{15}
\end{equation*}
$$

Exchangeability

Random variables are called exchangeable under a model when all permutations of the set of outcomes have the same probability

Exchangeability

Random variables are called exchangeable under a model when all permutations of the set of outcomes have the same probability

- in our Dirichlet-Multinomial model any re-ordering of the observations is equally likely to occur

Exchangeability

Random variables are called exchangeable under a model when all permutations of the set of outcomes have the same probability

- in our Dirichlet-Multinomial model any re-ordering of the observations is equally likely to occur

Combine that fact with the predictive posterior result

$$
\begin{equation*}
P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\frac{n_{j}+\beta_{j}}{N+\sum_{k=1}^{K} \beta_{k}} \tag{16}
\end{equation*}
$$

Exchangeability

Random variables are called exchangeable under a model when all permutations of the set of outcomes have the same probability

- in our Dirichlet-Multinomial model any re-ordering of the observations is equally likely to occur

Combine that fact with the predictive posterior result

$$
\begin{equation*}
P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\frac{n_{j}+\beta_{j}}{N+\sum_{k=1}^{K} \beta_{k}} \tag{16}
\end{equation*}
$$

and we can single out any observation, e.g. \mathbf{x}_{i}

$$
\begin{equation*}
P\left(\mathbf{x}_{i}=j \mid \mathbf{x}_{-i}, \beta\right)= \tag{17}
\end{equation*}
$$

Exchangeability

Random variables are called exchangeable under a model when all permutations of the set of outcomes have the same probability

- in our Dirichlet-Multinomial model any re-ordering of the observations is equally likely to occur

Combine that fact with the predictive posterior result

$$
\begin{equation*}
P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\frac{n_{j}+\beta_{j}}{N+\sum_{k=1}^{K} \beta_{k}} \tag{16}
\end{equation*}
$$

and we can single out any observation, e.g. \mathbf{x}_{i}

$$
\begin{equation*}
P\left(\mathbf{x}_{i}=j \mid \mathbf{x}_{-i}, \beta\right)=\overline{N-1+\sum_{k=1}^{K} \beta_{k}} \tag{17}
\end{equation*}
$$

Exchangeability

Random variables are called exchangeable under a model when all permutations of the set of outcomes have the same probability

- in our Dirichlet-Multinomial model any re-ordering of the observations is equally likely to occur

Combine that fact with the predictive posterior result

$$
\begin{equation*}
P\left(x_{N+1}=j \mid \mathbf{x}, \beta\right)=\frac{n_{j}+\beta_{j}}{N+\sum_{k=1}^{K} \beta_{k}} \tag{16}
\end{equation*}
$$

and we can single out any observation, e.g. \mathbf{x}_{i}

$$
\begin{equation*}
P\left(\mathbf{x}_{i}=j \mid \mathbf{x}_{-i}, \beta\right)=\frac{n_{j}^{\left(\mathbf{x}_{-i}\right)}+\beta_{j}}{N-1+\sum_{k=1}^{K} \beta_{k}} \tag{17}
\end{equation*}
$$

Summary

Friends do not let friends optimise

Summary

Friends do not let friends optimise

- no point estimates, we use all possible model parameters

Summary

Friends do not let friends optimise

- no point estimates, we use all possible model parameters
- this is called Bayesian inference, or simply, inference

Summary

Friends do not let friends optimise

- no point estimates, we use all possible model parameters
- this is called Bayesian inference, or simply, inference
- Bayesian models have memory: the posterior summarises what we learnt from data

Summary

Friends do not let friends optimise

- no point estimates, we use all possible model parameters
- this is called Bayesian inference, or simply, inference
- Bayesian models have memory: the posterior summarises what we learnt from data
- If we collect more data \mathbf{x}^{\prime}, we can update the posterior, $P\left(\theta \mid \mathbf{x}, \mathbf{x}^{\prime}, \beta\right)=\operatorname{Dir}\left(\theta \mid n^{(\mathbf{x})}+n^{\left(\mathbf{x}^{\prime}\right)}+\beta\right)$

Summary

Friends do not let friends optimise

- no point estimates, we use all possible model parameters
- this is called Bayesian inference, or simply, inference
- Bayesian models have memory: the posterior summarises what we learnt from data
- If we collect more data \mathbf{x}^{\prime}, we can update the posterior, $P\left(\theta \mid \mathbf{x}, \mathbf{x}^{\prime}, \beta\right)=\operatorname{Dir}\left(\theta \mid n^{(\mathbf{x})}+n^{\left(\mathbf{x}^{\prime}\right)}+\beta\right)$
- MLE is memoryless: there is one fixed θ, no matter how much more data you see, θ will never change

NLP1

Preliminaries

Bayesian modelling

Applications

Bayesian mixture model with categorical observations

Bayesian mixture model with categorical observations

Define counts based on joint
 assignments to $\mathbf{x}_{-i}, \mathbf{z}_{-i}$

$$
\begin{aligned}
n_{c, k} & =\sum_{j \neq i}\left[z_{j}=c\right]\left[x_{j}=k\right] \\
n_{c} & =\sum_{k=1}^{K} n_{c, k}
\end{aligned}
$$

Bayesian mixture model with categorical observations

Define counts based on joint assignments to $\mathbf{x}_{-i}, \mathbf{z}_{-i}$

$$
\begin{aligned}
n_{c, k} & =\sum_{j \neq i}\left[z_{j}=c\right]\left[x_{j}=k\right] \\
n_{c} & =\sum_{k=1}^{K} n_{c, k}
\end{aligned}
$$

$$
P\left(z_{i}=c \mid \mathbf{x}, \mathbf{z}_{-i}, \beta\right) \propto P\left(x_{i}=k, z_{i}=c \mid \mathbf{x}_{-i}, \mathbf{z}_{-i}, \alpha, \beta\right)
$$

Bayesian mixture model with categorical observations

Define counts based on joint assignments to $\mathbf{x}_{-i}, \mathbf{z}_{-i}$

$$
\begin{aligned}
n_{c, k} & =\sum_{j \neq i}\left[z_{j}=c\right]\left[x_{j}=k\right] \\
n_{c} & =\sum_{k=1}^{K} n_{c, k}
\end{aligned}
$$

$$
P\left(z_{i}=c \mid \mathbf{x}, \mathbf{z}_{-i}, \beta\right) \propto P\left(x_{i}=k, z_{i}=c \mid \mathbf{x}_{-i}, \mathbf{z}_{-i}, \alpha, \beta\right)
$$

$$
\propto \frac{1}{C} \times \frac{n_{c, k}+\beta}{n_{c}+K \beta}
$$

Mixing weights

What does it mean to have uniform prior over components?

Mixing weights

What does it mean to have uniform prior over components?

- unlike it may seem, it does not mean to promote diversity! Let's see whether the posterior is peaked

$$
P(z \mid x)=\frac{\frac{1}{C} \times P(x \mid z)}{P(x)} \propto P(x \mid z)
$$

Mixing weights

What does it mean to have uniform prior over components?

- unlike it may seem, it does not mean to promote diversity!

Let's see whether the posterior is peaked

$$
P(z \mid x)=\frac{\frac{1}{C} \times P(x \mid z)}{P(x)} \propto P(x \mid z)
$$

- uniform prior leaves it up to the likelihood to control sparsity

Mixing weights

What does it mean to have uniform prior over components?

- unlike it may seem, it does not mean to promote diversity!

Let's see whether the posterior is peaked

$$
P(z \mid x)=\frac{\frac{1}{C} \times P(x \mid z)}{P(x)} \propto P(x \mid z)
$$

- uniform prior leaves it up to the likelihood to control sparsity
- luckily we are promoting sparse likelihoods $X \mid z$
because $\theta^{(z)} \sim \operatorname{Dir}(\beta)$

Mixing weights

What does it mean to have uniform prior over components?

- unlike it may seem, it does not mean to promote diversity!

Let's see whether the posterior is peaked

$$
P(z \mid x)=\frac{\frac{1}{C} \times P(x \mid z)}{P(x)} \propto P(x \mid z)
$$

- uniform prior leaves it up to the likelihood to control sparsity
- luckily we are promoting sparse likelihoods $X \mid z$
because $\theta^{(z)} \sim \operatorname{Dir}(\beta)$
- but $P(z)$ has nothing to do with it!

Mixing weights

What does it mean to have uniform prior over components?

- unlike it may seem, it does not mean to promote diversity!

Let's see whether the posterior is peaked

$$
P(z \mid x)=\frac{\frac{1}{C} \times P(x \mid z)}{P(x)} \propto P(x \mid z)
$$

- uniform prior leaves it up to the likelihood to control sparsity
- luckily we are promoting sparse likelihoods $X \mid z$
because $\theta^{(z)} \sim \operatorname{Dir}(\beta)$
- but $P(z)$ has nothing to do with it!

Is there really no preference we can express about $P(z)$?

Mixing weights

What does it mean to have uniform prior over components?

- unlike it may seem, it does not mean to promote diversity!

Let's see whether the posterior is peaked

$$
P(z \mid x)=\frac{\frac{1}{C} \times P(x \mid z)}{P(x)} \propto P(x \mid z)
$$

- uniform prior leaves it up to the likelihood to control sparsity
- luckily we are promoting sparse likelihoods $X \mid z$
because $\theta^{(z)} \sim \operatorname{Dir}(\beta)$
- but $P(z)$ has nothing to do with it!

Is there really no preference we can express about $P(z)$?

- what about preferring to use fewer components?

Sparse prior over mixing weights

Say we have 10 components, how do you want to use them?
I couldn't care less

Sparingly

Like I pass students

Bayesian mixture model - Sparse prior over mixing weights

Bayesian mixture model - Sparse prior over mixing weights

Define counts based on joint assignments to $\mathbf{x}_{-i}, \mathbf{z}_{-i}$

$$
\begin{aligned}
n_{c, k} & =\sum_{j \neq i}\left[z_{j}=c\right]\left[x_{j}=k\right] \\
n_{c} & =\sum_{k=1}^{K} n_{c, k}
\end{aligned}
$$

Bayesian mixture model - Sparse prior over mixing weights

Define counts based on joint assignments to $\mathbf{x}_{-i}, \mathbf{z}_{-i}$

$$
\begin{aligned}
n_{c, k} & =\sum_{j \neq i}\left[z_{j}=c\right]\left[x_{j}=k\right] \\
n_{c} & =\sum_{k=1}^{K} n_{c, k}
\end{aligned}
$$

$$
P\left(z_{i}=c \mid \mathbf{x}, \mathbf{z}_{-i}, \alpha, \beta\right) \propto P\left(x_{i}=k, z_{i}=c \mid \mathbf{x}_{-i}, \mathbf{z}_{-i}, \alpha, \beta\right)
$$

Bayesian mixture model - Sparse prior over mixing weights

Define counts based on joint assignments to $\mathbf{x}_{-i}, \mathbf{z}_{-i}$

$$
\begin{aligned}
n_{c, k} & =\sum_{j \neq i}\left[z_{j}=c\right]\left[x_{j}=k\right] \\
n_{c} & =\sum_{k=1}^{K} n_{c, k}
\end{aligned}
$$

$$
P\left(z_{i}=c \mid \mathbf{x}, \mathbf{z}_{-i}, \alpha, \beta\right) \propto P\left(x_{i}=k, z_{i}=c \mid \mathbf{x}_{-i}, \mathbf{z}_{-i}, \alpha, \beta\right)
$$

$$
\propto \frac{n_{c}+\alpha}{N-1+C \alpha} \times \frac{n_{c, k}+\beta}{n_{c}+K \beta}
$$

Bayesian HMM

Bayesian HMM

Define counts based on joint assignments to $\mathbf{x}_{-i}, \mathbf{z}_{-i}$

$$
\begin{aligned}
m_{b, c} & =\sum_{j \neq i}\left[z_{j-1}=b\right]\left[z_{j}=c\right] \\
m_{b} & =\sum_{c=1}^{C} m_{b, c}
\end{aligned}
$$

Bayesian HMM

Define counts based on joint assignments to $\mathbf{x}_{-i}, \mathbf{z}_{-i}$

$$
\begin{aligned}
m_{b, c} & =\sum_{j \neq i}\left[z_{j-1}=b\right]\left[z_{j}=c\right] \\
m_{b} & =\sum_{c=1}^{C} m_{b, c}
\end{aligned}
$$

$$
P\left(z_{i}=c \mid \mathbf{x}, \mathbf{z}_{-i}, \alpha, \beta\right)
$$

Bayesian HMM

Define counts based on joint assignments to $\mathbf{x}_{-i}, \mathbf{z}_{-i}$

$$
\begin{aligned}
m_{b, c} & =\sum_{j \neq i}\left[z_{j-1}=b\right]\left[z_{j}=c\right] \\
m_{b} & =\sum_{c=1}^{C} m_{b, c}
\end{aligned}
$$

$$
P\left(z_{i}=c \mid \mathbf{x}, \mathbf{z}_{-i}, \alpha, \beta\right) \quad \text { note that }\left\{\begin{array}{l}
z_{i-1}=b \\
z_{i+1}=d
\end{array} \quad \text { is in } \mathbf{z}_{-i}\right.
$$

Bayesian HMM

Define counts based on joint assignments to $\mathbf{x}_{-i}, \mathbf{z}_{-i}$

$$
\begin{aligned}
m_{b, c} & =\sum_{j \neq i}\left[z_{j-1}=b\right]\left[z_{j}=c\right] \\
m_{b} & =\sum_{c=1}^{C} m_{b, c}
\end{aligned}
$$

$$
\begin{aligned}
& P\left(z_{i}=c \mid \mathbf{x}, \mathbf{z}_{-i}, \alpha, \beta\right) \text { note that }\left\{\begin{array}{l}
z_{i-1}=b \\
z_{i+1}=d
\end{array} \quad \text { is in } \mathbf{z}_{-i}\right. \\
& \propto P\left(z_{i-1}=b, z_{i}=c, z_{i+1}=d, x_{i}=k \mid \mathbf{x}_{-i}, \mathbf{z}_{-i}, \alpha, \beta\right)
\end{aligned}
$$

Bayesian HMM

Define counts based on joint assignments to $\mathbf{x}_{-i}, \mathbf{z}_{-i}$

$$
\begin{aligned}
m_{b, c} & =\sum_{j \neq i}\left[z_{j-1}=b\right]\left[z_{j}=c\right] \\
m_{b} & =\sum_{c=1}^{C} m_{b, c}
\end{aligned}
$$

$$
P\left(z_{i}=c \mid \mathbf{x}, \mathbf{z}_{-i}, \alpha, \beta\right) \quad \text { note that }\left\{\begin{array}{l}
z_{i-1}=b \\
z_{i+1}=d
\end{array} \quad \text { is in } \mathbf{z}_{-i}\right.
$$

$$
\propto P\left(z_{i-1}=b, z_{i}=c, z_{i+1}=d, x_{i}=k \mid \mathbf{x}_{-i}, \mathbf{z}_{-i}, \alpha, \beta\right)
$$

$$
\propto \frac{m_{b, c}+\alpha}{m_{b}+C \alpha} \times \frac{n_{c, k}+\beta}{n_{c}+K \beta} \times \frac{m_{c, d}+\alpha}{m_{c}+C \alpha}
$$

Markov Chain Monte Carlo

We draw from the posterior $P(\mathbf{z} \mid \mathbf{x})$ via a Markov chain of random states Y_{1}, \ldots, Y_{T} where $P\left(y_{t} \mid y_{<t}\right)=P\left(y_{t} \mid y_{t-1}\right)$

Markov Chain Monte Carlo

We draw from the posterior $P(\mathbf{z} \mid \mathbf{x})$ via a Markov chain of random states Y_{1}, \ldots, Y_{T} where $P\left(y_{t} \mid y_{<t}\right)=P\left(y_{t} \mid y_{t-1}\right)$

- the transition probability from y to y^{\prime} is coded in a matrix \mathbf{P} $P_{i j}$ corresponds to $P(Y=i, Y=j)$

Markov Chain Monte Carlo

We draw from the posterior $P(\mathbf{z} \mid \mathbf{x})$ via a Markov chain of random states Y_{1}, \ldots, Y_{T} where $P\left(y_{t} \mid y_{<t}\right)=P\left(y_{t} \mid y_{t-1}\right)$

- the transition probability from y to y^{\prime} is coded in a matrix \mathbf{P} $P_{i j}$ corresponds to $P(Y=i, Y=j)$
- under certain conditions the chain converges to a stationary distribution π such that $\mathbf{P} \pi=\pi$

Markov Chain Monte Carlo

We draw from the posterior $P(\mathbf{z} \mid \mathbf{x})$ via a Markov chain of random states Y_{1}, \ldots, Y_{T} where $P\left(y_{t} \mid y_{<t}\right)=P\left(y_{t} \mid y_{t-1}\right)$

- the transition probability from y to y^{\prime} is coded in a matrix \mathbf{P} $P_{i j}$ corresponds to $P(Y=i, Y=j)$
- under certain conditions the chain converges to a stationary distribution π such that $\mathbf{P} \pi=\pi$
- possible states are assignments to the variables in the model

Markov Chain Monte Carlo

We draw from the posterior $P(\mathbf{z} \mid \mathbf{x})$ via a Markov chain of random states Y_{1}, \ldots, Y_{T} where $P\left(y_{t} \mid y_{<t}\right)=P\left(y_{t} \mid y_{t-1}\right)$

- the transition probability from y to y^{\prime} is coded in a matrix \mathbf{P} $P_{i j}$ corresponds to $P(Y=i, Y=j)$
- under certain conditions the chain converges to a stationary distribution π such that $\mathbf{P} \pi=\pi$
- possible states are assignments to the variables in the model
- by defining \mathbf{P} properly we guarantee that π is the true posterior

Markov Chain Monte Carlo

We draw from the posterior $P(\mathbf{z} \mid \mathbf{x})$ via a Markov chain of random states Y_{1}, \ldots, Y_{T} where $P\left(y_{t} \mid y_{<t}\right)=P\left(y_{t} \mid y_{t-1}\right)$

- the transition probability from y to y^{\prime} is coded in a matrix \mathbf{P} $P_{i j}$ corresponds to $P(Y=i, Y=j)$
- under certain conditions the chain converges to a stationary distribution π such that $\mathbf{P} \pi=\pi$
- possible states are assignments to the variables in the model
- by defining \mathbf{P} properly we guarantee that π is the true posterior
- once the chain has converged each y_{t} will be a sample from the posterior

Markov Chain Monte Carlo

We draw from the posterior $P(\mathbf{z} \mid \mathbf{x})$ via a Markov chain of random states Y_{1}, \ldots, Y_{T} where $P\left(y_{t} \mid y_{<t}\right)=P\left(y_{t} \mid y_{t-1}\right)$

- the transition probability from y to y^{\prime} is coded in a matrix \mathbf{P} $P_{i j}$ corresponds to $P(Y=i, Y=j)$
- under certain conditions the chain converges to a stationary distribution π such that $\mathbf{P} \pi=\pi$
- possible states are assignments to the variables in the model
- by defining \mathbf{P} properly we guarantee that π is the true posterior
- once the chain has converged each y_{t} will be a sample from the posterior
- we can design \mathbf{P} by decomposing it $P_{1} \cdots P_{M}$ where each component satisfies $P_{k}\left(y, y^{\prime}\right) \pi(y)=P_{k}\left(y^{\prime}, y\right) \pi\left(y^{\prime}\right)$

Markov Chain Monte Carlo

We draw from the posterior $P(\mathbf{z} \mid \mathbf{x})$ via a Markov chain of random states Y_{1}, \ldots, Y_{T} where $P\left(y_{t} \mid y_{<t}\right)=P\left(y_{t} \mid y_{t-1}\right)$

- the transition probability from y to y^{\prime} is coded in a matrix \mathbf{P} $P_{i j}$ corresponds to $P(Y=i, Y=j)$
- under certain conditions the chain converges to a stationary distribution π such that $\mathbf{P} \pi=\pi$
- possible states are assignments to the variables in the model
- by defining \mathbf{P} properly we guarantee that π is the true posterior
- once the chain has converged each y_{t} will be a sample from the posterior
- we can design \mathbf{P} by decomposing it $P_{1} \cdots P_{M}$ where each component satisfies $P_{k}\left(y, y^{\prime}\right) \pi(y)=P_{k}\left(y^{\prime}, y\right) \pi\left(y^{\prime}\right)$
- applying each of P_{k} in turn or choosing P_{k} at random produces a \mathbf{P} that satisfies the necessary conditions

Gibbs sampler

We want to sample from $P(\mathbf{z} \mid \mathbf{x})$ with a Markov chain a state $y_{t}=\mathbf{z}^{(t)}$ is the t-th assignment to \mathbf{z}

Gibbs sampler

We want to sample from $P(\mathbf{z} \mid \mathbf{x})$ with a Markov chain a state $y_{t}=\mathbf{z}^{(t)}$ is the t-th assignment to \mathbf{z}

To obtain a new state we

1. start a draft state $\mathbf{z}=\mathbf{z}^{(t-1)}$

Gibbs sampler

We want to sample from $P(\mathbf{z} \mid \mathbf{x})$ with a Markov chain a state $y_{t}=\mathbf{z}^{(t)}$ is the t-th assignment to \mathbf{z}

To obtain a new state we

1. start a draft state $\mathbf{z}=\mathbf{z}^{(t-1)}$
2. repeat for $i=1, \ldots, N$

Gibbs sampler

We want to sample from $P(\mathbf{z} \mid \mathbf{x})$ with a Markov chain
a state $y_{t}=\mathbf{z}^{(t)}$ is the t-th assignment to \mathbf{z}
To obtain a new state we

1. start a draft state $\mathbf{z}=\mathbf{z}^{(t-1)}$
2. repeat for $i=1, \ldots, N$

- resample $Z_{i} \sim P\left(z_{i} \mid \mathbf{x}_{-i}, \mathbf{z}_{-i}\right)$ only variables in the Markov blanket of z_{i} play a role that's why this is feasible

Gibbs sampler

We want to sample from $P(\mathbf{z} \mid \mathbf{x})$ with a Markov chain
a state $y_{t}=\mathbf{z}^{(t)}$ is the t-th assignment to \mathbf{z}
To obtain a new state we

1. start a draft state $\mathbf{z}=\mathbf{z}^{(t-1)}$
2. repeat for $i=1, \ldots, N$

- resample $Z_{i} \sim P\left(z_{i} \mid \mathbf{x}_{-i}, \mathbf{z}_{-i}\right)$ only variables in the Markov blanket of z_{i} play a role that's why this is feasible

3. after complete pass over the data we have a new state $\mathbf{z}^{(t)}$

Gibbs sampler

We want to sample from $P(\mathbf{z} \mid \mathbf{x})$ with a Markov chain
a state $y_{t}=\mathbf{z}^{(t)}$ is the t-th assignment to \mathbf{z}
To obtain a new state we

1. start a draft state $\mathbf{z}=\mathbf{z}^{(t-1)}$
2. repeat for $i=1, \ldots, N$

- resample $Z_{i} \sim P\left(z_{i} \mid \mathbf{x}_{-i}, \mathbf{z}_{-i}\right)$ only variables in the Markov blanket of z_{i} play a role that's why this is feasible

3. after complete pass over the data we have a new state $\mathbf{z}^{(t)}$

When we have collected a large number T of samples

- we can summarise the distribution and/or make decisions

Summary

- Friends don't let friends optimise

Summary

- Friends don't let friends optimise
- Bayesian modelling is not only about prior specification

Summary

- Friends don't let friends optimise
- Bayesian modelling is not only about prior specification
- Bayesian modelling is about uncertainty quantification

Summary

- Friends don't let friends optimise
- Bayesian modelling is not only about prior specification
- Bayesian modelling is about uncertainty quantification
- Bayesians compare models (a set of assumptions) not point estimates

Summary

- Friends don't let friends optimise
- Bayesian modelling is not only about prior specification
- Bayesian modelling is about uncertainty quantification
- Bayesians compare models (a set of assumptions) not point estimates
- Comparing Bayesian models is easier

Summary

- Friends don't let friends optimise
- Bayesian modelling is not only about prior specification
- Bayesian modelling is about uncertainty quantification
- Bayesians compare models (a set of assumptions) not point estimates
- Comparing Bayesian models is easier
- Bayesian modelling requires some maths ;)

Summary

- Friends don't let friends optimise
- Bayesian modelling is not only about prior specification
- Bayesian modelling is about uncertainty quantification
- Bayesians compare models (a set of assumptions) not point estimates
- Comparing Bayesian models is easier
- Bayesian modelling requires some maths;)
- Some families enjoy analytically available posteriors

Summary

- Friends don't let friends optimise
- Bayesian modelling is not only about prior specification
- Bayesian modelling is about uncertainty quantification
- Bayesians compare models (a set of assumptions) not point estimates
- Comparing Bayesian models is easier
- Bayesian modelling requires some maths;)
- Some families enjoy analytically available posteriors
- Inference can be done by simulation (MCMC)

Summary

- Friends don't let friends optimise
- Bayesian modelling is not only about prior specification
- Bayesian modelling is about uncertainty quantification
- Bayesians compare models (a set of assumptions) not point estimates
- Comparing Bayesian models is easier
- Bayesian modelling requires some maths;)
- Some families enjoy analytically available posteriors
- Inference can be done by simulation (MCMC)

Beyond

For more on latent variable modelling, especially with structured data

- take NLP2
- though most of it will be frequentist (for very good reasons!)

For more on Bayesian modelling, approximate inference, and probabilistic modelling with neural networks

- take ML4NLP
- though MCMC will not be the method of choice, instead we will look into variational inference
- and we will need to count on optimisation $=0$
- though with a nice twist ;)

References I

