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The problem with MLE

Motivating example from Liang and Klein (2007)
I mixture of Gaussians trained via EM

I as the capacity of the model increases (more clusters),
training likelihood strictly improves

I but what happens with test likelihood?
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The problem with MLE

That’s why you were told to always do model selection
I on heldout set
I preferably via cross-validation

Can you see limitations of this approach?
I availability of data
I representativeness of heldout set
I discrete optimisation: combinatorial search over models
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Preliminaries

Bayesian modelling

Applications
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Conventions

I N observations
x = 〈x1, . . . , xN 〉

I ith observation xi ∈ {1, . . . ,K}
I all but the ith observation x−i
I N cluster indicators

z = 〈z1, . . . , zN 〉
I ith cluster indicator zi ∈ {1, . . . , C}
I all but the ith cluster assignment z−i
I Parameter vector
θ = 〈θ1, . . . , θK〉

I Collection of parameter vectors
θ = 〈θ(1), . . . , θ(C)〉
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Mixture model

xz

θ
1
C

N

Let’s assume x to be 1 of K, and z to be 1 of C
I categorical likelihood

I uniform prior over mixture components, i.e.
mixing weights are fixed and uniform

I θ(c) ∈ ∆K−1

For i = 1, . . . , N

Zi ∼ U(C)
Xi|θ, z−i, zi = c ∼ Cat(θ(c))

(1)

What is a sensible conditional distribution X|θ(c) ∼ Cat(θ(c))?
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What makes a good conditional?

c = 1 (the blue cluster), K = 4

Can you make any assumptions before observing data?

Wilker Aziz NLP1 2018 6



What makes a good conditional?

c = 1 (the blue cluster), K = 4

Can you make any assumptions before observing data?

Wilker Aziz NLP1 2018 6



What makes a good conditional?

c = 1 (the blue cluster), K = 4

Can you make any assumptions before observing data?

Wilker Aziz NLP1 2018 6



What makes a good conditional?

c = 1 (the blue cluster), K = 4

Can you make any assumptions before observing data?

Wilker Aziz NLP1 2018 6



Bayes rule
What does Bayes rule tell you?

P (h|d)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P (d|h)

prior︷ ︸︸ ︷
P (h)

P (d)︸ ︷︷ ︸
evidence

∝ P (d|h)P (h) (2)

I the likelihood tells you how well a hypothesis h explains the
observed data d;

I the prior tells you how much h conforms to expectations
about what a good hypothesis looks like regardless of
observed data;

I the evidence tells you how well your model M explains the
data, i.e. P (d) is actually P (d|M)

I the posterior updates our beliefs about hypotheses in light of
observed data.
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Maximum likelihood estimation

An optimisation problem based on the (log-)likelihood function

h? = arg max
h

P (d|h)

= arg max
h

logP (d|h)︸ ︷︷ ︸
L(h)

(3)

I all hypotheses are equally likely a priori;
I can be approached by coordinate ascent methods;
I local optimality guarantees;
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All the same a priori

Before data, MLE is equally happy with the hypotheses on the left

Wilker Aziz NLP1 2018 9



Constraining MLE
Maximum a posteriori

h? = arg max
h

P (d|h)P (h)

= arg max
h

logP (d|h) + logP (h)
(4)

I perhaps fine if P (h) has a single narrow peak

I priors often indicate preference for a subset of hypotheses over
another, multiple peaks make optimisation considerably harder

I still a point estimate, teaches us very little about the overall
model (set of assumptions)

“I read before that Bayesian priors are just like regularisers, I even
know that a Gaussian prior is just L2 regularisation”
I that only covers the specification of a prior
I Bayesian modelling does not end at prior specification

you need the crucial part: posterior inference
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Preliminaries

Bayesian modelling
Dirichlet-Multinomial model

Applications
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A Bayesian model

xθFrequentist

N

xθβBayesian

N

In a Bayesian model, parameters are no different from data
I they are random variables much like data

I only they are not observed
Bayesians do condition on deterministic quantities
I β here are called hyperparameters
I but most Bayesians leave those fixed (no search!)

We will study an example that illustrates important concepts
Dirichlet-Multinomial model
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Dirichlet distribution
A distribution over the open simplex of K-dimensional vectors

we denote the simplex by

∆K−1 =
{
θ ∈ RK>0 :

K∑
k=1

θk = 1
}
⊆ RK>0 (5)

Use this notebook and this wikipage to learn more
Wilker Aziz NLP1 2018 13

https://github.com/uva-slpl/nlp2/blob/gh-pages/resources/notebooks/Dirichlet.ipynb
https://en.wikipedia.org/wiki/Dirichlet_distribution


Count vector

For observations x, where xi is 1 of K
define n(x) as the K-dimensional vector such that

nk =
N∑
i=1

[xi = k] (6)

Example: for K = 3 and N = 6

x = 〈x1 = 2, x2 = 3, x3 = 1, x4 = 2, x5 = 2, x6 = 3〉
n(x) = 〈n1 = 1, n2 = 3, n3 = 2〉

Wilker Aziz NLP1 2018 14



Count vector

For observations x, where xi is 1 of K
define n(x) as the K-dimensional vector such that

nk =
N∑
i=1

[xi = k] (6)

Example: for K = 3 and N = 6

x = 〈x1 = 2, x2 = 3, x3 = 1, x4 = 2, x5 = 2, x6 = 3〉
n(x) =

〈n1 = 1, n2 = 3, n3 = 2〉

Wilker Aziz NLP1 2018 14



Count vector

For observations x, where xi is 1 of K
define n(x) as the K-dimensional vector such that

nk =
N∑
i=1

[xi = k] (6)

Example: for K = 3 and N = 6

x = 〈x1 = 2, x2 = 3, x3 = 1, x4 = 2, x5 = 2, x6 = 3〉
n(x) = 〈n1 = 1, n2 = 3, n3 = 2〉
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Gamma function

A generalisation of the factorial function to R

Γ(z) =
∫ ∞

0
εz−1 exp(−ε)dε (7)

Properties
I Γ(n) = (n− 1)! for positive integer n
I Γ(z) = (z − 1)Γ(z − 1)
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Dirchlet-Multinomial

xθβ

N

Model
θ|β ∼ Dir(β)
Xi|θ ∼ Cat(θ) for i = 1, . . . , N

(8)

Joint distribution

P (x, θ|β) = P (θ)P (x|θ)
= Dir(θ|β) Mult(n(x)|θ,N)

(9)
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Multinomial likelihood
For θ ∈ ∆K−1

P (x|θ) = Mult(n(x)|θ,N)

= N !∏K
k=1 nk!

K∏
k=1

θnkk

= Γ(
∑K
k=1 nk + 1)∏K

k=1 Γ(nk + 1)

K∏
k=1

θnkk

(10)

Example: for K = 3 and N = 6

θ = 〈θ1 = 0.2, θ2 = 0.3, θ3 = 0.5〉
x = 〈x1 = 2, x2 = 3, x3 = 1, x4 = 2, x5 = 2, x6 = 3〉

n(x) = 〈n1 = 1, n2 = 3, n3 = 2〉

P (x|θ) = Γ(. . .)∏
. . .

θ1
1 × θ3

2 × θ2
3
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Dirichlet prior

For β ∈ RK>0

Dir(θ|β) = Γ(
∑K
k=1 βk)∏K

k=1 Γ(βk)

K∏
k=1

θβk−1
k

∝
K∏
k=1

θβk−1
k

(11)

We call ∫
∆K−1

K∏
k=1

θβk−1
k =

∏K
k=1 Γ(βk)

Γ(
∑K
k=1 βk)

the Dirichlet normaliser
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Posterior

P (θ|x, β) ∝

P (x|θ)P (θ|β)

∝ Γ(
∑K
k=1 nk + 1)∏K

k=1 Γ(nk + 1)

K∏
k=1

θnkk︸ ︷︷ ︸
Mult(n(x)|θ)

× Γ(
∑K
k=1 βk)∏K

k=1 Γ(βk)

K∏
k=1

θβk−1
k︸ ︷︷ ︸

Dir(θ|β)

∝
K∏
k=1

θnkk ×
K∏
k=1

θβk−1
k

=
K∏
k=1

θnk+βk−1
k ∝ Dir(θ|n(x) + β)

Thus

P (θ|x, β) =

Γ(N +
∑K
k=1 βk)∏K

k=1 Γ(nk + βk)

︸ ︷︷ ︸
1

normaliser of Dir(n(x)+β)

K∏
k=1

θnk+βk−1
k (12)
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Posterior predictive distribution

Suppose a new data point xN+1 = j is available

x

xN+1

θβ

N

P (xN+1 = j|x, β) =
∫

∆K−1
P (θ, xN+1|x, β)dθ

=
∫

∆K−1
P (xN+1 = j|θ)︸ ︷︷ ︸

likelihood

P (θ|x, β)︸ ︷︷ ︸
posterior

dθ

xN+1 is independent of x given θ
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Posterior predictive distribution (cont.)
Suppose a new data point xN+1 = j is available

P (xN+1 = j|x, β) =
∫

∆K−1
P (xN+1 = j|θ)︸ ︷︷ ︸

likelihood

P (θ|x, β)︸ ︷︷ ︸
posterior

dθ

=
∫

∆K−1
θj ×

Γ(N +
∑K
k=1 βk)∏K

k=1 Γ(nk + βk)︸ ︷︷ ︸
constant wrt θ

K∏
k=1

θnk+βk−1
k

dθ

= Γ(N +
∑K
k=1 βk)∏K

k=1 Γ(nk + βk)︸ ︷︷ ︸
constant wrt θ

∫
∆K−1

θj ×

θ
nj+βj−1
j

∏
k 6=j

θnk+βk−1
k︸ ︷︷ ︸∏K

k=1 θ
nk+βk−1
k

dθ

= Γ(N +
∑K
k=1 βk)∏K

k=1 Γ(nk + βk)

∫
∆K−1

θ
nj+βj
j

∏
k 6=j

θnk+βk−1
k dθ
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Dirchlet-Multinomial (overview)

xθβ

N

Joint distribution

P (x, θ|β) = P (θ)P (x|θ)
= Dir(θ|β) Mult(n(x)|θ,N)

(13)

Posterior
P (θ|x, β) = Dir(θ|n(x) + β) (14)

Predictive posterior

P (xN+1 = j|x, β) = nj + βj

N +
∑K
k=1 βk

(15)
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Exchangeability

Random variables are called exchangeable under a model when all
permutations of the set of outcomes have the same probability

I in our Dirichlet-Multinomial model any re-ordering of the
observations is equally likely to occur

Combine that fact with the predictive posterior result

P (xN+1 = j|x, β) = nj + βj

N +
∑K
k=1 βk

(16)

and we can single out any observation, e.g. xi

P (xi = j|x−i, β) =

n
(x−i)
j + βj

N−1 +
∑K
k=1 βk

(17)
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Summary

Friends do not let friends optimise

I no point estimates, we use all possible model parameters
I this is called Bayesian inference, or simply, inference
I Bayesian models have memory: the posterior summarises what

we learnt from data
I If we collect more data x′, we can update the posterior,
P (θ|x,x′, β) = Dir(θ|n(x) + n(x′) + β)

I MLE is memoryless: there is one fixed θ, no matter how much
more data you see, θ will never change
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Bayesian mixture model with categorical observations

x

z 1/C

θ β

CN

Define counts based on joint
assignments to x−i, z−i

nc,k =
∑
j 6=i

[zj = c][xj = k]

nc =
K∑
k=1

nc,k

P (zi = c|x, z−i, β) ∝ P (xi = k, zi = c|x−i, z−i, α, β)

∝ 1
C
× nc,k + β

nc +Kβ
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Mixing weights
What does it mean to have uniform prior over components?

I unlike it may seem, it does not mean to promote diversity!
Let’s see whether the posterior is peaked

P (z|x) =
1
C × P (x|z)

P (x) ∝ P (x|z)

I uniform prior leaves it up to the likelihood to control sparsity
I luckily we are promoting sparse likelihoods X|z

because θ(z) ∼ Dir(β)
I but P (z) has nothing to do with it!

Is there really no preference we can express about P (z)?
I what about preferring to use fewer components?
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Sparse prior over mixing weights
Say we have 10 components, how do you want to use them?

I couldn’t care less

Sparingly

Like I pass students
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Bayesian mixture model - Sparse prior over mixing weights

x

z φ α

θ β

CN

Define counts based on joint
assignments to x−i, z−i

nc,k =
∑
j 6=i

[zj = c][xj = k]

nc =
K∑
k=1

nc,k

P (zi = c|x, z−i, α, β) ∝ P (xi = k, zi = c|x−i, z−i, α, β)

∝ nc + α

N − 1 + Cα
× nc,k + β

nc +Kβ
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Bayesian HMM

xi

zi φ α

θ β

zi−1

C

CN

Define counts based on joint
assignments to x−i, z−i

mb,c =
∑
j 6=i

[zj−1 = b][zj = c]

mb =
C∑
c=1

mb,c

P (zi = c|x, z−i, α, β) note that
{
zi−1 = b

zi+1 = d
is in z−i

∝ P (zi−1 = b, zi = c, zi+1 = d, xi = k|x−i, z−i, α, β)

∝ mb,c + α

mb + Cα
× nc,k + β

nc +Kβ
× mc,d + α

mc + Cα
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Markov Chain Monte Carlo
We draw from the posterior P (z|x) via a Markov chain of random states
Y1, . . . , YT where P (yt|y<t) = P (yt|yt−1)

I the transition probability from y to y′ is coded in a matrix P
Pij corresponds to P (Y = i, Y = j)

I under certain conditions the chain converges to a stationary
distribution π such that Pπ = π

I possible states are assignments to the variables in the model
I by defining P properly we guarantee that π is the true posterior
I once the chain has converged each yt will be a sample from the

posterior
I we can design P by decomposing it P1 · · ·PM

where each component satisfies Pk(y, y′)π(y) = Pk(y′, y)π(y′)
I applying each of Pk in turn or choosing Pk at random produces a P

that satisfies the necessary conditions
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Gibbs sampler

We want to sample from P (z|x) with a Markov chain
a state yt = z(t) is the t-th assignment to z

To obtain a new state we
1. start a draft state z = z(t−1)

2. repeat for i = 1, . . . , N
I resample Zi ∼ P (zi|x−i, z−i)

only variables in the Markov blanket of zi play a role
that’s why this is feasible

3. after complete pass over the data we have a new state z(t)

When we have collected a large number T of samples
I we can summarise the distribution and/or make decisions
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Summary

I Friends don’t let friends optimise

I Bayesian modelling is not only about prior specification
I Bayesian modelling is about uncertainty quantification
I Bayesians compare models (a set of assumptions)

not point estimates
I Comparing Bayesian models is easier
I Bayesian modelling requires some maths ;)
I Some families enjoy analytically available posteriors
I Inference can be done by simulation (MCMC)
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Beyond

For more on latent variable modelling, especially with structured
data
I take NLP2
I though most of it will be frequentist (for very good reasons!)

For more on Bayesian modelling, approximate inference, and
probabilistic modelling with neural networks
I take ML4NLP
I though MCMC will not be the method of choice, instead we

will look into variational inference
I and we will need to count on optimisation =O
I though with a nice twist ;)
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