Introduction to Machine Translation

Joost Bastings

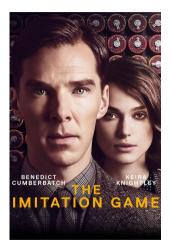
ILLC, University of Amsterdam bastings.github.io

1. A Brief History of MT

- 2. Statistical Machine Translation
- 3. Phrase-based Statistical Machine Translation
- 4. Evaluation
- 5. Neural Machine Translation

A Brief History of MT

Scientists at Bletchley park crack the **Enigma** using a proto-computer and can now decipher Nazi communication



When I look at an article in Russian, I say: "This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode" - Warren Weaver In the **Georgetown Experiment** IBM shows it can translate 60 simple sentences from Russian to English

- IN: Mi pyeryedayem mislyi posryedstvom ryechyi.
- OUT: We transmit thoughts by means of speech.

Sentences in Russian are punched into standard cards for feeding into the electronic data processing machine for translation into English

LANGUAGE AND MACHINES

COMPUTERS IN TRANSLATION AND LINGUISTICS

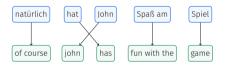
A Report by the Automatic Language Processing Advisory Committee Division of Behavioral Sciences National Academy of Sciences National Research Council

The **ALPAC report** in the US is highly skeptical of MT and funding is reduced dramatically

Publication 1416

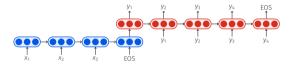
National Academy of Sciences National Research Council Washington, D. C. 1966

IBM introduces a series of word-based statistical models, **IBM models 1-5**, that are induced from parallel data



Phrase-based SMT improves quality a lot over word-based models and becomes the basis for services like Google Translate

Neural Machine Translation is introduced and quickly becomes state-of-the-art



Alien Abduction

- 1. ok-voon ororok sprok . at-voon bichat dat .
- 2. ok-drubel ok-voon anok plok sprok . at-drubel at-voon pippat rrat dat .
- 3. erok sprok izok hihok ghirok . totat dat arrat vat hilat .
- 4. ok-voon anok drok brok jok . at-voon krat pippat sat lat .
- 5. wiwok farok izok stok . totat jjat quat cat .
- 6. lalok sprok izok jok stok . wat dat krat quat cat .

- lalok farok ororok lalok sprok izok enemok . wat jjat bichat wat dat vat eneat .
- 8. lalok brok anok plok nok . iat lat pippat rrat nnat .
- 9. wiwok nok izok kantok ok-yurp . totat nnat quat oloat at-yurp .
- lalok mok nok yorok ghirok clok . wat nnat gat mat bat hilat .
- lalok nok crrrok hihok yorok zanzanok . wat nnat arrat mat zanzanat .
- 12. lalok rarok nok izok hihok mok . wat nnat forat arrat vat gat .

Dictionary

Arcturan	Centauri	 Arcturan	Centauri
arrat	hihok	 krat	jok
at-drubel	ok-drubel	lat	brok
at-voon	ok-voon	mat	yorok
at-yurp	ok-yurp	nnat	nok
bat	clok	oloat	kantok
bichat	ororok	pippat	anok
cat	stok	rrat	plok
dat	sprok	totat	erok wiw
eneat	enemok	vat quat	izok
forat	rarok	wat iat	lalok
hilat	ghirok	zanzanat	zanzanok
jjat	farok	???	crrrok

The aliens demand that you translate 3 new sentences!

13. ?

iat lat pippat eneat hilat oloat at-yurp .

14. ?

totat nnat forat arrat mat bat .

15. ?

wat dat quat cat uskrat at-drubel .

ok-drubel anok ghirok farok . wiwok rarok nok zerok ghirok enemok . ok-drubel ziplok stok vok erok enemok kantok ok-yurp zinok jok yorok clok . lalok clok izok vok ok-drubel. ok-voon ororok sprok. ok-drubel ok-voon anok plok sprok . erok sprok izok hihok ghirok . ok-voon anok drok brok jok . wiwok farok izok stok . lalok sprok izok jok stok . lalok brok anok plok nok . lalok farok ororok lalok sprok izok enemok . wiwok nok izok kantok ok-yurp . lalok mok nok vorok ghirok clok . lalok nok crrrok hihok vorok zanzanok Jalok rarok nok izok hihok mok

Bi-gram counts

1 erok 7. lalok 2 ok-drubel 2 ok-voon 3 wiwok 1 anok drok 1 anok ghirok 2 anok plok 1 brok anok 1 brok iok 2 clok 1 clok izok 1 crrrok hihok 1 drok brok 2 enemok 1 enemok kantok 1 erok enemok 1 erok sprok 1 farok 1 farok izok

1 farok ororok 1 ghirok . 1 ghirok clok 1 ghirok enemok 1 ghirok farok 1 hihok ghirok 1 hihok mok 1 hihok vorok 1 izok enemok 2 izok hihok 1 izok iok 1 izok kantok 1 izok stok 1 izok vok 1 iok 1 iok stok 1 jok vorok 2 kantok ok-yurp 1 Jalok brok 1 lalok clok

1 Jalok farok 1 Jalok mok 1 Jalok nok 1 Jalok rarok 2 lalok sprok 1 mok 1 mok nok 1 nok. 1 nok crrrok 2 nok izok 1 nok vorok 1 nok zerok 1 ok-drubel 1 ok-drubel anok 1 ok-drubel ok-voon 1 ok-drubel ziplok 2 ok-voon anok 1 ok-voon ororok 1 ok-vurp . 1 ok-vurp zinok

1 ororok lalok 1 ororok sprok 1 plok nok 1 plok sprok 2 rarok nok 2 sprok. 3 sprok izok 2 stok . 1 stok vok 1 vok erok 1 vok ok-drubel 1 wiwok farok 1 wiwok nok 1 wiwok rarok 1 vorok clok 1 vorok ghirok 1 vorok zanzanok 1 zanzanok 1 zerok ghirok 1 zinok iok 1 ziplok stok

lalok brok anok ghirok enemok kantok ok-yurp .
 iat lat pippat eneat hilat oloat at-yurp .

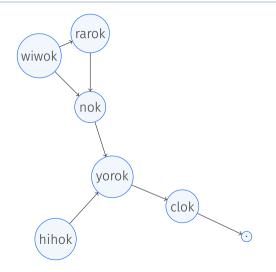
14. ?

totat nnat forat arrat mat bat .

15. ?

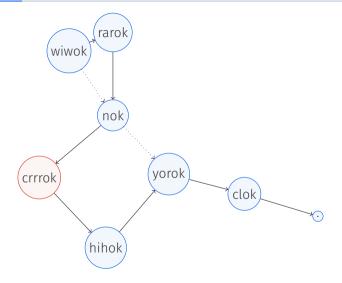
wat dat quat cat uskrat at-drubel .

Putting a Centauri sentence in order



Problem: there is no path that connects all words!

Putting a Centauri sentence in order



Solution: add special word 'crrrok'

- lalok brok anok ghirok enemok kantok ok-yurp .
 iat lat pippat eneat hilat oloat at-yurp .
- 14. wiwok rarok nok crrrok hihok yorok clok . totat nnat forat arrat mat bat .

15. ?

wat dat quat cat uskrat at-drubel .

- lalok brok anok ghirok enemok kantok ok-yurp .
 iat lat pippat eneat hilat oloat at-yurp .
- 14. wiwok rarok nok crrrok hihok yorok clok . totat nnat forat arrat mat bat .
- lalok sprok izok stok ???? ok-drubel . wat dat quat cat uskrat at-drubel .

We could guess the missing word by looking at the bi-gram counts

Congratulations! The aliens hired you as their translator!

- Only 2 words were **ambiguous**
- Sentence lengths were very similar
- $\cdot\,$ All sentences were very ${\rm short}\,$
- We only used **bi-grams** for disambiguation
- Output order should depend on input order
 - John loves Mary
 - Mary loves John

- The data was cooked without sentences (8) and (9) we would have difficulty to make the remaining alignments
- $\cdot\,$ We did not use any phrasal dictionaries
- And: pronouns? inflectional morphology? structural ambiguity? domain knowledge? scope of negation?

- Only 2 words were **ambiguous**
- Sentence lengths were very similar
- $\cdot\,$ All sentences were very ${\rm short}\,$
- We only used **bi-grams** for disambiguation
- Output order should depend on input order
 - John loves Mary
 - Mary loves John

- The data was cooked without sentences (8) and (9) we would have difficulty to make the remaining alignments
- We did not use any **phrasal** dictionaries
- And: pronouns? inflectional morphology? structural ambiguity? domain knowledge? scope of negation?
- It was sort of real! You translated Spanish to English!

You translated Spanish into English!

- 1. Garcia and associates. Garcia y asociados.
- 2. Carlos Garcia has three associates. Carlos Garcia tiene tres asociados.
- 3. his associates are not strong. sus asociados no son fuertes.
- 4. Garcia has a company also. Garcia tambien tiene una empresa.
- its clients are angry. sus clientes están enfadados.
- the associates are also angry. los asociados tambien están enfadados.

- 7. the clients and the associates are enemies. los clientes y los asociados son enemigos.
- 8. the company has three groups. la empresa tiene tres grupos.
- its groups are in Europe. sus grupos están en Europa.
- the modern groups sell strong pharmaceuticals. los grupos modernos venden medicinas fuertes.
- 11. the groups do not sell zanzanine. los grupos no venden zanzanina.
- 12. the small groups are not modern. los grupos pequeños no son modernos.

You also translated (13):

"la empresa tiene enemigos fuertes en Europa" "the company has strong enemies in Europe"

If we hadn't flipped "ghirok" and "enemok", we would have gotten: "the company has <u>enemies strong</u> in Europe"

And (14):

"sus grupos pequeños no venden medicinas" "its small groups do not sell pharmaceuticals"

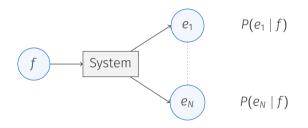
The word 'crrrok' turns out to be the English word 'do'!

Statistical Machine Translation

Given a French sentence f, find English sentence \hat{e} that maximizes P(e | f)

```
\hat{e} = \operatorname*{argmax}_{e} P(e \mid f)
```

"the most likely translation"



$$P(e \mid f) = \frac{P(f \mid e) P(e)}{P(f)}$$

$$\underset{e}{\operatorname{argmax}} P(e \mid f) = \underset{e}{\operatorname{argmax}} \underbrace{P(f \mid e)}_{e} \underbrace{P(e)}_{e}$$

- the source is the language model
- the channel is the translation model

- the story says French sentences come from English sentences
- \cdot we will use this model in the opposite direction

Sentence f is a "crime scene".

Our generative model might be something like: some person e decided to do the crime, and then that person actually did the crime. So we start reasoning about:

- 1. who did it? *P(e)*: motive, personality,...
- 2. how did they do it? P(f | e): transportation, weapons, ...

These two things may conflict.

Someone with a good motive, but without the means.

Someone who could easily have done the crime, but has no motive.

If we model P(e | f) directly, there is not much margin for error.

We can use P(f | e) to make sure that words in f are generally translations of words in e

P(e) then ensures that the translation *e* is also grammatical

If we model P(e | f) directly, there is not much margin for error.

We can use P(f | e) to make sure that words in f are generally translations of words in e

P(e) then ensures that the translation *e* is also grammatical

Would this work? Let's try it:

- have
- programming
- a
- seen
- never
- |
- language
- \cdot better

The *P*(*e*) model can also be useful for *selecting* English translations of French words. We need this especially when the French word is **ambiguous**. The *P*(*e*) model can also be useful for *selecting* English translations of French words. We need this especially when the French word is **ambiguous**.

Example

A French word translates as either "in" or "on".

Now there may be two English strings with equally good P(f | e) scores:

- 1. she is in the end zone
- 2. she is on the end zone

P(e) selects the right one

TL;DR

Translate word by word, then scramble the words around into the right word order

First observations:

- English words may produce multiple French words
- English words may disappear

We need to account for this.

TL;DR

Translate word by word, then scramble the words around into the right word order

First observations:

- English words may produce multiple French words
- English words may disappear

We need to account for this.

The story of IBM Model 3

- For each English word e_i
 - \cdot choose a fertility ϕ_i
 - · generate ϕ_i French words
 - generate spurious word
- Permute French words
 - assign an absolute position to each French word
 - ... based on the absolute position of the English word that generates it

- 1. Translation *t*(huis | house)
- 2. Fertility *n*(1 | house)
- 3. Spurious p
- 4. Position *d*(1 | 2, |*e*|, |*f*|)

If we had **rewriting examples**, then we could estimate $n(0 \mid (did))$ by finding every (did) and checking what happened to it

Example

If 'did' appeared 15,000 times and was deleted during the first rewriting step 13,000 times, then $n(0 \mid \text{'did'}) = \frac{13}{15}$

If we had **rewriting examples**, then we could estimate n(0 | 'did') by finding every 'did' and checking what happened to it

Example

If 'did' appeared 15,000 times and was deleted during the first rewriting step 13,000 times, then $n(0 \mid \text{'did'}) = \frac{13}{15}$

Chicken-and-egg problem

- If we had **word alignments** instead of rewriting examples, we could also obtain the parameters. (But.. we don't!)
- If we had the **parameters** we could get the word alignments. (But.. we don't!)

- Let's say we **do** have alignments, but for each sentence we have **multiple** ones
- Let's say we have 2 alignments for each sentence
- We don't know which one is best
- We could simply multiply the counts from both possible alignments by $\frac{1}{2}$
- We call these **fractional counts**

- Let's say we **do** have alignments, but for each sentence we have **multiple** ones
- Let's say we have 2 alignments for each sentence
- \cdot We don't know which one is best
- We could simply multiply the counts from both possible alignments by $\frac{1}{2}$
- We call these **fractional counts**

- We need to consider all possible alignments, not just 2
- No problem! We use **fractional counts**, and we just multiply with a smaller number.

We start by assigning **uniform** parameter values to our t(f | e)

Example

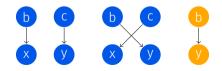
Let's say we have 40000 French words in our vocabulary Then each $t(f|e) = \frac{1}{40000}$

We can do the same for the other parameters, but for now let's focus on obtaining better $t(f \mid e)$ parameters

Let's say we have a small **corpus** with only 2 sentences:

English	French
bс	ху
b	У

The first sentence has two possibilities, the second one has only one:



We have now **simplified** our model to be **IBM Model 1**:

$$P(a,f \mid e) = \prod_{j=1}^{M} t(f_j \mid e_{a_j})$$

i.e. multiply the probabilities of aligned words

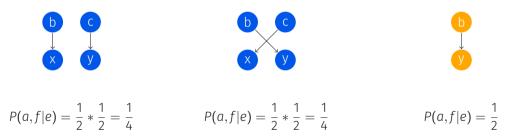
Start with uniform parameters:

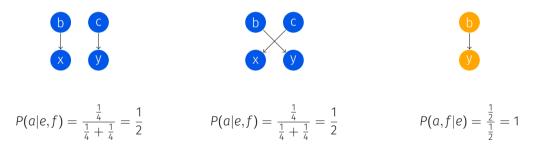
Remember our corpus:

English	French
b c	ху
b	У

$$t(x \mid b) = \frac{1}{2}$$
$$t(y \mid b) = \frac{1}{2}$$
$$t(x \mid c) = \frac{1}{2}$$
$$t(y \mid c) = \frac{1}{2}$$

Step 1 Compute P(a, f|e) for each possible alignment





Step 3 Collect fractional counts

$$tc(x \mid b) = \frac{1}{2}$$

$$tc(y \mid b) = \frac{1}{2} + 1 = 1\frac{1}{2}$$

$$tc(x \mid c) = \frac{1}{2}$$

$$tc(y \mid c) = \frac{1}{2}$$

Step 3 Collect fractional counts

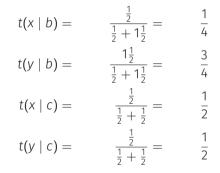
$$tc(x \mid b) = \frac{1}{2}$$

$$tc(y \mid b) = \frac{1}{2} + 1 = 1\frac{1}{2}$$

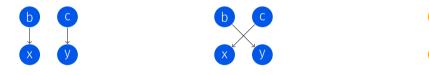
$$tc(x \mid c) = \frac{1}{2}$$

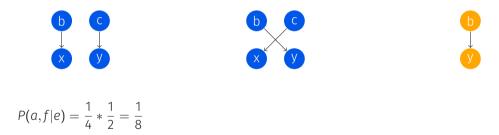
$$tc(y \mid c) = \frac{1}{2}$$

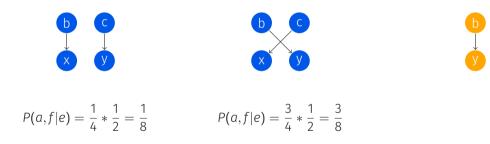
Step 4 Normalize fractional counts

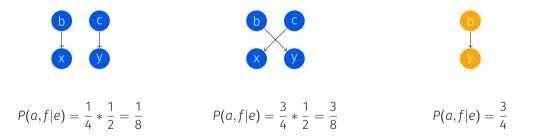


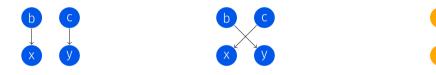
These are the revised parameters!

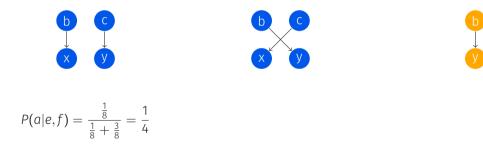


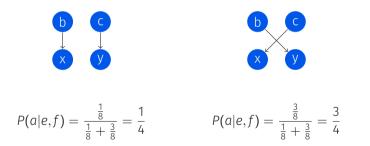


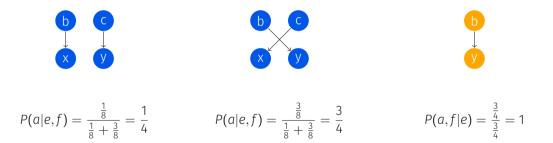












Step 3 (again) Collect fractional counts

 $tc(x \mid b) =$ $tc(y \mid b) =$ $tc(x \mid c) =$ $tc(y \mid c) =$

Step 3 (again) Collect fractional counts

$$tc(x \mid b) = \frac{1}{4}$$

$$tc(y \mid b) = \frac{3}{4} + 1 = 1\frac{3}{4}$$

$$tc(x \mid c) = \frac{3}{4}$$

$$tc(y \mid c) = \frac{1}{4}$$

Step 4 (again) Normalize fractional counts

 $t(x \mid b) =$

$$t(y \mid b) =$$

$$t(x \mid c) =$$

 $t(y \mid c) =$

Even better parameters!

Step 3 (again) Collect fractional counts

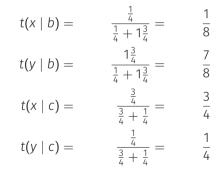
$$tc(x \mid b) = \frac{1}{4}$$

$$tc(y \mid b) = \frac{3}{4} + 1 = 1\frac{3}{4}$$

$$tc(x \mid c) = \frac{3}{4}$$

$$tc(y \mid c) = \frac{1}{4}$$

Step 4 (again) Normalize fractional counts



Even better parameters!

If we do this many many times..

 $t(x \mid b) = 0.0001$ $t(y \mid b) = 0.9999$ $t(x \mid c) = 0.9999$ $t(y \mid c) = 0.0001$

- Each iteration of the EM algorithm is guaranteed to improve P(f | e)
- \cdot EM is not guaranteed to find a global optimum, but rather only a local optimum
- \cdot Where EM ends up is therefore a function of where it starts

EM for Model 3 is just like this!

Except for:

- we use Model 3's formula for $P(a \mid f, e)$
- $\cdot\,$ we also collect fractional counts for:
 - n (fertility)
 - p (spurious word insertion)
 - d (reordering)

EM for Model 3 is just like this!

Except for:

- we use Model 3's formula for $P(a \mid f, e)$
- \cdot we also collect fractional counts for:
 - ・ n (fertility)
 - p (spurious word insertion)
 - d (reordering)

A few critical notes:

- The distortion parameters in Model 3 are a very weak description of word-order change in translation
- $\cdot\,$ This model is ${\rm deficient}\,$
 - The reordering step in the generative story allows words to pile up on top of each other!

With a language model p(e) and a translation model p(f | e), we want to find \hat{e} , the best translation:

 $\hat{e} = \arg \max_{e} P(f \mid e) P(e)$

- This process of finding \hat{e} is called decoding
- It is impossible to search through all possible sentences
- .. but we can inspect a highly relevant subset of such sentences

Phrase-based Statistical Machine Translation

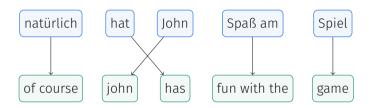
Atomic units

- In the IBM models, the atomic units of translation are **words**
- In phrase-based models, the atomic units are **phrases**, i.e. a few consecutive words

Advantages

- Handle many-to-many translation
- $\cdot\,$ Capture local context
- More data gives us more phrases
- No more fertility, insertion, deletion

For a long time this was the main approach for Google Translate



segment the input, translate, reorder¹

¹Adapted from: Philipp Koehn. Statistical Machine Translation.

Translation	Probability $\phi(\bar{e} \mid \bar{f})$					
of course	0.5					
naturally	0.3					
of course ,	0.15					
, of course ,	0.05					

'natürlich' translates into two words, so we want a mapping to a phrase!

$$\underset{e}{\operatorname{argmax}} P(\mathbf{e} \mid \mathbf{f}) = \underset{e}{\operatorname{argmax}} \underbrace{P(\mathbf{f} \mid \mathbf{e})}_{e} \underbrace{P(\mathbf{e})}_{e}$$

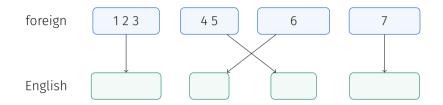
- the source is the language model
- the channel is the translation model (now using phrases!)

$$P(\mathbf{f} \mid \mathbf{e}) = P(f_{1...M} \mid e_{1...N})$$
$$= \prod_{i} \phi(\overline{f}_i \mid \overline{e}_i) \underbrace{d(\text{start}_i - \text{end}_{i-1} - 1)}_{\text{distance based reordering}}$$

$$P(\mathbf{f} \mid \mathbf{e}) = P(f_{1...N} \mid e_{1...N})$$
$$= \underbrace{\prod_{i} \phi(\overline{f}_i \mid \overline{e}_i)}_{\text{phrases}} \underbrace{d(\text{start}_i - \text{end}_{i-1} - 1)}_{\text{distance based reordering}}$$

product of translating each English phrase into its foreign phrase & reordering

Distance based reordering

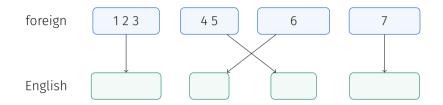


Q: What is the distance for the **second** English phrase?²

$$P(f_{1...M} \mid e_{1...N}) = \prod_{i} \phi(\bar{f}_i \mid \bar{e}_i) \underbrace{d(start_i - end_{i-1} - 1)}_{\text{distance based reordering}}$$

²Distance is measured on the foreign side!

Distance based reordering



Q: What is the distance for the **second** English phrase?²

$$P(f_{1...M} \mid e_{1...N}) = \prod_{i} \phi(\bar{f}_i \mid \bar{e}_i) \underbrace{d(start_i - end_{i-1} - 1)}_{\text{distance based reordering}}$$

Answer:
$$start_2 - end_1 - 1 = 6 - 3 - 1 = 2$$

²Distance is measured on the foreign side!

How do we get phrases? We extract all phrases that are consistent with a word alignment A

We extract all phrases that are consistent with a word alignment A

Definition: Consistent phrase pair

A phrase pair $(\overline{f}, \overline{e})$ is consistent with A, if all words f_1, \ldots, f_N in \overline{f} that have alignment points in A, have these with words e_1, \ldots, e_M in \overline{e} , and vice versa.

We extract all phrases that are consistent with a word alignment A

Definition: Consistent phrase pair

A phrase pair $(\overline{f}, \overline{e})$ is consistent with A, if all words f_1, \ldots, f_N in \overline{f} that have alignment points in A, have these with words e_1, \ldots, e_M in \overline{e} , and vice versa.

We extract all phrases that are consistent with a word alignment A

Definition: Consistent phrase pair

A phrase pair $(\overline{f}, \overline{e})$ is consistent with A, if all words f_1, \ldots, f_N in \overline{f} that have alignment points in A, have these with words e_1, \ldots, e_M in \overline{e} , and vice versa.

Consistent

We extract all phrases that are consistent with a word alignment A

Definition: Consistent phrase pair

A phrase pair $(\overline{f}, \overline{e})$ is consistent with A, if all words f_1, \ldots, f_N in \overline{f} that have alignment points in A, have these with words e_1, \ldots, e_M in \overline{e} , and vice versa.

Consistent

Inconsistent

We extract all phrases that are consistent with a word alignment A

Definition: Consistent phrase pair

A phrase pair $(\overline{f}, \overline{e})$ is consistent with A, if all words f_1, \ldots, f_N in \overline{f} that have alignment points in A, have these with words e_1, \ldots, e_M in \overline{e} , and vice versa.

Consistent

Inconsistent

Consistent

- In the IBM models, there was a **generative story** about how all the English words turn into French words
- $\cdot\,$ Here we do not choose among different phrase alignments
- \cdot We can choose to use many short phrases, or a few long ones, or anything in between
- We estimate the phrase translation probability $\phi(\bar{f}, \bar{e})$ by the relative frequency:

$$\phi(\bar{f},\bar{e}) = rac{ ext{count}(\bar{e},\bar{f})}{\sum_i ext{count}(\bar{e},\bar{f}_i)}$$

The phrase-based model so far already works well. So far we have:

- phrase translation probabilities
- \cdot reordering model d
- language model

Probabilities from each component are multiplied so that we can find best translation \hat{e} with an **argmax**

We can put all of this in a general log-linear model:

$$p(x) = \exp \sum_{i=1}^n \lambda_i h_i(x)$$

which allows us to weight the components:

- + $\lambda\phi$ for the translation model
- $\cdot \lambda d$ for the reordering model
- + λ LM for the language model

$$\hat{e} = rg \max_{e} \qquad p_{LM}(e) \, \lambda_{LM} \ * \prod_{i} \phi(ar{f}_i \mid ar{e}_i) \, \lambda_{\phi} \ * d(\dots) \, \lambda_{d}$$

Since we have a log-linear model now, we can add all kinds of feature functions $h_i(x)$ together with a weight λ_i Examples:

- Bi-directional translation probabilities
- Lexical weighting
- Word penalty (control output length)
- Phrase penalty

- Another improvement we can make is to obtain lexicalized reordering probabilities
- So far reordering is modelled just based on distance
- A popular way to do this is MSD-reordering: between 2 phrases, we want to predict:
 - \cdot (M) monotone order
 - \cdot (S) swap with previous phrase
 - \cdot (D) discontinuous

- \cdot To find the best translation using our model, we need to perform decoding
- The search space is **huge**, so many **heuristics** are used in practice
- $\cdot\,$ We can expand a translation hypothesis from ${\it left-to-right},$ one phrase at a time
- Every time we check the translation model, reordering model, and language model if this is a good idea
- We cannot keep all hypotheses in memory, so we put them in hypothesis stacks based on how many foreign words they cover
- When a stack gets too large, we prune it

Evaluation

```
Candidate: the the the the the the the Ref 1: the cat is on the mat
Ref 2: there is a cat on the mat
```

Idea 1: Precision

 $P = \frac{\text{\# words in candidate that are in ref}}{\text{\# words in candidate}} = \frac{7}{7}$

```
Candidate: the the the the the the the Ref 1: the cat is on the mat
Ref 2: there is a cat on the mat
```

Idea 1: Precision

 $P = \frac{\text{\# words in candidate that are in ref}}{\text{\# words in candidate}} = \frac{7}{7}$

Idea 2: Modified Precision

Clip the number of matching words (e.g. 7 for 'the') to their max. count in a ref. (e.g. only 2)

$$P=\frac{2}{7}$$

Idea 1: Precision

$$P = \frac{\text{# words in candidate that are in ref}}{\text{# words in candidate}} = \frac{7}{7}$$

Idea 2: Modified Precision

Clip the number of matching words (e.g. 7 for 'the') to their max. count in a ref. (e.g. only 2)

$$P = \frac{2}{7}$$

What is the modified precision for this?

Candidate: the cat Ref 1: the cat is on the mat Ref 2: there is a cat on the mat

$$P = \frac{2}{2} = 1$$

Idea 1: Precision

$$P = \frac{\text{# words in candidate that are in ref}}{\text{# words in candidate}} = \frac{7}{7}$$

Idea 2: Modified Precision

Clip the number of matching words (e.g. 7 for 'the') to their max. count in a ref. (e.g. only 2)

$$P = \frac{2}{7}$$

What is the modified precision for this?

$$P = \frac{2}{2} = 1$$

Can we use recall?

No, because there are multiple references.

Idea 1: Precision

$$P = \frac{\text{# words in candidate that are in ref}}{\text{# words in candidate}} = \frac{7}{7}$$

Clip the number of matching words (e.g. 7 for 'the') to their max. count in a ref. (e.g. only 2)

$$P=\frac{2}{7}$$

What is the modified precision for this?

$$P = \frac{2}{2} = 1$$

Can we use recall?

No, because there are multiple references.

Solution: Brevity penalty

We multiply the score with $e^{1-\frac{t}{c}}$ if the total length of the candidates is shorter.

Idea 1: Precision

$$P = \frac{\text{# words in candidate that are in ref}}{\text{# words in candidate}} = \frac{7}{7}$$

Clip the number of matching words (e.g. 7 for 'the') to their max. count in a ref. (e.g. only 2)

$$P = \frac{2}{7}$$

What is the modified precision for this?

$$P = \frac{2}{2} = 1$$

Can we use recall?

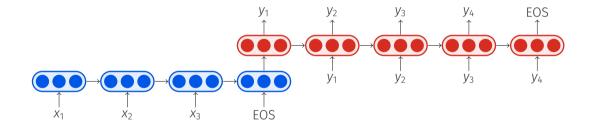
No, because there are multiple references.

Solution: Brevity penalty

We multiply the score with $e^{1-\frac{t}{c}}$ if the total length of the candidates is shorter.

Neural Machine Translation

Encoder-Decoder [Cho et al., 2014, Sutskever et al., 2014]



A blog post on how to implement an Encoder-Decoder *from scratch* in PyTorch: https://bastings.github.io/annotated_encoder_decoder/

Google Translate Experiment

Try the following input:

iä											
iä	iä										
iä	iä	iä									
iä	iä	iä	iä								
iä	iä	iä	iä	iä							
iä	iä	iä	iä	iä	iä						
iä	iä	iä	iä	iä	iä	iä					
iä	iä	iä	iä	iä	iä	iä	iä				
iä	iä	iä	iä	iä	iä	iä	iä	iä			
iä	iä	iä	iä	iä	iä	iä	iä	iä	iä		
iä	iä	iä	iä	iä	iä	iä	iä	iä	iä	iä	
iä	iä	iä	iä	iä	iä	iä	iä	iä	iä	iä	iä
eto	2										

What is going on here?

References i

Brown, P. F., Cocke, J., Pietra, S. A. D., Pietra, V. J. D., Jelinek, F., Lafferty, J. D., Mercer, R. L., and Roossin, P. S. (1990). A statistical approach to machine translation.

Comput. Linguist., 16(2):79–85.

Brown, P. F., Pietra, V. J. D., Pietra, S. A. D., and Mercer, R. L. (1993). The mathematics of statistical machine translation: Parameter estimation. *Computational linguistics*, 19(2):263–311.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio, Y. (2014).

Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation.

References ii

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar. Association for Computational Linguistics.

- Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
 Bleu: a method for automatic evaluation of machine translation.
 In Proceedings of the 40th annual meeting on association for computational linguistics, pages 311–318. Association for Computational Linguistics.
- Sutskever, I., Vinyals, O., and Le, Q. V. (2014).
 Sequence to Sequence Learning with Neural Networks.
 In Neural Information Processing Systems (NIPS), pages 3104–3112.