Computational Dialogue Modelling

Raquel Fernández

Institute for Logic, Language & Computation University of Amsterdam

NLP1 2018 (Guest Lecture)

Conversation

Primary setting for language use

- *multi-agent*: requires coordination (joint action)
- spontaneous and online: disfluent, fragmentary

A transcript fragment from the Switchboard corpus:

B.52	utt1:	Yeah,
B.52	utt2:	it's - it's fun getting together with immediate family.
B.52	utt3:	A lot of my cousins are real close
B.52	utt4:	and we always get together during holidays and
		weddings and stuff like that,
A.53	utt1:	Uh, those are the ones that are in Texas?
B.54	utt1:	# Uh, no #
A.55	utt1:	# Or you # go to Indiana on that?
B.56	utt1:	the ones in Indiana,
B.56	utt2:	uh-huh.
A.57	utt1:	Uh-huh,
A.57	utt2:	where in Indiana?
B.58	utt1:	Lafayette.
A.59	utt1:	Lafayette, I don't know where,
A.59	utt2:	I used to live in Indianapolis.
B.60	utt1:	Yeah,
B.60	utt2:	it's a little north of Indianapolis, about an hour.

Dialogue Modelling

What?

- the conversation from outsider's point of view, to retrieve information (summarisation, etc)
- the capabilities required to take part in a conversation
 - model a dialogue agent \rightarrow *focus today*

Why?

- scientific motivation: gain understanding on human dialogue abilities
- technological motivation: develop dialogue systems that are useful
- both!

How?

• we'll see different approaches today

First chatbot: Eliza (Weizenbaum, 1966)

A conversation with Eliza:

```
Men are all alike.
IN WHAT WAY
They're always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE
Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED
(Jurafsky & Martin, SLP-3)
```

What? Given the dialogue partner's utterance, provide a response **Why?** Psychological therapist / Turing test

First chatbot: Eliza (Weizenbaum, 1966)

How? Pattern / transformation rules based on keywords

Keywords are ranked from specific to general

```
I know everybody laughed at me

"I" is a very general keyword:

I: (I *) -> (You say you 2)

YOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU

"Everybody" is much more interesting (someone using

universals like everybody/always is probably "referring

to some quite specific event or person")

WHO IN PARTICULAR ARE YOU THINKING OF?

(Jurafsky & Martin, SLP-3)
```

From rule-based to *data-driven chatbots*: exploit large corpora of conversations (movie transcripts, Twitter, etc.)

What? Given the dialogue partner's utterance, provide a response Why? Social chit-chat How?

• Information Retrieval

retrieve a response from a corpus (e.g. return response to most similar turn in corpus)

• Generation

generate a response exploiting corpus-based information

 \rightarrow neural network encoder-decoder models

Two main components, an encoder RNN and a decoder RNN:

- **Encoder:** converts the input into a fix-size feature vector that represents important information.
- **Decoder:** generates (word-by-word) the response with the highest probability in the training corpus given the input.

Evaluation: string matching measures on human response in test data.

Examples of generated responses:

- U: tell me ... how long have you had this falling sickness ?
- S: i'm not a doctor.
- U: How long does it take you guys to learn the drill?
- S: Like 2 weeks ago!!
- U: Where do you live?
- S: I live in England.
- U: In which city do you live?
- S: I live in Los Angeles.

[adapted from Jurafsky & Martin, SLP-3]

Problems:

- no real understanding, lack of coherence / consistency
- reproducing general surface patters in the training data

 \rightsquigarrow dialogue happens in context – there is more than what's on the surface of an utterance

Shannon (1948) – Information theory: communication as information encoded by a sender and decoded by a recipient.

Grice (1957): human communication is characterised by the process of *intention recognition*

Goals and intentions

Heider & Simmel (1944): An experimental study in apparent behaviour

- tendency to ascribe *goals* and *intentions*
- theory of mind: ability to model internal mental state of agents
- attribution of causation

Any sensing actions, including linguistic actions, trigger the attribution of mental attitudes and goals

• Speech act theory: conversations are made up of *linguistic actions*.

Speech Act Theory

Initiated by Austin (*'How to do things with words'*) and developed by Searle in the 60s-70s within philosophy of language.

Examples of *dialogue acts*: *inform*, *apologise*, *promise*, *command*, *request*, *answer*, . . .

- The director bought a new car this year.
- Sorry for being late.
- I'll surely come to your talk tomorrow afternoon.
- Put the car in the garage, please.
- Is she a vegetarian?

On the Gricean view, it is possible for the same surface form to correspond to different intentions:

The gun is loaded \rightsquigarrow *threatening? warning? explaining?*

Also, the same intention can be realised by different utterances.

Task-Oriented Dialogue Systems

- Dialogue acts capture goals and intentions of the participants.
- They are a better clue for how to respond in dialogue than simply surface form.

Task-oriented dialogue systems:

- a task / end goal allows us to make intentions tractable
- more reliable evaluation
- more useful systems that help us accomplish goals

GUS:	Hello. My name is GUS. I can help you plan a simple trip by air. Where do you
	want to go ?
Client:	I want to go to San Diego on May 28
GUS:	What time do you want to leave?
Client:	I must be in San Diego before 10 am
GUS:	Would you like P.S.A. flight 102 that arrives at 9.15 am ?
Client:	What is the next flight ?
GUS:	Air California flight 310 that leaves at 8.30am and arrives at 10.00am

Language understanding: the NLP1 course!

- morphological processing, POS tagging
- Lexical semantics
- Syntactic parsing
- Compositional semantics

Dialogue Management: two main components

- *Dialogue state tracker:* linguistic context (what has been said) and how this is relevant for the task at hand
- *Dialogue policy:* next action selection (what to say next)

Consider a travel domain: The *dialogue state* can be modelled as a frame with task-related slots that need to be filled in.

Dialogue acts are defined relative to a task/domain:

	Utterance	Dialog act
U:	Hi, I am looking for somewhere to eat.	hello(task = find,type=restaurant)
S:	You are looking for a restaurant. What	<pre>confreq(type = restaurant, food)</pre>
	type of food do you like?	
U:	I'd like an Italian somewhere near the	<pre>inform(food = Italian, near=museum)</pre>
	museum.	
S:	Roma is a nice Italian restaurant near	inform(name = "Roma", type = restaurant,
	the museum.	food = Italian, near = museum)
U:	Is it reasonably priced?	<pre>confirm(pricerange = moderate)</pre>
S:	Yes, Roma is in the moderate price	affirm(name = "Roma", pricerange =
	range.	moderate)
U:	What is the phone number?	request(phone)
S:	The number of Roma is 385456.	<pre>inform(name = "Roma", phone = "385456")</pre>
U:	Ok, thank you goodbye.	bye()

(Jurafsky & Martin, SLP-3)

Dialogue State Tracker

The state tracker needs to interpret the latest dialogue act and integrate it into the state:

User:	I'm looking for a cheaper restaurant			
	inform(price=cheap)			
System:	Sure. What kind - and where?			
User:	Thai food, somewhere downtown			
	inform(price=cheap, food=Thai, area=centre)			
System:	The House serves cheap Thai food			
User:	Where is it?			
	<pre>inform(price=cheap, food=Thai, area=centre); request(address)</pre>			
System:	The House is at 106 Regent Street			

```
(Jurafsky & Martin, SLP-3)
```

- *Dialogue act interpretation* can be modelled as a supervised classification task (with feature-based or neural classifier)
- *Slot filling* can be modelled as supervised sequence tagging: assign a slot value to each word in the utterance.

The goal of the *dialogue policy* is to decide what action the system should take next: what dialogue act to generate.

We can condition our decision on the current dialogue state (abstraction over entire history: different dialogues could lead to the same state)

$$A_t = \operatorname*{argmax}_{A_i \in A} P(A_i | \operatorname{Frame}_{t-1}, A_{t-1}, U_{t-1})$$

- Frame: current dialogue state (filled slots so far)
- A_{t-1} : latest action by the system
- U_{t-1} : latest dialogue act by the user
- A: set of available system actions

These probabilities can be estimated from large corpora of annotated conversations (often simulations are needed).

 \rightarrow Reinforcement Learning has been used to select actions that are likely to lead to task success.

Extra-linguistic environment: different options, depending on the type of system

- Database for the domain at hand or/and world knowledge
- Perceptual environment, for example modelled by an image \rightarrow more in this direction by Elia Bruni later

Summing Up

- Open-domain *chatbots* are fun, but they current systems miss out on key properties of conversation, are difficult to evaluate, and are only relatively useful.
- Classic *modular task-oriented systems* are potentially useful and capture key properties of conversation, but require large amounts of annotated data.
- Future: task-oriented systems that learn their own representations end-to-end, with no manual annotation.
- See further reading (tutorial at COLING 2018 and references therein) for the latest developments.