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Conversation

Primary setting for language use

• multi-agent: requires coordination (joint action)
• spontaneous and online: disfluent, fragmentary
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A transcript fragment from the Switchboard corpus:

B.52 utt1: Yeah,
B.52 utt2: it’s – it’s fun getting together with immediate family.
B.52 utt3: A lot of my cousins are real close
B.52 utt4: and we always get together during holidays and

weddings and stuff like that,
A.53 utt1: Uh, those are the ones that are in Texas?
B.54 utt1: # Uh, no #
A.55 utt1: # Or you # go to Indiana on that?
B.56 utt1: the ones in Indiana,
B.56 utt2: uh-huh.
A.57 utt1: Uh-huh,
A.57 utt2: where in Indiana?
B.58 utt1: Lafayette.
A.59 utt1: Lafayette, I don’t know where,
A.59 utt2: I used to live in Indianapolis.
B.60 utt1: Yeah,
B.60 utt2: it’s a little north of Indianapolis, about an hour.
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Dialogue Modelling

What?
• the conversation from outsider’s point of view, to retrieve

information (summarisation, etc)
• the capabilities required to take part in a conversation

– model a dialogue agent → focus today
Why?

• scientific motivation: gain understanding on human dialogue abilities
• technological motivation: develop dialogue systems that are useful
• both!

How?
• we’ll see different approaches today
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First chatbot: Eliza (Weizenbaum, 1966)

A conversation with Eliza:

(Jurafsky & Martin, SLP-3)

What? Given the dialogue partner’s utterance, provide a response
Why? Psychological therapist / Turing test
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First chatbot: Eliza (Weizenbaum, 1966)

How? Pattern / transformation rules based on keywords

Keywords are ranked from specific to general

(Jurafsky & Martin, SLP-3)
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Data-driven chatbots

From rule-based to data-driven chatbots: exploit large corpora of
conversations (movie transcripts, Twitter, etc.)

What? Given the dialogue partner’s utterance, provide a response
Why? Social chit-chat
How?

• Information Retrieval
retrieve a response from a corpus
(e.g. return response to most similar turn in corpus)

• Generation
generate a response exploiting corpus-based information
→ neural network encoder-decoder models
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Encoder-Decoder models

Two main components, an encoder RNN and a decoder RNN:

• Encoder: converts the input into a fix-size feature vector that
represents important information.

• Decoder: generates (word-by-word) the response with the
highest probability in the training corpus given the input.

(Jurafsky & Martin, SLP-3)

Evaluation: string matching measures on human response in test data.
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Encoder-Decoder models

Examples of generated responses:

U: tell me ... how long have you had this falling sickness ?
S: i’m not a doctor.

U: How long does it take you guys to learn the drill?
S: Like 2 weeks ago!!

U: Where do you live?
S: I live in England.
U: In which city do you live?
S: I live in Los Angeles.

[adapted from Jurafsky & Martin, SLP-3]

Problems:
• no real understanding, lack of coherence / consistency
• reproducing general surface patters in the training data

 dialogue happens in context – there is more than what’s on the
surface of an utterance
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Two views of communication

Shannon (1948) – Information theory:
communication as information encoded by a
sender and decoded by a recipient.

Grice (1957): human communication is
characterised by the process of
intention recognition
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Goals and intentions

original video

Heider & Simmel (1944): An experimental
study in apparent behaviour

• tendency to ascribe goals and intentions
• theory of mind: ability to model internal

mental state of agents
• attribution of causation

Any sensing actions, including linguistic
actions, trigger the attribution of mental
attitudes and goals

• Speech act theory: conversations are
made up of linguistic actions.
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Speech Act Theory

Initiated by Austin (‘How to do things with words’) and developed by
Searle in the 60s-70s within philosophy of language.
Examples of dialogue acts: inform, apologise, promise, command,
request, answer, . . .

• The director bought a new car this year.
• Sorry for being late.
• I’ll surely come to your talk tomorrow afternoon.
• Put the car in the garage, please.
• Is she a vegetarian?

On the Gricean view, it is possible for the same surface form to
correspond to different intentions:

The gun is loaded  threatening? warning? explaining?

Also, the same intention can be realised by different utterances.
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Task-Oriented Dialogue Systems

• Dialogue acts capture goals and intentions of the participants.
• They are a better clue for how to respond in dialogue than
simply surface form.

Task-oriented dialogue systems:

• a task / end goal allows us to make intentions tractable
• more reliable evaluation
• more useful systems that help us accomplish goals
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Modular Dialogue System Architecture

Language understanding: the NLP1 course!
• morphological processing, POS tagging
• Lexical semantics
• Syntactic parsing
• Compositional semantics
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Modular Dialogue System Architecture

Dialogue Management: two main components
• Dialogue state tracker: linguistic context (what has been said) and

how this is relevant for the task at hand
• Dialogue policy: next action selection (what to say next)
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Modular Dialogue System Architecture

Consider a travel domain: The dialogue state can be modelled as a
frame with task-related slots that need to be filled in.
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Dialogue State Tracker

Dialogue acts are defined relative to a task/domain:

(Jurafsky & Martin, SLP-3)
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Dialogue State Tracker

The state tracker needs to interpret the latest dialogue act and
integrate it into the state:

(Jurafsky & Martin, SLP-3)

• Dialogue act interpretation can be modelled as a supervised
classification task (with feature-based or neural classifier)

• Slot filling can be modelled as supervised sequence tagging:
assign a slot value to each word in the utterance.
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Modular Dialogue System Architecture

The goal of the dialogue policy is to decide what action the system
should take next: what dialogue act to generate.
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Dialogue Policy

We can condition our decision on the current dialogue state
(abstraction over entire history: different dialogues could lead to the same state)

At = argmax
Ai∈A

P (Ai|Framet−1, At−1, Ut−1)

• Frame: current dialogue state (filled slots so far)
• At−1: latest action by the system
• Ut−1: latest dialogue act by the user
• A: set of available system actions

These probabilities can be estimated from large corpora of
annotated conversations (often simulations are needed).
→ Reinforcement Learning has been used to select actions that are likely to
lead to task success.
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Modular Dialogue System Architecture

Extra-linguistic environment: different options, depending on
the type of system

• Database for the domain at hand or/and world knowledge
• Perceptual environment, for example modelled by an image

→ more in this direction by Elia Bruni later
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Summing Up

• Open-domain chatbots are fun, but they current systems miss
out on key properties of conversation, are difficult to evaluate,
and are only relatively useful.

• Classic modular task-oriented systems are potentially useful
and capture key properties of conversation, but require large
amounts of annotated data.

• Future: task-oriented systems that learn their own
representations end-to-end, with no manual annotation.

• See further reading (tutorial at COLING 2018 and references
therein) for the latest developments.
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