
1 Morphology and finite-state techniques

Copyright c© Ann Copestake, Ekaterina Shutova, 2018

This lecture starts with a brief discussion of morphology, concentrating mainly on English morphology. The concept

of a lexicon in an NLP system is discussed with respect to morphological processing. Spelling rules are introduced

and the use of finite state transducers to implement spelling rules is explained. The lecture concludes with a brief

overview of some other uses of finite state techniques in NLP.

1.1 A very brief and simplified introduction to morphology

Morphology concerns the structure of words. Words are assumed to be made up of morphemes, which are the minimal

information carrying unit. Morphemes which can only occur in conjunction with other morphemes are affixes: words

are made up of a stem (more than one in the case of compounds) and zero or more affixes. For instance, dog is a

stem which may occur with the plural suffix +s i.e., dogs. The compound bookshop has two stems (book and shop):

most English compounds are spelled with a space, however, and therefore not standardly analysed by morphological

processors. English only has suffixes (affixes which come after a stem) and prefixes (which come before the stem — in

English prefixes are limited to derivational morphology), but other languages have infixes (affixes which occur inside

the stem) and circumfixes (affixes which go around a stem, such as the ge-t in German gekauft). For instance, Arabic

has stems (root forms) such as k t b, which are combined with infixes to form words (e.g., kataba, he wrote; kotob,

books). Some English irregular verbs show a relic of inflection by infixation (e.g. sing, sang, sung) but this process is

no longer productive (i.e., it won’t apply to any new words, such as ping).1

Note the requirement that a morpheme can be regarded as a unit. There are cases where there seems to be a similarity

in meaning between some clusters of words with similar spellings: e.g., slink, slide, slither, slip. But such examples

cannot be decomposed (i.e., there is no sl- morpheme) because the rest of the word does not stand as a unit.

1.2 Inflectional vs derivational morphology

Inflectional and derivational morphology can be distinguished, although the dividing line isn’t always sharp. The

distinction is of some importance in NLP, since it means different representation techniques may be appropriate.

Inflectional morphology can be thought of as setting values of slots in some paradigm (i.e., there is a fixed set of slots

which can be thought of as being filled with simple values). Inflectional morphology concerns properties such as tense,

aspect, number, person, gender, and case, although not all languages code all of these: English, for instance, has very

little morphological marking of case and gender. Derivational affixes, such as un-, re-, anti- etc, have a broader range

of semantic possibilities (there seems no principled limit on what they can mean) and don’t fit into neat paradigms.

Inflectional affixes may be combined (though not in English). However, there are always obvious limits to this, since

once all the possible slot values are ‘set’, nothing else can happen. In contrast, there are no obvious limitations on the

number of derivational affixes (antidisestablishmentarianism, antidisestablishmentarianismization) and they may even

be applied recursively (antiantimissile). In some languages, such as the Inuit language(s), derivational morphology is

often used where English would use adjectival modification or other syntactic means. This leads to very long ‘words’

occurring naturally and is responsible for the (misleading/mistaken) claim that ‘Eskimo’ has hundreds of words for

snow.

Inflectional morphology is generally close to fully productive, in the sense that a word of a particular class will show

all the possible inflections although the actual affix used may vary. For instance, an English verb will have a present

tense form, a 3rd person singular present tense form, a past participle and a passive participle (the latter two being the

same for regular verbs). This will also apply to any new words which enter the language: e.g., text as a verb — texts,

texted. Derivational morphology is less productive and the classes of words to which an affix applies is less clearcut.

For instance, the suffix -ee is relatively productive (textee sounds plausible, meaning the recipient of a text message,

for instance), but doesn’t apply to all verbs (?snoree, ?jogee, ?dropee). Derivational affixes may change the part of

speech of a word (e.g., -ise/-ize converts nouns into verbs: plural, pluralise). However, there are also examples of

what is sometimes called zero derivation, where a similar effect is observed without an affix: e.g. tango, waltz etc are

1Arguably, though, spoken English has one productive infixation process, exemplified by absobloodylutely.

1



words which are basically nouns but can be used as verbs.

Stems and affixes can be individually ambiguous. There is also potential for ambiguity in how a word form is split into

morphemes. For instance, unionised could be union -ise -ed or (in chemistry) un- ion -ise -ed. This sort of structural

ambiguity isn’t nearly as common in English morphology as in syntax, however. Note that un- ion is not a possible

form (because un- can’t attach to a noun). Furthermore, although there is a prefix un- that can attach to verbs, it nearly

always denotes a reversal of a process (e.g., untie), whereas the un- that attaches to adjectives means ‘not’, which is

the meaning in the case of un- ion -ise -ed. Hence the internal structure of un- ion -ise -ed has to be (un- ((ion -ise)

-ed)).

1.3 Applications of morphological processing

It is possible to use a full-form lexicon for English NLP: i.e., to list all the inflected forms and to treat derivational

morphology as non-productive. However, when a new word has to be handled (because the lexicon is incomplete,

potentially because a new word has entered the language) it is redundant to have to specify (or learn) the inflected

forms as well as the stem, since the vast majority of words in English have regular morphology. So a full-form lexicon

is best regarded as a form of compilation. Many other languages have many more inflectional forms, which increases

the need to do morphological analysis rather than full-form listing.

Traditional IR systems use stemming rather than full morphological analysis. For IR, what is required is to relate

forms, not to analyse them compositionally, and this can most easily be achieved by reducing all morphologically

complex forms to a canonical form. Although this is referred to as stemming, the canonical form may not be the

linguistic stem. The most commonly used algorithm is the Porter stemmer, which uses a series of simple rules to

strip endings without the need for a lexicon. However, stemming does not necessarily help IR. Search engines now

generally do inflectional morphology, but this can be dangerous. For instance, searching for corpus as well as corpora

when given the latter as input (as some search engines sometimes do) can result in a large number of spurious results

involving Corpus Christi and similar terms.

In most NLP applications, however, morphological analysis is a precursor to some form of parsing. In this case, the

requirement is to analyse the form into a stem and affixes so that the necessary syntactic (and possibly semantic) in-

formation can be associated with it. Morphological analysis is often called lemmatization. For instance, for the part

of speech tagging application, mugged would be assigned a part of speech tag which indicates it is a verb, though mug

is ambiguous between verb and noun. For full parsing, we need more detailed syntactic and semantic information.

Morphological generation takes a stem and some syntactic information and returns the correct form. For some ap-

plications, there is a requirement that morphological processing is bidirectional: that is, can be used for analysis and

generation. The finite state transducers we will look at below have this property.

1.4 Spelling rules

English morphology is essentially concatenative: i.e., we can think of words as a sequence of prefixes, stems and

suffixes. Some words have irregular morphology and their inflectional forms simply have to be listed. However, in

other cases, there are regular phonological or spelling changes associated with affixation. For instance, the suffix -s is

pronounced differently when it is added to a stem which ends in s, x or z and the spelling reflects this with the addition

of an e (boxes etc). For the purposes of this course, I’ll just talk about spelling effects rather than phonological effects:

these effects can be captured by spelling rules (also known as orthographic rules).

English spelling rules can be described independently of the particular stems and affixes involved, simply in terms of

the affix boundary. The ‘e-insertion’ rule can be described as follows:

ε → e/







s

x

z







ˆ s

In such rules, the mapping is always given from the ‘underlying’ form to the surface form, the mapping is shown to

the left of the slash and the context to the right, with the indicating the position in question. ε is used for the empty

string and ˆ for the affix boundary. This particular rule is read as saying that the empty string maps to ‘e’ in the context

where it is preceded by an s,x, or z and an affix boundary and followed by an s. For instance, this maps boxˆs to boxes.

2



This rule might look as though it is written in a context sensitive grammar formalism, but actually we’ll see in §1.7

that it corresponds to a finite state transducer. Because the rule is independent of the particular affix, it applies equally

to the plural form of nouns and the 3rd person singular present form of verbs. Other spelling rules in English include

consonant doubling (e.g., rat, ratted, though note, not *auditted) and y/ie conversion (party, parties).2

1.5 Lexical requirements for morphological processing

There are three sorts of lexical information that are needed for full, high precision morphological processing:

• affixes, plus the associated information conveyed by the affix

• irregular forms, with associated information similar to that for affixes

• stems with syntactic categories (plus more detailed information if derivational morphology is to be treated as

productive)

One approach to an affix lexicon is for it to consist of a pairing of affix and some encoding of the syntactic/semantic

effect of the affix.3 For instance, consider the following fragment of a suffix lexicon (we can assume there is a separate

lexicon for prefixes):

ed PAST_VERB

ed PSP_VERB

s PLURAL_NOUN

Here PAST_VERB, PSP_VERB and PLURAL_NOUN are abbreviations for some bundle of syntactic/semantic infor-

mation and form the interface between morphology and the syntax/semantics.

A lexicon of irregular forms is also needed. One approach is for this to just be a triple consisting of inflected form,

‘affix information’ and stem, where ‘affix information’ corresponds to whatever encoding is used for the regular affix.

For instance:

began PAST_VERB begin

begun PSP_VERB begin

Note that this information can be used for generation as well as analysis, as can the affix lexicon.

In most cases, English irregular forms are the same for all senses of a word. For instance, ran is the past of run

whether we are talking about athletes, politicians or noses. This argues for associating irregularity with particular

word forms rather than particular senses, especially since compounds also tend to follow the irregular spelling, even

non-productively formed ones (e.g., the plural of dormouse is dormice). However, there are exceptions: e.g., The

washing was hung/*hanged out to dry vs the murderer was hanged.

Morphological analysers also generally have access to a lexicon of regular stems. This is needed for high precision:

e.g. to avoid analysing corpus as corpu -s, we need to know that there isn’t a word corpu. There are also cases where

historically a word was derived, but where the base form is no longer found in the language: we can avoid analysing

unkempt as un- kempt, for instance, simply by not having kempt in the stem lexicon. Ideally this lexicon should have

syntactic information: for instance, feed could be fee -ed, but since fee is a noun rather than a verb, this isn’t a possible

analysis. However, in the approach I’ll assume, the morphological analyser is split into two stages. The first of these

only concerns morpheme forms and returns both fee -ed and feed given the input feed. A second stage which is

closely coupled to the syntactic analysis then rules out fee -ed because the affix and stem syntactic information are not

compatible.

If morphology was purely concatenative, it would be very simple to write an algorithm to split off affixes. Spelling

rules complicate this somewhat: in fact, it’s still possible to do a reasonable job for English with ad hoc code, but a

cleaner and more general approach is to use finite state techniques.

2Note the use of * (‘star’) above: this notation is used in linguistics to indicate a word or sentence which is judged (by the author, at least) to be

incorrect. ? is generally used for a sentence which is questionable, or at least doesn’t have the intended interpretation. # is used for a pragmatically

anomalous sentence.
3J&M describe an alternative approach which is to make the syntactic information correspond to a level in a finite state transducer. However, at

least for English, this considerably complicates the transducers.

3



1.6 Finite state automata for recognition

The approach to spelling rules that I’ll describe involves the use of finite state transducers (FSTs). Rather than jumping

straight into this, I’ll briefly consider the simpler finite state automata and how they can be used in a simple recogniser.

Suppose we want to recognise dates (just day and month pairs) written in the format day/month. The day and the

month may be expressed as one or two digits (e.g. 11/2, 1/12 etc). This format corresponds to the following simple

FSA, where each character corresponds to one transition:

0,1,2,3 digit / 0,1 0,1,2

digit digit

1 2 3 4 5 6

Accept states are shown with a double circle. This is a non-deterministic FSA: for instance, an input starting with the

digit 3 will move the FSA to both state 2 and state 3. This corresponds to a local ambiguity: i.e., one that will be

resolved by subsequent context. By convention, there must be no ‘left over’ characters when the system is in the final

state.

To make this a bit more interesting, suppose we want to recognise a comma-separated list of such dates. The FSA,

shown below, now has a cycle and can accept a sequence of indefinite length (note that this is iteration and not full

recursion, however).

0,1,2,3 digit / 0,1 0,1,2

digit digit

,

1 2 3 4 5 6

Both these FSAs will accept sequences which are not valid dates, such as 37/00. Conversely, if we use them to generate

(random) dates, we will get some invalid output. In general, a system which generates output which is invalid is said

to overgenerate. In fact, in many language applications, some amount of overgeneration can be tolerated, especially if

we are only concerned with analysis.

1.7 Finite state transducers

FSAs can be used to recognise particular patterns, but don’t, by themselves, allow for any analysis of word forms.

Hence for morphology, we use finite state transducers (FSTs) which allow the surface structure to be mapped into the

list of morphemes. FSTs are useful for both analysis and generation, since the mapping is bidirectional. This approach

is known as two-level morphology.

To illustrate two-level morphology, consider the following FST, which recognises the affix -s allowing for environ-

ments corresponding to the e-insertion spelling rule shown in §1.4 and repeated below.4

4Actually, I’ve simplified this slightly so the FST works correctly but the correspondence to the spelling rule is not exact: J&M give a more

complex transducer which is an accurate reflection of the spelling rule. They also use an explicit terminating character while I prefer to rely on the

‘use all the input’ convention, which results in simpler rules.

4



ε → e/







s

x

z







ˆ s

1

e : e
other : other

ε : ˆ

2

s : s

3

4

e : e
other : other

s : s
x : x
z : z e : ˆ

s : s
x : x
z : z

Transducers map between two representations, so each transition corresponds to a pair of characters. As with the

spelling rule, we use the special character ‘ε’ to correspond to the empty character and ‘ˆ’ to correspond to an affix

boundary. The abbreviation ‘other : other’ means that any character not mentioned specifically in the FST maps to

itself. As with the FSA example, we assume that the FST only accepts an input if the end of the input corresponds to

an accept state (i.e., no ‘left-over’ characters are allowed).

For instance, with this FST, the surface form cakes would start from 1 and go through the transitions/states (c:c) 1,

(a:a) 1, (k:k) 1, (e:e) 1, (ε:ˆ) 2, (s:s) 3 (accept, underlying cakeˆs) and also (c:c) 1, (a:a) 1, (k:k) 1, (e:e) 1, (s:s) 4

(accept, underlying cakes). ‘d o g s’ maps to ‘d o g ˆ s’, ‘f o x e s’ maps to ‘f o x ˆ s’ and to ‘f o x e ˆ s’, and ‘b u z z

e s’ maps to ‘b u z z ˆ s’ and ‘b u z z e ˆ s’.5 When the transducer is run in analysis mode, this means the system can

detect an affix boundary (and hence look up the stem and the affix in the appropriate lexicons). In generation mode, it

can construct the correct string. This FST is non-deterministic.

Similar FSTs can be written for the other spelling rules for English (although to do consonant doubling correctly, in-

formation about stress and syllable boundaries is required and there are also differences between British and American

spelling conventions which complicate matters). Morphology systems are usually implemented so that there is one

FST per spelling rule and these operate in parallel.

One issue with this use of FSTs is that they do not allow for any internal structure of the word form. For instance, we

can produce a set of FSTs which will result in unionised being mapped into unˆionˆiseˆed, but as we’ve seen, the

affixes actually have to be applied in the right order and the bracketing isn’t modelled by the FSTs.

5In all cases they also map to themselves: e.g., ‘b u z z e s’ maps to ‘b u z z e s’ without the affix marker: this is necessary because words ending

in ‘s’ and ‘es’ are not always inflected forms. e.g., Moses

5


