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Sequence modelling



Neural models of sequence prediction

Many NLP tasks involve conditioning on text and predicting
sequences

e part-of-speech tagging [Ling et al., 2015]

e named-entity recognition [Lample et al., 2016]
e machine translation [Sutskever et al., 2014]

e text summarisation [Rush et al., 2015]

e entity retrieval [Cao et al., 2021]

e information extraction [Josifoski et al., 2022]
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Many NLP tasks involve conditioning on text and predicting
sequences

e part-of-speech tagging [Ling et al., 2015]

e named-entity recognition [Lample et al., 2016]
e machine translation [Sutskever et al., 2014]

e text summarisation [Rush et al., 2015]

e entity retrieval [Cao et al., 2021]

e information extraction [Josifoski et al., 2022]

Deploying a system for any of these tasks requires a lot of expert

knowledge (about task, datasets, design decisions, etc.), but most
solutions employ a similar backbone: a neural model of sequence

prediction.



Sequence-to-sequence

We are interested in modelling a specific relationship between pairs
of sequences:

e an input sequence x from an input space X

e an output sequence y from an output space Y

We will assume this relationship can be modelled directionally
(x — y) in a non-deterministic way.’

'Notation capital letters for random variables (e.g., Y), lowercase letters for their
assignments (e.g., y), calligraphic letters for sample spaces (e.g., V). We use Y; to
denote a step in a random sequence and Y to denote a prefix sequence (up until but
not including the Y}). Py is the distribution of Y, Py |x_, is the distribution of Y
given X = x. P(Y = y|X = x) is the probability of observing Y = y given X = x.



Probabilistic modelling

We will treat y as an observation for a random variable (rv) Y,
which we draw conditionally given an observation x for the rv X.

The probability P(Y = y|X = x) with which we observe Y =y
conditioned on X = x is given by a parametric function with

parameters 6:
P(Y = y|X = x) = f(y|x;0) (1)

Our first job, as modellers, is to design this probability mass
function (pmf). Once it is in place, we will discuss how to estimate
parameters for it, and, finally, how to use it to make predictions.



Challenges

Designing a pmf involves

1. specifying the parametric family

2. picking a value for its parameters

Let's concentrate on (1), assuming that we will be employing a
form of gradient-based optimisation for (2).



Parameterisation



Conditional probability distributions (cpds) for structures

Given any x € X', we want to be able to parameterise a
distribution over outcomes of Y. There are 2 key challenges here:

e the input space X is very large (typically infinite)
e the output space ) is very large (either infinite or it grows
combinatorially with the size of input x)
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Structured X, unstructured )

Pretend for a moment that ) = {1,..., K}. To prescribe a cpd for
Y|X = x, we need K probabilities for any given x € X

Categorical(y|0.1, 0.3, 0.6)

For a single x € X, this is 0.6
not so difficult (we could v R

store K probability -

values): L A

x = “Great breakfast and service. A bit far
from the centre, but you get a quiet area.”

But doing so for each and every possible x € X', including those

we've never seen, requires a bit more ingenuity.



Log-linear (or logistic) cpds

e map x to a fixed

number of features

\ Z
h(x) € RP
s=Wh(x)+b uzz
i O1F) e map h(x) to K scores
/\ﬁf‘m“‘(” (a.k.a. logits), for
03,01, 0% ke

o LY example, linearly:
Space of Categorical parameters for 3 classes Wh( X) + b

e constrain the outputs to
b e b Y the probability simplex

Categorical(y|0.3, 0.1, 0.6)

This will map any x that we can ‘featurise’ to a Categorical pmf.
Crucially, no matter how large X is, it only takes K x D 4+ K parameters.



Encoding functions

The ability to ‘encode’ an arbitrary x into a D-dimensional space is
essential for our parameterisation.

Pre-2010 these functions were handmade feature functions.

Nowadays they are part of the parameterisation. That is, we use
NNs to represent the input and map it to output probability values.



A neural text classifier

K-way text classifier Y|X = x ~ Cat(g(x; 6))
K classes
l P(class=k]|..) Encoder-decoder
d-sized Linear |© | softmax — _
vector layer 8 |:||:| suppose / |X|
- ) e; :embedD(x,-;einp) i=1,...,1
o : feature
representation r. = LSTl\/IH(el:,; Henc)
of the text
h = avgpool(ry)
Neural Network s = linear (h; Gout)
S g(x; 0) = softmax(s)
O] Ol O} O] O} [e] oKkene beddings
O O} O] (e O] [o/
o 9 19 19 19 L Classification rule

I liked the cat . <eos> <— Input text
arg maxycqy) £(x:0)

Image from Lena Voita's NLP course For You

The parameters 0 include the embedding matrix, the LSTM parameters,

as well as the final linear transformation. 0


https://lena-voita.github.io/nlp_course.html##main_page_content

Conditional probability distributions (cpds) for structures

Given any x € X, we want to be able to parameterise a distribution
over outcomes of Y. There are 2 key challenges here:

e " ypicaly.infinite)

e the output space ) is very large (either infinite or it grows
with size of input x)
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Another example

A translation can be decomposed into a sequence of target words:

x = (How, are, you, doing, ?)
y = (Hoe, gaat, het, ?)
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In general

For an input-output pair:
MR s
y:<)/1>---aYJ> X —™ ‘Q
J

P(Y =yIX=x)=T[P(Yi =yl X=xYi=ys) (2
j=1

parents of jth rv

In the decomposition, conditioned on increasingly complex context,
each part is drawn from a small sample space. Models factorised
this way are often referred to as autoregressive.



One C-way classifier, J steps

A general model of sequence prediction is in fact obtained by
repeated application of something very similar to a shared text

classifier:
)/J’X:X, Y<J:y<J~Cat(g(x,y<J,9)) (3)
————
conditioning context outcome probs

Here, g maps from an input x and an partial output y.; to the
probabilities of the possible outcomes for the jth step. Typically,
the sample space across steps (e.g., all tags, all words).
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POS tagging example

Same NN g(-; ) reused over and over
(as many times as there are steps in the
input sequence), each time mapping
from a growing context (x and y;) to
a probability distribution over the same
categorical space (i.e., space of tags).

g(l am going home ||| )

CC O DT IN |] NN RB PRP VBP VBG

g(l am going home ||| PRP)

CC @ DT IN || NN RB PRP VBP VBG

g(l am going home ||| PRP VBP)

CC O DT IN |] NN RB PRP VBP VBG

g(l am going hame ||| PRP VBP VBG)

i CC O DT IN ] NN RB PRP VBP VBG




A neural tagger

Statistical model let the function g map from an input x and
prefix y.; to a distribution over K tags:

Yj’X =X, Y<j = y<J ~ Cat(g(xvy<ﬁ0)) (4)

16



A neural tagger

Statistical model let the function g map from an input x and
prefix y.; to a distribution over K tags:

Yj’X =X, Y<j = y<J ~ Cat(g(xvy<ﬁ0)) (4)

Encoder-decoder | = |x|

e; = embedp(x;; Owords) i=1,...,1

16



A neural tagger

Statistical model let the function g map from an input x and
prefix y.; to a distribution over K tags:

Yj’X =X, Y<j = y<J ~ Cat(g(xvy<ﬁ0)) (4)

Encoder-decoder | = |x|
e; = embedp(X;; Owords) i=1,...,1
C1:. = BiLSrFlVlH(el:l; eenc)

16



A neural tagger

Statistical model let the function g map from an input x and
prefix y.; to a distribution over K tags:

Yj’X =X, Y<j = y<J ~ Cat(g(xvy<ﬁ0)) (4)

Encoder-decoder | = |x|
e; = embedp(x;; Owords) i=1,...,1
c1.; = BIiLSTMpy(e1./; Oenc)
tj_1 = embedp(yj_1; Orags)

16



A neural tagger

Statistical model let the function g map from an input x and
prefix y.; to a distribution over K tags:

Yj’X =X, Y<j = y<J ~ Cat(g(xvy<ﬁ0)) (4)

Encoder-decoder | = |x|
e; = embedp(x;; Owords) i=1,...,1
c1.; = BIiLSTMpy(e1./; Oenc)
tj_1 = embedp(yj_1; Orags)

hj = rnnstep,_,(hj,l., [Cj, tjfl]; Qdec)

16



A neural tagger

Statistical model let the function g map from an input x and
prefix y.; to a distribution over K tags:

\/j’X =X, Y<J = y<J ~ Cat(g(xvy<ﬁ0)) (4)

Encoder-decoder | = |x|
e; = embedp(x;; Owords) i=1,...,1
c1.; = BIiLSTMpy(e1./; Oenc)
tj_1 = embedp(yj_1; Orags)
h; = rnnstepy(hj_1, [cj, tj_1]; Odec)
s;j = linearx (hj; Oout)
g(x, y<j; 0) = softmax(s;)
the parameters 6 include the embedding matrices (words and

tags), the parameters of the BiLSTM encoder and the LSTM
decoder, as well as the final linear transformation. 16



Translation example

Same NN g(+; 0) reused over and over, each
time mapping from a growing context (x
and y.;) to a probability distribution over
the same categorical space (i.e., space of
words).

In translation the output length is not
determined by the length of the input,
instead we repeat this process until a
special terminating symbol is observed or
generated.

glhow are you doing ? ||| )

hoewie .. gaat.. hethun .. ? ! _ -EOS-

g(how are you doing 7 ||| hoe)

hoewie .. gaat .. hethun .. ? ' _ FOS-

g(how are you doing ? ||| hoe gaat)

hoewie .. gaat .. hethun .. ? ! _ -EOS-

g(how are you doing ? ||| hoe gaat het)

hoewie .. gaat .. hethun .. ? ! _ EOS-

g(how are you doing ? ||| hoe gaat het ?)

. hoewie .. gaat .. hethun .. ? ! _ -EOS-




A neural translation model

Statistical model let the function g map from an input x and
prefix y.; to a distribution over V' words:

Yj’X =X, Y<j =Y~ Cat(g(xvy<ﬁ0)) (5)

18

2Figure from Lena Voita's NLP course for You



A neural translation model

Statistical model let the function g map from an input x and
prefix y.; to a distribution over V' words:

\/J’X =X, Y<J =Y~ Cat(g(X7y<J'0)) (5)

[VItokens  P(x|I saw a cat,

vocabulary size

l 9 BUAEN KOTHO HA MaTe <eos>)
d-sized o =
vector Q ) N
Transform h linearly {inear 3 | softmax (‘jei Dgofdb”flly
from sizedto V| - the 1% istribution for
v T g the next token
o)
Q.

: vector representation
of context (source and
previous history)

Encoder ——| Decoder

ol [of 19 [of (9] |9 O
ol [of 19 [of [9] |9 O
ol [of 19 [of |9 |9 O
o [Of 9 [of [9 |9 of |9

S BUAen KOTHO Ha MaTe <eos> <bos>s I saw cat

\;Iu “saw” “cat" “on" “mat” | ) , _J

(eoo0)

process source and
previous history
Word embeddings

000
[cooo]
[cocol
[coool

o

source previous history

2
2Figure from Lena Voita's NLP course for You
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Text Summarisation

NLP task: generate a short version of a (collection of)
document(s) that contains the most important information.

e Extractive: identify and extract important/relevant sentences
from the input document(s).
e Abstractive: interpret the content of the document and

generate an ‘original’ summary.

Natural language < Natural language processing
processing -

Natural language processing is an i
subfield of computer science and linguistics. It is

primarily concerned with giving computers the ability to

support and manipulate human language. Wikipedia

People also search for View 10+ more

WOSm -

Artficial ~ Machine  Data Deep
inteligence leaming  science leaming

19



A neural abstractive summarisation model

Statistical model: just like in translation, we condition on the input
documents(s) x and the prefix of already generated tokens in the
summary y; and parameterise a probability distribution over the space
of possible tokens for the jth position.

Context Vector "beat”

ST N POy

———————————————— >200

R

win  against Argentina on  Saturday ... <START> Germany

v H_)

Source Text Partial Summary

uounqu;sm
fieinqesop

Attention
Dism‘buﬁon

Encoder
Hidden
States

Germany emerge victorious i

Figure 2: Baseline sequence-to-sequence model with attention. The model may attend to relevant words
in the source text to generate novel words, e.g., to produce the novel word beat in the abstractive summary
Germany beat Argentina 2-0 the model may attend to the words victorious and win in the source text.

Figure from [See et al., 2017] 20



An improved neural abstractive summarisation model

Through the architecture, we try to bias the model towards ‘preferred’
solutions. For example, we can give this model a push towards sometimes
performing extractive summarisation. Figure from [See et al., 2017]

Final Distribution

‘Argentina”
X (1 — Pgen) \Hﬁmxnﬁﬁgm

S —— = X Pgen *‘
Context Vector }

Wi 11

<START> Germany ~ beat

uonnquisiq A1e|ngesopn

Attention
Distribution
A

Encoder
Hidden
States
A

Germany emerge victorious i win  against Argentina on  Saturday ...

|

Source Text Partial Summary

Figure 3: Pointer-generator model. For each decoder timestep a generation probability pgen € [0,1] is
calculated, which weights the probability of generating words from the vocabulary, versus copying words
from the source text. The vocabulary distribution and the attention distribution are weighted and summed
to obtain the final distribution, from which we make our prediction. Note that out-of-vocabulary article
words such as 2-0 are included in the final distribution. Best viewed in color. 21



Parameter estimation




Data and Task

Data a collection of pairs (x,y) where both x and y can be
treated as a sequence of outcomes from small discrete sets.

Statistical task observe x and predict a conditional distribution
over all possible sequences.

NLP task map a sequence x to a sequence y: for example via

arg maxy,cy P(Y = y|X = x).

22



Formalisation of statistical task

Statistical model let the function g map from x to a chain rule
factorisation of the conditional distribution Y|X = x:

YilX'=x, Y<j = y<j ~ Cat(g(x, y<;i 0)) (6)

0 collectively refers to all trainable parameters in the model.
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Formalisation of statistical task

Statistical model let the function g map from x to a chain rule
factorisation of the conditional distribution Y|X = x:

YilX = x, Y<j = y<j ~ Cat(g(x, y<;j: 0)) (6)
0 collectively refers to all trainable parameters in the model.

Statistical objective maximum likelihood of model given a dataset of
observations D:

L(0|D) = E log P(Y = y|X = x)
—_—
(x,y)eD

f(y|x:0)
ly| ()
= > ) loggy(x,y<ib)
(x,y)eD j=1
log f(y|x;0)

Algorithm For concave £ (or convex negative log-likelihood), find

such that Vo L(0|D) = 0.
23



Parameter estimation

Algorithm Solve the equation VyL(6|D) = 0 for 6. There is no
closed form solution. But an optimum can be found via a
fixed-point iteration: 6 < 6 +~yVL(0|D) for v > 0.

24



What if my dataset is massive?

The time and memory necessary to compute VyL(0|D) grows
linearly with the size of the data.
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What if my dataset is massive?

The time and memory necessary to compute VyL(0|D) grows
linearly with the size of the data.

Luckily, stochastic optimisation will converge in finite time even
with gradient estimates, as long as they are unbiased, and as long
as we use careful learning rate schedules [Robbins and Monro,
1951, Bottou and Cun, 2004].

If B is a random subset (‘mini batch’) of D, it holds that:

VoL(0|D) = Eg~p[VoL(0|5)] (8)

Thus we can take iterative steps, each based on a small random

subset of the data. o



A soup of names

You probably heard of the cross entropy loss, which is identical to
the negative of the quantity in the previous slide.

Some people will also call it the categorical cross entropy loss, or
the softmax loss.

‘Softmax loss' is a bit odd, softmax is a vector-valued function, it's
hard to imagine it as a loss.

Categorical cross entropy is clear, cross entropy can be clear
enough in context.

26



Predictions




Making decisions

Our final job, as modellers, is to find a reasonable way to form
predictions.

That is, given an input x, our model outputs a representation of an
entire probability distribution Py|x_, (i.e., over all of }).

We are now confronted with the task to map from Py x_, to a
single output y. This is often formulated as a search, or discrete

optimisation, problem.

27



Most probable output

A common algorithm for making decisions is to search for the
candidate output ¢ which is assigned highest probability:

= f(c|x; 0 9
y" = argmax (c|x; 0) (9)

This can also be done in log space: argmaxc.cy log f(c|x;0).

28



Most probable output

A common algorithm for making decisions is to search for the
candidate output ¢ which is assigned highest probability:

= f(clx; 0 9
y" = argmax (c|x; 0) (9)

This can also be done in log space: argmaxc.cy log f(c|x;0).

This is intractable for most models (incl. autoregressive models)!
Common approximations include greedy decoding (iteratively
argmax each step) or beam search decoding (maintain a fixed
number of high-scoring candidates).
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Most ‘useful’ in expectation [optional content]

Let u(y, c; x) quantify the utility of ¢ when y is known to be a

valid output for x.

In decision theory, a rational decision maker acts by maximising

expected utility under the model:

y* =argmax E[u(Y,c; x)] (10)
cey

Expected utility can be approximated via Monte Carlo (MC):

K
1
E[u(Y,c:x)] % >y, cix) (11)
k=1
with y() ~ Py x_,. See [Eikema and Aziz, 2020, 2022].
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Enumerating candidates

Greedy decoding

e Beam search

Ancestral sampling

Top-p and top-k sampling [Holtzman et al., 2019]

Sampling without replacement [Kool et al., 2019]

30



Evaluation

Statistical: does the model fit the data well?

e perplexity

e statistics of model samples see [Giulianelli et al., 2023]

Task-driven: does the model support good decisions (in a
benchmark)?

e exact-match/precision/recall /F1 for short generations (QA,
entity linking, information extraction)

e string similarity (e.g., BLEU, ROUGE, METEOR, BEER)
e semantic similarity (e.g., COMET, BLEURT)

31



Design Choices




Architectures

Many choices of encoders and decoders:

e CNNs [Gehring et al., 2017]
e GCNs [Bastings et al., 2017]

e Transformers [Vaswani et al., 2017]

The Tranformer, in particular, is today’s architecture of choice.

32



Transformer

Transformers are based on a stack of (parallel) self-attention heads® and
feed-forward networks. For any one Transformer layer, the outputs

hgkfl), . .,hg"H) are such that each output hJ(.kfl) depends on no other
output hEk Y and on at most all of the layer's inputs h(lk), ey hfzk).

e Encoder: hj(.”l) depends on all inputs h(lkz)

e Decoder: hJ(.kH) depends on inputs h(<kj) prior to position j, as to

ensure a utoregressiveness

3|llustration for multiheaded attention. 33
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Transformer

Transformers are based on a stack of (parallel) self-attention heads® and
feed-forward networks. For any one Transformer layer, the outputs

hgkfl), . .,hg"H) are such that each output h{) depends on no other

J
k+1) (K) (K)
(  h{)

output h; and on at most all of the layer's inputs hy ™, ...

e Encoder: hj(.kﬂ) depends on all inputs h(lkz)

(x)
<J

e Decoder: hJ(.kH) depends on inputs h

ensure a utoregressiveness

prior to position j, as to

Contrast this with RNNs

e Encoder (e.g., BILSTM): hJ(.k ) depends directly on hJ(.k_‘ll) and
hj(.:zl) and hence, recursively, on all other outputs.
e Decoder: hJ(.kH) depends directly on hj(-:l) and hence, recursively,

I h(k 1) . t .
on a <j ensuring autoregressiveness.

3|llustration for multiheaded attention. 33


https://lena-voita.github.io/resources/lectures/seq2seq/transformer/encoder_self_attention.mp4
https://lena-voita.github.io/resources/lectures/seq2seq/transformer/masked_self_attn.mp4
https://lena-voita.github.io/resources/lectures/seq2seq/transformer/multi_head.mp4

Transformers vs. RNNs

RNNs are ‘stateful’ and Transformers are ‘stateless’. This has

certain implications:
At training time all inputs (past and future) are already known.
e For the Transformer, this is an opportunity for parallelism:
compute all outputs in parallel.
e The recursive nature of RNNs impose sequential processing.
At test time, regardless of which architecture we use, no inputs

other than past (already generated) inputs are available for
observation, hence sequential computation is unavoidable.

There are also implications for learning dynamics (related to chain rule of
derivatives), but that’s more of a DL1 topic.
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Alternative Factorisation

Many alternatives to chain rule:

e Latent variables (LVMs) [Zhang et al., 2016, Eikema and Aziz, 2019]
We use marginalisation to overcome factorisation assumptions:
Py x(y|x) = [N(z]0,1) f(y|x,z;0)dz

————
autoregressive

e Non-autoregressive models

e CRFs (for sequence labelling tasks) [Ma and Hovy, 2016]
We factorise with strong (bigram-like) assumptions, but in an
undirected manner: Py x(y|x) o Hle exp(g(x, yj-1,y:0))
e Combine LVMs and strong conditional independences [Gu
et al., 2018, Ghazvininejad et al., 2019]
e Energy-based models [Song and Kingma, 2021]: regress to a

score without factorisation and normalise

Prix(ylx) = 2285 oy

85



Moving away from chain rule?

Strong conditional independences are often unrealistic.

Marginals and normalising constants are typically intractable to
compute. This complicates learning, as the probability of observed
data (necessary for training via MLE) isn't tractable to compute,
and can complicate prediction (e.g., search and sampling are very
hard in EBMs [Eikema et al., 2022]).

These topics are covered in detail in DL2.
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Some background material

e Probabilistic graphical models [Koller and Friedman, 2009]
(esp, part | on representation of probability distributions).

e Decision theory [Berger, 2013].

e On the origin of softmax: see Chapter 3 of Vlad Niculae's
PhD thesis.°

Related courses

e DLANLP (Christof Monz): state-of-the art architectures for
most major sequence-to-sequence tasks.

e DL2 (Efstratios Gavves and Wilker Aziz): check it online.

®Learning Deep Models with Linguistically-Inspired Structure
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https://uvadl2c.github.io
https://ecommons.cornell.edu/bitstream/handle/1813/59540/Niculae_cornellgrad_0058F_11047.pdf?sequence=1&isAllowed=y

Puzzle




Consider our typical sequence-to-sequence model, that is, a neural
parameterisation of a chain rule factorisation of the joint distribution of
our output random sequence Y given an outcome of an input random
sequence X = x.

Suppose the output random sequence has length J. The probability of
any outcome (y1, ...,y ) is given by

P(Y = (y1,...,y)|X =x) = HP =YX =x,Y=ys) (12)

Suppose we obtain an output sequence but the kth step is missing. How
can we generate outcomes for Y given the assignments of all other
variables?

It is sufficient to solve this for an example: X = x, and
(Y1 = the, Y3 = dog, Y4 = EOS), with missing Ya.

38



Puzzle - Solution

Let's denote by O the set of output random variables we observe
(that is, {Y1, Y3, Y4} in the example) and o their observed values
(that is, {the,dog, EOS}), and by U the set of variables that are
unobserved (that is { Y2} in the example). We want to express the
probability that U takes on some value u (e.g., Y2 = w for any
word w in the vocabulary, in one case w might be the word ‘cute’
for example) given the assignments of the observed variables O
and X = x.

We start by application of the definition of conditional probability:

P(O =o0,U = ulX = x)
P(O = o|X = x)

P(U=ulO=0,X=x)= (13)
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Puzzle - Solution

Note that the numerator is exactly the joint distribution we have
access to. In our example: P(O = o, U = u|X = x) =
P(Y1 = the, Y3 = dog, Y4 = EOS, Y2 = w | X = x).
~—_—
O=o U=u

Note the the denominator is the marginal of the numerator, where
we marginalise out all possible assignments of U. In our example,
we would marginalise out all possibilities for the second token. If V
is the entire vocabulary, we would compute

Y tey P(Y1 =the, Y2 = t, Y3 = dog, Y4 = EOS|X = x).

Suppose in general an output sequence has length J and the
vocabulary has size V. What's the computational complexity of
evaluating the conditional probability of an assignment of some Y

given everything else?
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Puzzle - Solution

Probabilities that condition on past context are simple because
those are directly predicted by our NN (provided we have access to
observations for all variables in the past). Probabilities that
condition on future are much more difficult because we need to
assess the joint probability for every possible assignment of the
unobserved variable (in the denominator of conditional probability).

Each joint probability takes J calls to our NN g(+; #) (one per
token in the sequence). We have to perform this computation V
times, once per possible value of Y). So the total computation

takes time proportional to O(JV).
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