
NLP1

Neural sequence modelling

Wilker Aziz w.aziz@uva.nl

probabll.github.io

ILLC

Fall 2025

https://probabll.github.io

Table of contents

1. Sequence modelling

2. Parameterisation

3. Parameter estimation

4. Predictions

5. Design Choices

6. Puzzle

Sequence modelling

Neural models of sequence prediction

Many NLP tasks involve conditioning on text and predicting

sequences

• part-of-speech tagging [Ling et al., 2015]

• named-entity recognition [Lample et al., 2016]

• machine translation [Sutskever et al., 2014]

• text summarisation [Rush et al., 2015]

• entity retrieval [Cao et al., 2021]

• information extraction [Josifoski et al., 2022]

Deploying a system for any of these tasks requires a lot of expert

knowledge (about task, datasets, design decisions, etc.), but most

solutions employ a similar backbone: a neural model of sequence

prediction.

1

Neural models of sequence prediction

Many NLP tasks involve conditioning on text and predicting

sequences

• part-of-speech tagging [Ling et al., 2015]

• named-entity recognition [Lample et al., 2016]

• machine translation [Sutskever et al., 2014]

• text summarisation [Rush et al., 2015]

• entity retrieval [Cao et al., 2021]

• information extraction [Josifoski et al., 2022]

Deploying a system for any of these tasks requires a lot of expert

knowledge (about task, datasets, design decisions, etc.), but most

solutions employ a similar backbone: a neural model of sequence

prediction.

1

Sequence-to-sequence

We are interested in modelling a specific relationship between pairs

of sequences:

• an input sequence x from an input space X
• an output sequence y from an output space Y

We will assume this relationship can be modelled directionally

(x → y) in a non-deterministic way.1

1Notation capital letters for random variables (e.g., Y), lowercase letters for their

assignments (e.g., y), calligraphic letters for sample spaces (e.g., Y). We use Yj to

denote a step in a random sequence and Y<j to denote a prefix sequence (up until but

not including the Yj). PY is the distribution of Y , PY |X=x is the distribution of Y

given X = x . P(Y = y |X = x) is the probability of observing Y = y given X = x .

2

Probabilistic modelling

We will treat y as an observation for a random variable (rv) Y ,

which we draw conditionally given an observation x for the rv X .

The probability P(Y = y |X = x) with which we observe Y = y

conditioned on X = x is given by a parametric function with

parameters θ:

P(Y = y |X = x) = f (y |x ; θ) (1)

Our first job, as modellers, is to design this probability mass

function (pmf). Once it is in place, we will discuss how to estimate

parameters for it, and, finally, how to use it to make predictions.

3

Challenges

Designing a pmf involves

1. specifying the parametric family

2. picking a value for its parameters

Let’s concentrate on (1), assuming that we will be employing a

form of gradient-based optimisation for (2).

4

Parameterisation

Conditional probability distributions (cpds) for structures

Given any x ∈ X , we want to be able to parameterise a

distribution over outcomes of Y . There are 2 key challenges here:

• the input space X is very large (typically infinite)

• the output space Y is very large (either infinite or it grows

combinatorially with the size of input x)

5

Structured X , unstructured Y

Pretend for a moment that Y = {1, . . . ,K}. To prescribe a cpd for

Y |X = x , we need K probabilities for any given x ∈ X .

For a single x ∈ X , this is
not so difficult (we could

store K probability

values):

But doing so for each and every possible x ∈ X , including those

we’ve never seen, requires a bit more ingenuity.

6

Structured X , unstructured Y

Pretend for a moment that Y = {1, . . . ,K}. To prescribe a cpd for

Y |X = x , we need K probabilities for any given x ∈ X .

For a single x ∈ X , this is
not so difficult (we could

store K probability

values):

But doing so for each and every possible x ∈ X , including those

we’ve never seen, requires a bit more ingenuity.

6

Structured X , unstructured Y

Pretend for a moment that Y = {1, . . . ,K}. To prescribe a cpd for

Y |X = x , we need K probabilities for any given x ∈ X .

For a single x ∈ X , this is
not so difficult (we could

store K probability

values):

But doing so for each and every possible x ∈ X , including those

we’ve never seen, requires a bit more ingenuity.

6

Log-linear (or logistic) cpds

• map x to a fixed

number of features

h(x) ∈ RD

• map h(x) to K scores

(a.k.a. logits), for

example, linearly:

Wh(x) + b

• constrain the outputs to

the probability simplex

This will map any x that we can ‘featurise’ to a Categorical pmf.

Crucially, no matter how large X is, it only takes K ×D + K parameters.

7

Encoding functions

The ability to ‘encode’ an arbitrary x into a D-dimensional space is

essential for our parameterisation.

Pre-2010 these functions were handmade feature functions.

Nowadays they are part of the parameterisation. That is, we use

NNs to represent the input and map it to output probability values.

8

A neural text classifier

K -way text classifier Y |X = x ∼ Cat(g(x ; θ))

Image from Lena Voita’s NLP course For You

Encoder-decoder

suppose I = |x |

ei = embedD(xi ; θinp) i = 1, . . . , I

r1:I = LSTMH(e1:I ; θenc)

h = avgpool(r1:I)

s = linearK (h; θout)

g(x ; θ) = softmax(s)

Classification rule

argmaxk∈[K] gk(x ; θ)

The parameters θ include the embedding matrix, the LSTM parameters,

as well as the final linear transformation.
9

https://lena-voita.github.io/nlp_course.html##main_page_content

Conditional probability distributions (cpds) for structures

Given any x ∈ X , we want to be able to parameterise a distribution

over outcomes of Y . There are 2 key challenges here:

• the input space X is very large (typically infinite)

• the output space Y is very large (either infinite or it grows

with size of input x)

10

Structured Y

We exploit a decomposition into parts, where each part is drawn

from a ‘small’ sample space.

For example, a POS tag sequence can be decomposed into a

sequence of word categories:

x = ⟨I, am, going, home⟩
y = ⟨PRP,VBP,VBG,NN⟩

x PRP VBP VBG NN

11

Structured Y

We exploit a decomposition into parts, where each part is drawn

from a ‘small’ sample space.

For example, a POS tag sequence can be decomposed into a

sequence of word categories:

x = ⟨I, am, going, home⟩
y = ⟨PRP,VBP,VBG,NN⟩

x

PRP VBP VBG NN

11

Structured Y

We exploit a decomposition into parts, where each part is drawn

from a ‘small’ sample space.

For example, a POS tag sequence can be decomposed into a

sequence of word categories:

x = ⟨I, am, going, home⟩
y = ⟨PRP,VBP,VBG,NN⟩

x PRP

VBP VBG NN

11

Structured Y

We exploit a decomposition into parts, where each part is drawn

from a ‘small’ sample space.

For example, a POS tag sequence can be decomposed into a

sequence of word categories:

x = ⟨I, am, going, home⟩
y = ⟨PRP,VBP,VBG,NN⟩

x PRP VBP

VBG NN

11

Structured Y

We exploit a decomposition into parts, where each part is drawn

from a ‘small’ sample space.

For example, a POS tag sequence can be decomposed into a

sequence of word categories:

x = ⟨I, am, going, home⟩
y = ⟨PRP,VBP,VBG,NN⟩

x PRP VBP VBG

NN

11

Structured Y

We exploit a decomposition into parts, where each part is drawn

from a ‘small’ sample space.

For example, a POS tag sequence can be decomposed into a

sequence of word categories:

x = ⟨I, am, going, home⟩
y = ⟨PRP,VBP,VBG,NN⟩

x PRP VBP VBG NN

11

Another example

A translation can be decomposed into a sequence of target words:

x = ⟨How, are, you, doing, ?⟩
y = ⟨Hoe, gaat, het, ?⟩

x

Hoe gaat het ?

12

Another example

A translation can be decomposed into a sequence of target words:

x = ⟨How, are, you, doing, ?⟩
y = ⟨Hoe, gaat, het, ?⟩

x Hoe

gaat het ?

12

Another example

A translation can be decomposed into a sequence of target words:

x = ⟨How, are, you, doing, ?⟩
y = ⟨Hoe, gaat, het, ?⟩

x Hoe gaat

het ?

12

Another example

A translation can be decomposed into a sequence of target words:

x = ⟨How, are, you, doing, ?⟩
y = ⟨Hoe, gaat, het, ?⟩

x Hoe gaat het

?

12

Another example

A translation can be decomposed into a sequence of target words:

x = ⟨How, are, you, doing, ?⟩
y = ⟨Hoe, gaat, het, ?⟩

x Hoe gaat het ?

12

In general

For an input-output pair:

x = ⟨x1, . . . , xI ⟩
y = ⟨y1, . . . , yJ⟩ x y1 . . . yJ

P(Y = y |X = x) =
J∏

j=1

P(Yj = yj |X = x ,Y<j = y<j︸ ︷︷ ︸
parents of jth rv

) (2)

In the decomposition, conditioned on increasingly complex context,

each part is drawn from a small sample space. Models factorised

this way are often referred to as autoregressive.

13

One C -way classifier, J steps

A general model of sequence prediction is in fact obtained by

repeated application of something very similar to a shared text

classifier:

Yj |X = x ,Y<j = y<j︸ ︷︷ ︸
conditioning context

∼ Cat(g(x , y<j ; θ)︸ ︷︷ ︸
outcome probs

) (3)

Here, g maps from an input x and an partial output y<j to the

probabilities of the possible outcomes for the jth step. Typically,

the sample space across steps (e.g., all tags, all words).

14

POS tagging example

Same NN g(·; θ) reused over and over

(as many times as there are steps in the

input sequence), each time mapping

from a growing context (x and y<j) to

a probability distribution over the same

categorical space (i.e., space of tags).

A neural tagger

Statistical model let the function g map from an input x and

prefix y<j to a distribution over K tags:

Yj |X = x ,Y<j = y<j ∼ Cat(g(x , y<j ; θ)) (4)

Encoder-decoder I = |x |

ei = embedD(xi ; θwords) i = 1, . . . , I

c1:I = BiLSTMH(e1:I ; θenc)

tj−1 = embedD(yj−1; θtags)

hj = rnnstepH(hj−1, [cj , tj−1]; θdec)

sj = linearK (hj ; θout)

g(x , y<j ; θ) = softmax(sj)

the parameters θ include the embedding matrices (words and

tags), the parameters of the BiLSTM encoder and the LSTM

decoder, as well as the final linear transformation.

16

A neural tagger

Statistical model let the function g map from an input x and

prefix y<j to a distribution over K tags:

Yj |X = x ,Y<j = y<j ∼ Cat(g(x , y<j ; θ)) (4)

Encoder-decoder I = |x |

ei = embedD(xi ; θwords) i = 1, . . . , I

c1:I = BiLSTMH(e1:I ; θenc)

tj−1 = embedD(yj−1; θtags)

hj = rnnstepH(hj−1, [cj , tj−1]; θdec)

sj = linearK (hj ; θout)

g(x , y<j ; θ) = softmax(sj)

the parameters θ include the embedding matrices (words and

tags), the parameters of the BiLSTM encoder and the LSTM

decoder, as well as the final linear transformation.

16

A neural tagger

Statistical model let the function g map from an input x and

prefix y<j to a distribution over K tags:

Yj |X = x ,Y<j = y<j ∼ Cat(g(x , y<j ; θ)) (4)

Encoder-decoder I = |x |

ei = embedD(xi ; θwords) i = 1, . . . , I

c1:I = BiLSTMH(e1:I ; θenc)

tj−1 = embedD(yj−1; θtags)

hj = rnnstepH(hj−1, [cj , tj−1]; θdec)

sj = linearK (hj ; θout)

g(x , y<j ; θ) = softmax(sj)

the parameters θ include the embedding matrices (words and

tags), the parameters of the BiLSTM encoder and the LSTM

decoder, as well as the final linear transformation.

16

A neural tagger

Statistical model let the function g map from an input x and

prefix y<j to a distribution over K tags:

Yj |X = x ,Y<j = y<j ∼ Cat(g(x , y<j ; θ)) (4)

Encoder-decoder I = |x |

ei = embedD(xi ; θwords) i = 1, . . . , I

c1:I = BiLSTMH(e1:I ; θenc)

tj−1 = embedD(yj−1; θtags)

hj = rnnstepH(hj−1, [cj , tj−1]; θdec)

sj = linearK (hj ; θout)

g(x , y<j ; θ) = softmax(sj)

the parameters θ include the embedding matrices (words and

tags), the parameters of the BiLSTM encoder and the LSTM

decoder, as well as the final linear transformation.

16

A neural tagger

Statistical model let the function g map from an input x and

prefix y<j to a distribution over K tags:

Yj |X = x ,Y<j = y<j ∼ Cat(g(x , y<j ; θ)) (4)

Encoder-decoder I = |x |

ei = embedD(xi ; θwords) i = 1, . . . , I

c1:I = BiLSTMH(e1:I ; θenc)

tj−1 = embedD(yj−1; θtags)

hj = rnnstepH(hj−1, [cj , tj−1]; θdec)

sj = linearK (hj ; θout)

g(x , y<j ; θ) = softmax(sj)

the parameters θ include the embedding matrices (words and

tags), the parameters of the BiLSTM encoder and the LSTM

decoder, as well as the final linear transformation.

16

A neural tagger

Statistical model let the function g map from an input x and

prefix y<j to a distribution over K tags:

Yj |X = x ,Y<j = y<j ∼ Cat(g(x , y<j ; θ)) (4)

Encoder-decoder I = |x |

ei = embedD(xi ; θwords) i = 1, . . . , I

c1:I = BiLSTMH(e1:I ; θenc)

tj−1 = embedD(yj−1; θtags)

hj = rnnstepH(hj−1, [cj , tj−1]; θdec)

sj = linearK (hj ; θout)

g(x , y<j ; θ) = softmax(sj)

the parameters θ include the embedding matrices (words and

tags), the parameters of the BiLSTM encoder and the LSTM

decoder, as well as the final linear transformation. 16

Translation example

Same NN g(·; θ) reused over and over, each

time mapping from a growing context (x

and y<j) to a probability distribution over

the same categorical space (i.e., space of

words).

In translation the output length is not

determined by the length of the input,

instead we repeat this process until a

special terminating symbol is observed or

generated.

A neural translation model

Statistical model let the function g map from an input x and

prefix y<j to a distribution over V words:

Yj |X = x ,Y<j = y<j ∼ Cat(g(x , y<j ; θ)) (5)

2

2Figure from Lena Voita’s NLP course for You
18

A neural translation model

Statistical model let the function g map from an input x and

prefix y<j to a distribution over V words:

Yj |X = x ,Y<j = y<j ∼ Cat(g(x , y<j ; θ)) (5)

2
2Figure from Lena Voita’s NLP course for You

18

Text Summarisation

NLP task: generate a short version of a (collection of)

document(s) that contains the most important information.

• Extractive: identify and extract important/relevant sentences

from the input document(s).

• Abstractive: interpret the content of the document and

generate an ‘original’ summary.

19

A neural abstractive summarisation model

Statistical model: just like in translation, we condition on the input

documents(s) x and the prefix of already generated tokens in the

summary y<j and parameterise a probability distribution over the space

of possible tokens for the jth position.

Figure from [See et al., 2017] 20

An improved neural abstractive summarisation model

Through the architecture, we try to bias the model towards ‘preferred’

solutions. For example, we can give this model a push towards sometimes

performing extractive summarisation. Figure from [See et al., 2017]

21

Parameter estimation

Data and Task

Data a collection of pairs (x , y) where both x and y can be

treated as a sequence of outcomes from small discrete sets.

Statistical task observe x and predict a conditional distribution

over all possible sequences.

NLP task map a sequence x to a sequence y: for example via

argmaxy∈Y P(Y = y |X = x).

22

Formalisation of statistical task

Statistical model let the function g map from x to a chain rule

factorisation of the conditional distribution Y |X = x :

Yj |X = x ,Y<j = y<j ∼ Cat(g(x , y<j ; θ)) (6)

θ collectively refers to all trainable parameters in the model.

Statistical objective maximum likelihood of model given a dataset of

observations D:
L(θ|D) =

∑
(x,y)∈D

logP(Y = y |X = x)︸ ︷︷ ︸
f (y |x ;θ)

=
∑

(x,y)∈D

|y |∑
j=1

log gyj (x , y<j ; θ)︸ ︷︷ ︸
log f (y |x ;θ)

(7)

Algorithm For concave L (or convex negative log-likelihood), find θ

such that ∇θL(θ|D) = 0.

23

Formalisation of statistical task

Statistical model let the function g map from x to a chain rule

factorisation of the conditional distribution Y |X = x :

Yj |X = x ,Y<j = y<j ∼ Cat(g(x , y<j ; θ)) (6)

θ collectively refers to all trainable parameters in the model.

Statistical objective maximum likelihood of model given a dataset of

observations D:
L(θ|D) =

∑
(x,y)∈D

logP(Y = y |X = x)︸ ︷︷ ︸
f (y |x ;θ)

=
∑

(x,y)∈D

|y |∑
j=1

log gyj (x , y<j ; θ)︸ ︷︷ ︸
log f (y |x ;θ)

(7)

Algorithm For concave L (or convex negative log-likelihood), find θ

such that ∇θL(θ|D) = 0.

23

Formalisation of statistical task

Statistical model let the function g map from x to a chain rule

factorisation of the conditional distribution Y |X = x :

Yj |X = x ,Y<j = y<j ∼ Cat(g(x , y<j ; θ)) (6)

θ collectively refers to all trainable parameters in the model.

Statistical objective maximum likelihood of model given a dataset of

observations D:
L(θ|D) =

∑
(x,y)∈D

logP(Y = y |X = x)︸ ︷︷ ︸
f (y |x ;θ)

=
∑

(x,y)∈D

|y |∑
j=1

log gyj (x , y<j ; θ)︸ ︷︷ ︸
log f (y |x ;θ)

(7)

Algorithm For concave L (or convex negative log-likelihood), find θ

such that ∇θL(θ|D) = 0.

23

Formalisation of statistical task

Statistical model let the function g map from x to a chain rule

factorisation of the conditional distribution Y |X = x :

Yj |X = x ,Y<j = y<j ∼ Cat(g(x , y<j ; θ)) (6)

θ collectively refers to all trainable parameters in the model.

Statistical objective maximum likelihood of model given a dataset of

observations D:
L(θ|D) =

∑
(x,y)∈D

logP(Y = y |X = x)︸ ︷︷ ︸
f (y |x ;θ)

=
∑

(x,y)∈D

|y |∑
j=1

log gyj (x , y<j ; θ)︸ ︷︷ ︸
log f (y |x ;θ)

(7)

Algorithm For concave L (or convex negative log-likelihood), find θ

such that ∇θL(θ|D) = 0.
23

Parameter estimation

Algorithm Solve the equation ∇θL(θ|D) = 0 for θ. There is no

closed form solution. But an optimum can be found via a

fixed-point iteration: θ ← θ + γ∇θL(θ|D) for γ > 0.

24

What if my dataset is massive?

The time and memory necessary to compute ∇θL(θ|D) grows
linearly with the size of the data.

Luckily, stochastic optimisation will converge in finite time even

with gradient estimates, as long as they are unbiased, and as long

as we use careful learning rate schedules [Robbins and Monro,

1951, Bottou and Cun, 2004].

If B is a random subset (‘mini batch’) of D, it holds that:

∇θL(θ|D) = EB∼D[∇θL(θ|B)] (8)

Thus we can take iterative steps, each based on a small random

subset of the data.

25

What if my dataset is massive?

The time and memory necessary to compute ∇θL(θ|D) grows
linearly with the size of the data.

Luckily, stochastic optimisation will converge in finite time even

with gradient estimates, as long as they are unbiased, and as long

as we use careful learning rate schedules [Robbins and Monro,

1951, Bottou and Cun, 2004].

If B is a random subset (‘mini batch’) of D, it holds that:

∇θL(θ|D) = EB∼D[∇θL(θ|B)] (8)

Thus we can take iterative steps, each based on a small random

subset of the data.

25

What if my dataset is massive?

The time and memory necessary to compute ∇θL(θ|D) grows
linearly with the size of the data.

Luckily, stochastic optimisation will converge in finite time even

with gradient estimates, as long as they are unbiased, and as long

as we use careful learning rate schedules [Robbins and Monro,

1951, Bottou and Cun, 2004].

If B is a random subset (‘mini batch’) of D, it holds that:

∇θL(θ|D) = EB∼D[∇θL(θ|B)] (8)

Thus we can take iterative steps, each based on a small random

subset of the data.
25

A soup of names

You probably heard of the cross entropy loss, which is identical to

the negative of the quantity in the previous slide.

Some people will also call it the categorical cross entropy loss, or

the softmax loss.

‘Softmax loss’ is a bit odd, softmax is a vector-valued function, it’s

hard to imagine it as a loss.

Categorical cross entropy is clear, cross entropy can be clear

enough in context.

26

Predictions

Making decisions

Our final job, as modellers, is to find a reasonable way to form

predictions.

That is, given an input x , our model outputs a representation of an

entire probability distribution PY |X=x (i.e., over all of Y).

We are now confronted with the task to map from PY |X=x to a

single output y . This is often formulated as a search, or discrete

optimisation, problem.

27

Most probable output

A common algorithm for making decisions is to search for the

candidate output c which is assigned highest probability:

y⋆ = argmax
c∈Y

f (c|x ; θ) (9)

This can also be done in log space: argmaxc∈Y log f (c|x ; θ).

This is intractable for most models (incl. autoregressive models)!

Common approximations include greedy decoding (iteratively

argmax each step) or beam search decoding (maintain a fixed

number of high-scoring candidates).

28

Most probable output

A common algorithm for making decisions is to search for the

candidate output c which is assigned highest probability:

y⋆ = argmax
c∈Y

f (c|x ; θ) (9)

This can also be done in log space: argmaxc∈Y log f (c|x ; θ).

This is intractable for most models (incl. autoregressive models)!

Common approximations include greedy decoding (iteratively

argmax each step) or beam search decoding (maintain a fixed

number of high-scoring candidates).

28

Most ‘useful’ in expectation [optional content]

Let u(y , c ; x) quantify the utility of c when y is known to be a

valid output for x .

In decision theory, a rational decision maker acts by maximising

expected utility under the model:

y⋆ = argmax
c∈Y

E[u(Y , c ; x)] (10)

Expected utility can be approximated via Monte Carlo (MC):

E[u(Y , c ; x)]
MC
≈ 1

K

K∑
k=1

u(y (k), c; x) (11)

with y (k) ∼ PY |X=x . See [Eikema and Aziz, 2020, 2022].

29

Enumerating candidates

• Greedy decoding

• Beam search

• Ancestral sampling

• Top-p and top-k sampling [Holtzman et al., 2019]

• Sampling without replacement [Kool et al., 2019]

30

Evaluation

Statistical: does the model fit the data well?

• perplexity

• statistics of model samples see [Giulianelli et al., 2023]

Task-driven: does the model support good decisions (in a

benchmark)?

• exact-match/precision/recall/F1 for short generations (QA,

entity linking, information extraction)

• string similarity (e.g., BLEU, ROUGE, METEOR, BEER)

• semantic similarity (e.g., COMET, BLEURT)

31

Design Choices

Architectures

Many choices of encoders and decoders:

• CNNs [Gehring et al., 2017]

• GCNs [Bastings et al., 2017]

• Transformers [Vaswani et al., 2017]

The Tranformer, in particular, is today’s architecture of choice.

32

Transformer

Transformers are based on a stack of (parallel) self-attention heads3 and

feed-forward networks. For any one Transformer layer, the outputs

h
(k+1)
1 , . . . ,h

(k+1)
ℓ are such that each output h

(k+1)
j depends on no other

output h
(k+1)
i and on at most all of the layer’s inputs h

(k)
1 , . . . ,h

(k)
ℓ .

• Encoder: h
(k+1)
j depends on all inputs h

(k)
1:ℓ

• Decoder: h
(k+1)
j depends on inputs h

(k)
<j prior to position j , as to

ensure autoregressiveness

Contrast this with RNNs

• Encoder (e.g., BiLSTM): h
(k+1)
j depends directly on h

(k+1)
j−1 and

h
(k+1)
j+1 and hence, recursively, on all other outputs.

• Decoder: h
(k+1)
j depends directly on h

(k+1)
j−1 and hence, recursively,

on all h
(k+1)
<j , ensuring autoregressiveness.

3Illustration for multiheaded attention. 33

https://lena-voita.github.io/resources/lectures/seq2seq/transformer/encoder_self_attention.mp4
https://lena-voita.github.io/resources/lectures/seq2seq/transformer/masked_self_attn.mp4
https://lena-voita.github.io/resources/lectures/seq2seq/transformer/multi_head.mp4

Transformer

Transformers are based on a stack of (parallel) self-attention heads3 and

feed-forward networks. For any one Transformer layer, the outputs

h
(k+1)
1 , . . . ,h

(k+1)
ℓ are such that each output h

(k+1)
j depends on no other

output h
(k+1)
i and on at most all of the layer’s inputs h

(k)
1 , . . . ,h

(k)
ℓ .

• Encoder: h
(k+1)
j depends on all inputs h

(k)
1:ℓ

• Decoder: h
(k+1)
j depends on inputs h

(k)
<j prior to position j , as to

ensure autoregressiveness

Contrast this with RNNs

• Encoder (e.g., BiLSTM): h
(k+1)
j depends directly on h

(k+1)
j−1 and

h
(k+1)
j+1 and hence, recursively, on all other outputs.

• Decoder: h
(k+1)
j depends directly on h

(k+1)
j−1 and hence, recursively,

on all h
(k+1)
<j , ensuring autoregressiveness.

3Illustration for multiheaded attention. 33

https://lena-voita.github.io/resources/lectures/seq2seq/transformer/encoder_self_attention.mp4
https://lena-voita.github.io/resources/lectures/seq2seq/transformer/masked_self_attn.mp4
https://lena-voita.github.io/resources/lectures/seq2seq/transformer/multi_head.mp4

Transformers vs. RNNs

RNNs are ‘stateful’ and Transformers are ‘stateless’. This has

certain implications:

At training time all inputs (past and future) are already known.

• For the Transformer, this is an opportunity for parallelism:

compute all outputs in parallel.

• The recursive nature of RNNs impose sequential processing.

At test time, regardless of which architecture we use, no inputs

other than past (already generated) inputs are available for

observation, hence sequential computation is unavoidable.

There are also implications for learning dynamics (related to chain rule of

derivatives), but that’s more of a DL1 topic.

34

Alternative Factorisation

Many alternatives to chain rule:

• Latent variables (LVMs) [Zhang et al., 2016, Eikema and Aziz, 2019]

We use marginalisation to overcome factorisation assumptions:

PY |X (y |x) =
∫
N (z |0, I) f (y |x , z ; θ)︸ ︷︷ ︸

autoregressive

dz

• Non-autoregressive models

• CRFs (for sequence labelling tasks) [Ma and Hovy, 2016]

We factorise with strong (bigram-like) assumptions, but in an

undirected manner: PY |X (y |x) ∝
∏ℓ

j=1 exp(g(x , yj−1, yj ; θ))

• Combine LVMs and strong conditional independences [Gu

et al., 2018, Ghazvininejad et al., 2019]

• Energy-based models [Song and Kingma, 2021]: regress to a

score without factorisation and normalise

PY |X (y |x) = exp(g(x,y ;θ))∑
y′ exp(g(x,y

′;θ))

35

Moving away from chain rule?

Strong conditional independences are often unrealistic.

Marginals and normalising constants are typically intractable to

compute. This complicates learning, as the probability of observed

data (necessary for training via MLE) isn’t tractable to compute,

and can complicate prediction (e.g., search and sampling are very

hard in EBMs [Eikema et al., 2022]).

These topics are covered in detail in DL2.

36

Links

Some background material

• Probabilistic graphical models [Koller and Friedman, 2009]

(esp, part I on representation of probability distributions).

• Decision theory [Berger, 2013].

• On the origin of softmax: see Chapter 3 of Vlad Niculae’s

PhD thesis.6

Related courses

• DL4NLP (Christof Monz): state-of-the art architectures for

most major sequence-to-sequence tasks.

• DL2 (Efstratios Gavves and Wilker Aziz): check it online.
6Learning Deep Models with Linguistically-Inspired Structure

37

https://uvadl2c.github.io
https://ecommons.cornell.edu/bitstream/handle/1813/59540/Niculae_cornellgrad_0058F_11047.pdf?sequence=1&isAllowed=y

Puzzle

Puzzle

Consider our typical sequence-to-sequence model, that is, a neural

parameterisation of a chain rule factorisation of the joint distribution of

our output random sequence Y given an outcome of an input random

sequence X = x .

Suppose the output random sequence has length J. The probability of

any outcome ⟨y1, . . . , yJ⟩ is given by

P(Y = ⟨y1, . . . , yJ⟩|X = x) =
J∏

j=1

P(Yj = yj |X = x ,Y<j = y<j) (12)

Suppose we obtain an output sequence but the kth step is missing. How

can we generate outcomes for Yk given the assignments of all other

variables?

It is sufficient to solve this for an example: X = x , and

⟨Y1 = the,Y3 = dog,Y4 = EOS⟩, with missing Y2.

38

Puzzle - Solution

Let’s denote by O the set of output random variables we observe

(that is, {Y1,Y3,Y4} in the example) and o their observed values

(that is, {the, dog,EOS}), and by U the set of variables that are

unobserved (that is {Y2} in the example). We want to express the

probability that U takes on some value u (e.g., Y2 = w for any

word w in the vocabulary, in one case w might be the word ‘cute’

for example) given the assignments of the observed variables O

and X = x .

We start by application of the definition of conditional probability:

P(U = u|O = o,X = x) =
P(O = o,U = u|X = x)

P(O = o|X = x)
(13)

39

Puzzle - Solution

Note that the numerator is exactly the joint distribution we have

access to. In our example: P(O = o,U = u|X = x) =

P(Y1 = the,Y3 = dog,Y4 = EOS︸ ︷︷ ︸
O=o

,Y2 = w︸ ︷︷ ︸
U=u

|X = x).

Note the the denominator is the marginal of the numerator, where

we marginalise out all possible assignments of U. In our example,

we would marginalise out all possibilities for the second token. If V
is the entire vocabulary, we would compute∑

t∈V P(Y1 = the,Y2 = t,Y3 = dog,Y4 = EOS|X = x).

Suppose in general an output sequence has length J and the

vocabulary has size V . What’s the computational complexity of

evaluating the conditional probability of an assignment of some Yk

given everything else?

40

Puzzle - Solution

Probabilities that condition on past context are simple because

those are directly predicted by our NN (provided we have access to

observations for all variables in the past). Probabilities that

condition on future are much more difficult because we need to

assess the joint probability for every possible assignment of the

unobserved variable (in the denominator of conditional probability).

Each joint probability takes J calls to our NN g(·; θ) (one per

token in the sequence). We have to perform this computation V

times, once per possible value of Yk . So the total computation

takes time proportional to O(JV).

41

References

Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego Marcheggiani,

and Khalil Sima’an. Graph convolutional encoders for

syntax-aware neural machine translation. In Proceedings of the

2017 Conference on Empirical Methods in Natural Language

Processing, pages 1957–1967, Copenhagen, Denmark,

September 2017. Association for Computational Linguistics. doi:

10.18653/v1/D17-1209. URL

https://aclanthology.org/D17-1209.

James O Berger. Statistical decision theory and Bayesian analysis.

Springer Science & Business Media, 2013.

https://aclanthology.org/D17-1209

Léon Bottou and Yann L. Cun. Large scale online learning. In

S. Thrun, L. K. Saul, and B. Schölkopf, editors, Advances in

Neural Information Processing Systems 16, pages 217–224. MIT

Press, 2004.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio

Petroni. Autoregressive entity retrieval. In International

Conference on Learning Representations, 2021. URL

https://openreview.net/forum?id=5k8F6UU39V.

Bryan Eikema and Wilker Aziz. Auto-encoding variational neural

machine translation. In Proceedings of the 4th Workshop on

Representation Learning for NLP (RepL4NLP-2019), pages

124–141, Florence, Italy, August 2019. Association for

Computational Linguistics. doi: 10.18653/v1/W19-4315. URL

https://aclanthology.org/W19-4315.

https://openreview.net/forum?id=5k8F6UU39V
https://aclanthology.org/W19-4315

Bryan Eikema and Wilker Aziz. Is MAP decoding all you need? the

inadequacy of the mode in neural machine translation. In

Proceedings of the 28th International Conference on

Computational Linguistics, pages 4506–4520, Barcelona, Spain

(Online), December 2020. International Committee on

Computational Linguistics. doi:

10.18653/v1/2020.coling-main.398. URL

https://aclanthology.org/2020.coling-main.398.

Bryan Eikema and Wilker Aziz. Sampling-based minimum Bayes

risk decoding for neural machine translation. In EMNLP, 2022.

Bryan Eikema, Germán Kruszewski, Christopher R Dance, Hady

Elsahar, and Marc Dymetman. An approximate sampler for

energy-based models with divergence diagnostics. Transactions

on Machine Learning Research, 2022. ISSN 2835-8856. URL

https://openreview.net/forum?id=VW4IrC0n0M.

https://aclanthology.org/2020.coling-main.398
https://openreview.net/forum?id=VW4IrC0n0M

Jonas Gehring, Michael Auli, David Grangier, and Yann Dauphin.

A convolutional encoder model for neural machine translation.

In Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages

123–135, Vancouver, Canada, July 2017. Association for

Computational Linguistics. doi: 10.18653/v1/P17-1012. URL

https://aclanthology.org/P17-1012.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke

Zettlemoyer. Mask-predict: Parallel decoding of conditional

masked language models. In Proceedings of the 2019

Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP), pages

6112–6121, Hong Kong, China, November 2019. Association for

https://aclanthology.org/P17-1012

Computational Linguistics. doi: 10.18653/v1/D19-1633. URL

https://aclanthology.org/D19-1633.

Mario Giulianelli, Joris Baan, Wilker Aziz, Raquel Fernández, and

Barbara Plank. What comes next? evaluating uncertainty in

neural text generators against human production variability. In

EMNLP, 2023.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and

Richard Socher. Non-autoregressive neural machine translation.

In International Conference on Learning Representations, 2018.

URL https://openreview.net/forum?id=B1l8BtlCb.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi.

The curious case of neural text degeneration. arXiv preprint

arXiv:1904.09751, 2019.

https://aclanthology.org/D19-1633
https://openreview.net/forum?id=B1l8BtlCb

Martin Josifoski, Nicola De Cao, Maxime Peyrard, Fabio Petroni,

and Robert West. GenIE: Generative information extraction. In

Proceedings of the 2022 Conference of the North American

Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 4626–4643, Seattle,

United States, July 2022. Association for Computational

Linguistics. doi: 10.18653/v1/2022.naacl-main.342. URL

https://aclanthology.org/2022.naacl-main.342.

Daphne Koller and Nir Friedman. Probabilistic graphical models:

principles and techniques. MIT press, 2009.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic

beams and where to find them: The gumbel-top-k trick for

sampling sequences without replacement. In International

Conference on Machine Learning, pages 3499–3508. PMLR,

2019.

https://aclanthology.org/2022.naacl-main.342

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian,

Kazuya Kawakami, and Chris Dyer. Neural architectures for

named entity recognition. In Proceedings of the 2016

Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies,

pages 260–270, San Diego, California, June 2016. Association

for Computational Linguistics. doi: 10.18653/v1/N16-1030.

URL https://aclanthology.org/N16-1030.

Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso, Ramón

Fermandez, Silvio Amir, Lúıs Marujo, and Tiago Lúıs. Finding

function in form: Compositional character models for open

vocabulary word representation. In Proceedings of the 2015

Conference on Empirical Methods in Natural Language

Processing, pages 1520–1530, Lisbon, Portugal, September

2015. Association for Computational Linguistics. doi:

https://aclanthology.org/N16-1030

10.18653/v1/D15-1176. URL

https://aclanthology.org/D15-1176.

Xuezhe Ma and Eduard Hovy. End-to-end sequence labeling via

bi-directional LSTM-CNNs-CRF. In Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1064–1074, Berlin, Germany,

August 2016. Association for Computational Linguistics. doi:

10.18653/v1/P16-1101. URL

https://aclanthology.org/P16-1101.

Herbert Robbins and Sutton Monro. A stochastic approximation

method. Ann. Math. Statist., 22(3):400–407, 1951. doi:

10.1214/aoms/1177729586. URL

http://dx.doi.org/10.1214/aoms/1177729586.

https://aclanthology.org/D15-1176
https://aclanthology.org/P16-1101
http://dx.doi.org/10.1214/aoms/1177729586

Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural

attention model for abstractive sentence summarization. In

Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing, pages 379–389, Lisbon, Portugal,

September 2015. Association for Computational Linguistics. doi:

10.18653/v1/D15-1044. URL

https://aclanthology.org/D15-1044.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the

point: Summarization with pointer-generator networks. In

Regina Barzilay and Min-Yen Kan, editors, Proceedings of the

55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1073–1083,

Vancouver, Canada, July 2017. Association for Computational

Linguistics. doi: 10.18653/v1/P17-1099. URL

https://aclanthology.org/P17-1099.

https://aclanthology.org/D15-1044
https://aclanthology.org/P17-1099

Yang Song and Diederik P Kingma. How to train your

energy-based models. arXiv preprint arXiv:2101.03288, 2021.

Ilya Sutskever, Oriol Vinyals, and Quoc V. V Le. Sequence to

sequence learning with neural networks. In Z. Ghahramani,

M. Welling, C. Cortes, N.D. Lawrence, and K.Q. Weinberger,

editors, NIPS, 2014, pages 3104–3112. Montreal, Canada, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, pages

6000–6010, 2017. URL http://papers.nips.cc/paper/

7181-attention-is-all-you-need.

http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need

Biao Zhang, Deyi Xiong, Jinsong Su, Hong Duan, and Min Zhang.

Variational neural machine translation. In Proceedings of the

2016 Conference on Empirical Methods in Natural Language

Processing, pages 521–530, Austin, Texas, November 2016.

Association for Computational Linguistics. doi:

10.18653/v1/D16-1050. URL

https://aclanthology.org/D16-1050.

https://aclanthology.org/D16-1050

	Sequence modelling
	Parameterisation
	Parameter estimation
	Predictions
	Design Choices
	Puzzle
	Appendix
	References

