NLP1 2025 November 13, 2025

lzﬂ Credits: Sandro Pezelle,
Lecture 6: " "| Bastings, Mario Glatanel
COm pOSltlonal Rochelle Choenni
semantics and
sentence
representations

Vera Neplenbroek

e Compositional semantics
° Cofnpbéitional distributional semantics

e Compositional semantics with neural
~ networks

COMPOSITIONAL SEMANTICS

o : meaning of each whole phrase
derivable from meaning of its parts.

e Sentence structure conveys some meaning.

o : model semantics alongside syntax, one semantic
composition rule per syntax rule

COMPOSITIONAL SEMANTICS

S

/""\ /‘"’\
ATj T VP ATV
carnivorous plants ') slowly

digest

NON-TRIVIAL ISSUES WITH SEMANTIC COMPOSITION

e Similar syntactic structures may have different meanings
o |t barks
o itrains, it snows ()

NON-TRIVIAL ISSUES WITH SEMANTIC COMPOSITION

e Similar syntactic structures may have different meanings
o |t barks
o itrains, it snows ()

e Different syntactic structures may have the same meaning (e.g.
passive constructions)
o Kim ate the apple.
o The apple was eaten by Kim.

NON-TRIVIAL ISSUES WITH SEMANTIC COMPOSITION

e Similar syntactic structures may have different meanings
o |t barks
o itrains, it snows ()

e Different syntactic structures may have the same meaning (e.g.
passive constructions)
o Kim ate the apple.
o The apple was eaten by Kim.

e Not all phrases are interpreted compositionally (e.qg.,)
o red tape
o kick the bucket
they can be interpreted compositionally too, so we cannot
simply block them.

NON-TRIVIAL ISSUES WITH SEMANTIC COMPOSITION

e Additional meaning can arise through composition (e.g.,
)

fast programmer

fast plane

enjoy a book

enjoy a cup of tea

@ 1@ ©. ©

NON-TRIVIAL ISSUES WITH SEMANTIC COMPOSITION

e Additional meaning can arise through composition (e.g.,
)

fast programmer

fast plane

enjoy a book

enjoy a cup of tea

@ 1@ ©. ©

e Meaning transfers and additional connotations can arise through
composition (e.g.,)
o [can’t buy this story.
o This sum will buy you a ride on the train.

NON-TRIVIAL ISSUES WITH SEMANTIC COMPOSITION

e Additional meaning can arise through composition (e.g.,
)

fast programmer

fast plane

enjoy a book

enjoy a cup of tea

@ 1@ ©. ©

e Meaning transfers and additional connotations can arise through
composition (e.g.,)
o [can’t buy this story.
o This sum will buy you a ride on the train.

e Recursive composition

10

NON-TRIVIAL ISSUES WITH SEMANTIC COMPOSITION

11

MODELLING COMPOSITIONAL SEMANTICS

1. Compositional distributional semantics
e composition is modelled in a vector space
® unsupervised
e general purpose representations

2. Compositional semantics with neural networks
e supervised or self-supervised
e (typically) task-specific representations

12

Compositional semantics
Cofnpdéitional distributional semantics

Compositional semantics with neural
networks

13

COMPOSITIONAL DISTRIBUTIONAL SEMANTICS

Can distributional semantics be extended to account for the meaning
of phrases and sentences?

14

COMPOSITIONAL DISTRIBUTIONAL SEMANTICS

Can distributional semantics be extended to account for the meaning
of phrases and sentences?

e Given a finite vocabulary, natural languages licence an infinite
amount of sentences.
e So itisimpossible to learn vector representations for all sentences.

15

COMPOSITIONAL DISTRIBUTIONAL SEMANTICS

Can distributional semantics be extended to account for the meaning
of phrases and sentences?

e Given a finite vocabulary, natural languages licence an infinite
amount of sentences.

e So itisimpossible to learn vector representations for all sentences.

But we can still use distributional word representations and learn to
perform semantic composition in distributional space.

16

VECTOR MIXTURE MODELS

Mitchell and Lapata, 2010.
Composition in Distributional
Models of Semantics Models

e Additive
e Multiplicative

Simple, but surprisingly
effective!

12

old + dog

old

dog

0.0 05 1.0

nuns

15

17

ADDITIVE AND MULTIPLICATIVE MODELS

additive multiplicative
dog | cat old old + dog old + cat old © dog old © cat
runs 1 4 0 1 4 0 0
barks 5 0 7/ 12 7/ 35 o)

e Correlate with human similarity judgments about adjective-noun,
noun-noun, verb-noun and noun-verb pairs

18

ADDITIVE AND MULTIPLICATIVE MODELS

additive multiplicative
dog | cat old old + dog old + cat old © dog old © cat
runs 1 4 0 1 4 0 0
barks 5 0 7/ 12 7/ 35 o)

e Correlate with human similarity judgments about adjective-noun,
noun-noun, verb-noun and noun-verb pairs

e The additive and the multiplicative model are symmetric (commutative):

They do not take word order or syntax into account.
o John hit the ball = The ball hit John

19

ADDITIVE AND MULTIPLICATIVE MODELS

additive multiplicative
dog | cat old old + dog old + cat old © dog old © cat
runs 1 4 0 1 4 0 0
barks 5 0 7/ 12 7/ 35 o)

e Correlate with human similarity judgments about adjective-noun,
noun-noun, verb-noun and noun-verb pairs
e The additive and the multiplicative model are symmetric (commutative):
They do not take word order or syntax into account.
o John hit the ball = The ball hit John
e More suitable for modeling content words, would not apply well to function
words (e.g. conjunctions, prepositions etc.):
o some dogs, lice and dogs, lice on dogs

20

LEXICAL FUNCTION MODELS

Distinguish between:

words whose meaning is
directly determined by their
distributional profile, e.g.
nouns

barks

words that act as
transforming the distributional
profile of other words, e.g.,
adjectives, adverbs

old()

oldidog) A

0.0

02

04 06 08 10

runs

A

LEXICAL FUNCTION MODELS

Baroni and Zamparelli. (2010). Nouns are vectors, adjectives are matrices:
Representing adjective-noun constructions in semantic space. In Proceedings of

EMNLP.

Adjectives modelled as that are applied to nouns: old dog =
old(dog)

22

LEXICAL FUNCTION MODELS

Baroni and Zamparelli. (2010). Nouns are vectors, adjectives are matrices:
Representing adjective-noun constructions in semantic space. In Proceedings of

EMNLP.

Adjectives modelled as that are applied to nouns: old dog =
old(dog)

e Adjectives are parameter matrices (A_ Ay etc.)

e Nouns are vectors (house, dog, etc.)
e Composition is a linear transformation: old dog = A _ , x dog.

23

LEXICAL FUNCTION MODELS

Baroni and Zamparelli. (2010). Nouns are vectors, adjectives are matrices:
Representing adjective-noun constructions in semantic space. In Proceedings of

EMNLP.

Adjectives modelled as that are applied to nouns: old dog =
old(dog)

e Adjectives are parameter matrices (A_ Ay etc.)

e Nouns are vectors (house, dog, etc.)
e Composition is a linear transformation: old dog = A _ , x dog.

OLD runs barks dog OLD(dog)
runs 0.5 0 X runs] " runs (05x1)+(0x5)=05
barks | 0.3] barks | B barks | (0.3x1)+(5x1)=5.3

24

LEARNING ADJECTIVE MATRICES

For each adjective, learn a parameter matrix that allows to predict

adjective-noun phrase vectors.
X

Training set house
dog
car
cat
toy

Test set
elephant
mercedes

X

old house
old dog
old car
old cat
old toy

old elephant
old mercedes

25

LEARNING ADJECTIVE MATRICES

Obtain a distributional vector n, for each noun n, in the lexicon.

2. Collect adjective noun pairs (a nJ) from the corpus.

3. Obtain a distributional vector p of each pair (a, n) from the same
corpus using a conventional DSM

26

LEARNING ADJECTIVE MATRICES

Obtain a distributional vector n, for each noun n, in the lexicon.

2. Collect adjective noun pairs (a nJ) from the corpus.

3. Obtain a distributional vector p of each pair (a, n) from the same
corpus using a conventional DSM

4. The set of tuples {(n Py)} represents a dataset D(a) for the
adjective a..

b. Learn matr|x A from D(ai) using linear regression.

Minimize the squared error loss.

LA)= Y ey —Amylf

j€D(a;)

27

Compositional semantics
Compositional distributional semantics

Compositional semantics with neural
networks

28

1. How do we learn a (task specific) representatlon of a sentence
with a neural network?

2. How do we make a predlctlon for a given task from that
representatlon’P : ‘

We will see the task, dataset and models of Practical 2!

TASK

TASK: SENTIMENT CLASSIFICATION OF MOVIE REVIEWS

0. Very negative

1. Negative
You'll probably love it. =D - 2. Neutral
Task-specific: The learned representation has to R : 3 Positive

be “specialized” on sentiment!

- 4. Very positive

WORDS (AND SENTENCES) INTO VECTORS
T ‘ ;

trash

classic

masterpiece

X

WORDS (AND SENTENCES) INTO VECTORS

T

trash

classic
‘ an Oscar-winning movie

masterpiece

X

SENTENCE REPRESENTATION: A (VERY) SIMPLIFIED PICTURE

cDSMs (sum) NNs
you s
will %
probably probably
love love

it it

you will probably love it you will Probably love «

DATASET

DATASET: STANFORD SENTIMENT TREEBANK (8ST)

~12K data-points including:
1. one-sentence review + “global” sentiment score
2. tree structure (syntax)

3. more detailed sentiment scores (node-level)

36

MODLELS

MODELS

i

Bag of Words (BOW)

Continuous Bag of Words (CBOW)

Deep Continuous Bag of Words (Deep CBOW)
Deep CBOW + pre-trained word embeddings
LSTM

Tree LSTM

38

FIRST APPROACH: SENTENCE + SENTIMENT

1. one-sentence review + “global” sentiment score

39

[. BAG OF
WORDS
(BOW)

WHAT IS A BAG OF WORDS?

e Additive model: does not take
word order or syntax into
account

e Task-specific word
representations with fixed

dimensionality (d=5)

e Dimensions of vector space
are explicit, interpretable

Credits: CMU

4]

BAG OF WORDS

Sum word embeddings, ~add bias

' L
i QOO0O®)
e [O OO0
s (OO OO @)

th+b[| C]

argmax Js

BAG OF WORDS

this
movie
IS
stupid

[0.0,0:1::0:1.07.0.0]
[0:0 0T 09::02 01
[0.0, 0.1, 0.0, 0.0, 0.0]
[0.9, 0.5, 0.1, 0.0, 0.0]

[0.0,:0.0,,0.0, 0.0,-0.0]

[0:9,.0:8, 0.3,:0.3;:0.1]

argmax: 0 (very negative)

43

BAG OF WORDS

this [0.0:0:1::0:1,.0::0.0]
movie [0:6,.0.1,04,:0.20:1
IS [0.0, 0.1,.0.0,0.0,:0.0]
stupid [0.9;0.5, 0.1, 0.0, 0.0
bias [0.0, 0.0, 0.0, 0.0, 0.0]
sum [0:9,0:8,0.3,:0.3;:0.]

argmax: 0 (very negative)

| hate that | love this movie = | love that | hate this movie

44

TURNING WORDS INTO NUMBERS

We want to feed words to a neural network
How to turn words into numbers?

Bad idea: number
sequence
cat
tree

chair
dog
mat

cat is closer to tree
than to dog?!

45

ONE-HOT VECTORS SELECT WORD EMBEDDINGS

Used as

“lookup table”

in practice

one-hot vector pélram_eters ~ embedding
(e 1 __) - eee@®
000® . .

2. CONTINUOUS
BAG OF WORDS
(CBOW)

CBOW

e Task-specific word representations of arbitrary dimensionality
e Dimensions of vector space are not interpretable

e Prediction can be traced back to the sentence vector dimensions

48

CONTINUOUS BAG OF WORDS (CBOW)

Sum word embeddings, project to 5D using W add bias: W(Zx) +b
| [0000000000] |

Iwwlﬁcccqccccc]

R rYYYYYYY YY)

movie (G000 000000]

ZX, [00000000§0]

Note that a bias term (of size 5) is added to the final output vector (not shown). Also, this is not the same as word2vec CBOW!

CONTINUOUS BAG OF WORDS (CBOW)

Sum word embeddings, project to 5D using W add bias: W(Zx) +b

| [e000ceccee] G500 0
oved (0000000000 S 4 e
this [00000?00000] W : : : : :
movic (000 0000000] cces o
0o0000
it s | i 0e0000|
Ix, [(0eccccccee] 00009

Note that a bias term (of size 5) is added to the final output vector (not shown). Also, this is not the same as word2vec CBOW!

CONTINUOUS BAG OF WORDS (CBOW)

Sum word embeddings, project to 5D using W add bias: W(Zx) +b

| [0000000000] /0000 0
oved (o00000000e] (oo e e e
this -[QOOOOFOOOOO] W : : : : :
movie (000 0000000] cccee
00000
o i | L XXXXIE o |
x, (ececececee] 0 0000e/ "3
i - ix(eeeeceeeeee)

Note that a bias term (of size 5) is added to the final output vector (not shown). Also, this is not the same as word2vec CBOW!

WHAT ABOUT THIS?
(1' Jis

Pl S oved o i i ~ movie

WHAT ABOUT THIS?

f
e e o s

I loved this movie

Variable sentence vector size, dependent on sentence length
e Not very sensible conceptually
o sentences in a different vector space than words
o one vector space for each sentence length in the dataset
e Difficult in practice
o what size should the transformation matrix be?
o vector size can grow very large

53

3. DEEP
CBOW

DEEP CBOW

e Additive model: does not take word order or syntax into account
e Task-specific word representations of arbitrary dimensionality
e Dimensions of vector space are not interpretable

e More layers and non-linear transformations: prediction cannot be
easily traced back

DEEP CBOW

W’ tanh(W’" tanh(W(Zx)+b)+b)+b)

' (ecccceecee]| |
oved (o000OOOOOO] Ll ° |
this "[00000}00000] S tanhy\[/ooolcctl
movie (000 000000] e

~ trnh (e000000)
x, (eocceeee00e] xx [iV....T.....]

Note that a bias term is added whenever we multiply with a W (not shown) *

WHAT ABOUT THIS?

| o |

tanh WH ? ‘ ‘
[“‘C“‘] Is more complexity
: :. ~ always better?
e L

tanh ([0 @ 0000)
W’ b

tanh (0@ 00000

My o P

x, (e000000000)]

QUESTION

We can learn more complex features, but the only error signal that we
receive comes from sentiment prediction.

How can we further help the model?

58

4. DEEP CBOW
+ PRETRAINED
EMBEDDINGS

DEEP CBOW WITH PRETRAINED EMBEDDINGS

W’ tanh(W’" tanh(W(Zx)+b)+b)+b)

' (ecccceecee]| |
oved (o000OOOOOO] Ll ° |
this "[00000}00000] S tanhy\[/ooolcctl
movie (000 g00000] e

: tanTN[ooo?ooo]

; u Instead of learning them from [...‘.‘....]

scratch, feed word2vec or

Glove embeddings!

Note that a bias term is added whenever we multiply with a W (not shown) *

DEEP CBOW + PRE-TRAINED EMBEDDINGS

e Pre-trained general-purpose word representations (e.g.,
Skip-gram, GloVe)
o keep frozen: not updated during training
o fine-tune: updated with task-specific learning signal
(specialized)

61

RECAP: TRAINING A NEURAL NETWORK

We train our network with Stochastic Gradient Descent (SGD):

15
2.

=)

Sample a training example

Forward pass

a. Compute network activations, output vector

Compute loss

a. Compare output vector with true label using a loss function
(Cross Entropy)

Backward pass (backpropagation)

a. Compute gradient of loss w.r.t. (learnable) parameters
(= weights + bias)

Take a small step in the opposite direction of the gradient

62

CROSS ENTROPY LOSS

Given:

Y. = [o0580, 400720 > . (b.0720 5 0T 0.0795]
output vector (after softmax) from forward pass

Ne==[07 0, 0, i 0] target / label (y3=1)

When our output is categorical (i.e., a number of classes), we can use a
Cross Entropy loss:

CE(y,y) =-Zy,log ¥,

SparseCE(y=3, y) = - log v

63

CROSS ENTROPY LOSS

Given:

Y. = [o0580, 400720 > . (b.0720 5 0T 0.0795]
output vector (after softmax) from forward pass

Ne==[07 0, 0, i 0] target / label (y3=1)

When our output is categorical (i.e., a number of classes), we can use a
Cross Entropy loss:

CE(y,y) =-Zy,log ¥,

SparseCE(y=3, y) = - log v

64

We don’t need a softmax

SOFTMAX e £y for prediction, there we

simply take the argmax

o=[-0.1,01 01, 2.4, ‘0.2] ‘
softmax('o.) =',"exp(o.) /% exp(oj)

ThE makes o sum to 1.0:
softmax(o) = [0.0589,:0.0720,0. 0720, 0. 7]77 0. 0795]

But we do need a softmax
combined to CE to

compute model loss
(argmax is NOT
differentiable)

BREAK

RECURRENT
NEURAL
NETWORKS

INTRODUCTION: RECURRENT NEURAL NETWORK (RNN)

e RNNs widely used for handling !

e RNNs ~ multiple copies of same network, each passing a message
to a successor

e Take an input vector x and output an output vector h
e Crucially, h influenced by of inputs fed in in the past

e Internal state h gets updated at every time step -> in the simplest
case, this state consists of a single hidden vector h

68

INTRODUCTION: RECURRENT NEURAL NETWORK (RNN)

RNNs model sequential data -

one input x, per time step t f(x, hg)

f(x,, f(x, h,))
= f(x., f(x,, f(x, h,)))

h, =
h, =
Example: h,
the cat sat on the mat

X X, X X X X

1 2 3 4 5 6 hé = f(él f(X5, f(X4, ...)))

Let's compute the RNN state
after reading in this sentence.

Remember:
h, = f(xt,ht_])

INTRODUCTION: RECURRENT NEURAL NETWORK (RNN)

RNNs model sequential data -

one input x, per time step t f(x, hg)

f(x,, f(x, h,))
= f(x., f(x,, f(x, h,)))

h, =
h, =
Example: h,
the cat sat on the mat

X X, X X X X

1 2 3 4 . 5 6 hé = f(él f(X5, fX4, .)))

Let’s compute the. RNN state B o b= f(x h)
after reading in this sentence. 1 "0
A cat -> h, = f(x,, h))

Remember: sat -> h; = f(xg, h,)

ht 5 f(xt’ht—'l) o

mat -> h, = f(xé, h5)

INTRODUCTION: RECURRENT NEURAL NETWORK (RNN)

The transition function f consists of an affine transformation followed by
a non-linear activation

ewe)

71

INTRODUCTION: RECURRENT NEURAL NETWORK (RNN)

The transition function f consists of an affine transformation followed by
a non-linear activation

4 Th =k b)

t

=0 (Wxt: +Rh.. +b)

@ 7
Matrix bf§ed fc)n Matrix based on the
current inpu previous hidden state
Elman (1990). Finding structure in time.

g

g

leoe®|

INTRODUCTION: UNFOLDING THE RNN

Gl Same R every time
, step! ~

[oooooﬁ{o‘ooo]R—{ooooo]i{ooooo] |

e e e

» X, B g L Xy X,
RS e i £ Same W every
Word embedding | - ' time step!

INTRODUCTION UNFOLDING THE RNN

Training: apply softmax,
compute cross entropy
loss, backpropagate

We can find the
prediction using
argmax

INTRODUCTION: THE VANISHING GRADIENT PROBLEM

Simple RNNs are hard to train because of the

problem.
During backpropagation, can quickly become
, as they go through multiplications (R)

& non-linear functions (e.g. sigmoid or tanh)

75

INTRODUCTION: THE VANISHING GRADIENT PROBLEM

Simple RNNs are hard to train because of the vanishing
gradient problem. , compute loss &

During backpropagation, aradients can quickly become
small, as they repeatedly go through multiplications (R)
& non-linear functions (e.g. sigmoid or tanh)

.

For more details see: Kyunghyun Cho. Natural Language Understanding with' Distributed Representation. Section 4.3.

INTRODUCTION: THE VANISHING GRADIENT PROBLEM

R is shared across every timestep!
Imagine that R contains an entry value r, =0.5
The first input gets multiplied by 0.5num- unrolls N

0.50 ~ 9e-4
Q.52 +~3e-5
0522~ 9a-7
fo
- 900
X, X, X,

77

WHAT ABOUT THIS?

x1.b

[00000]—»[00000]—» 000

PR

s Xy » . XN

Similar problem called explovding gradients!

For more details see: Kyunghyun Cho. Natural Language Understanding with’ Distributed Representation. Section 4.3.

RNN vs ANN | |
[00000]?—]{00000_]%» QQQTR{OOQOO]

[ooooo]vf—]‘{ooooo]tvl;f (X X —:V—L—»[ooooo] '

5. LONG SHORT-TERM
MEMORY NETWORK
(LSTM)

LONG SHORT-TERM MEMORY (LSTM)

LSTMs are a special kind of RNN that can deal with long-term
dependencies in the data by alleviating the vanishing gradient problem
in RNNs

“l lived in France for a while when | was a kid so | can speak fluent...” ->
French

81

LSTM: CORE IDEA

1. Maintain a separate memory cell state ¢, from what is outputted
(long term memory)

MIT Introduction to Deep Learning 6.S191: Recurrent Neural Networks by Ava Soleimany

LSTM: CORE IDEA

1. Maintain a separate memory cell state ¢ from what is outputted
(long term memory)

2. Use gates to control the flow of information:

a.
b.

Forget gate gets rid of irrelevant information

Input gate to store new relevant information from the current
input

Selectively update the cell state

Output gate returns a filtered version of the cell state

83

LSTM: CORE IDEA

1. Maintain a separate memory cell state ¢ from what is outputted
(long term memory)

2. Use gates to control the flow of information:
a. Forget gate gets rid of irrelevant information
b. Input gate to store new relevant information from the current
input
c. Selectively update the cell state
d. Output gate returns a filtered version of the cell state

3. Backpropagation through time with partially uninterrupted gradient
flow

84

LSTMS

RNN:
h, “=fxh)
|
=0 (Wx, +Rh_ +b) G L
LSTM: ' A Elj b o A
_>

ht ’Ct= f(xt’ht—]'ct—]) | ' @I@ @

= Istm(x,h,_,c.) |

Image credits: https://colah.github.io/posts/2015-08-Understanding-LSTMs

https://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM CELL

input gate

forget gate

output gate

Adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs . Green blocks: ®(WIh, .;x]+b), orange blocks: element-wise operation

t-1'"t

https://colah.github.io/posts/2015-08-Understanding-LSTMs

Runs straight down the entire chain, with
only some minor linear interactions. LSTM

LSTM CELL STATE ' can remove or add information to the cell
state, carefully regulated by structures
called gates.

t-1

Adapted from https://colah.github.io/posts/20156-08-Understanding-LSTMs . Green blocks: ®(WIh, ;x]+b), orange blocks: element-wise operation

https://colah.github.io/posts/2015-08-Understanding-LSTMs

Decide what information to throw

LSTM FO RG ET GATE away from the cell state.

> C,

forget gate

Adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs . Green blocks: ®(WIh, .;x]+b), orange blocks: element-wise operation

-1t

https://colah.github.io/posts/2015-08-Understanding-LSTMs

Extracts new candidate values,
y ol th i hidd
LS v CANBDIDATE G ELL: e rge e

- could be added to the cell state.

sl

t-1

Adapted from https://colah.github.io/posts/20156-08-Understanding-LSTMs . Green blocks: ®(WIh, ;x]+b), orange blocks: element-wise operation

https://colah.github.io/posts/2015-08-Understanding-LSTMs

Decide what information to store

LSTM: INPUT GATE e

> C,

Adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs . Green blocks: ®(WIh, .;x]+b), orange blocks: element-wise operation

-1t

https://colah.github.io/posts/2015-08-Understanding-LSTMs

Update the cell state: 1. Forget things we decided to forget
earlier, 2. Add the new candidate values scaled by how
LSTM } much we decided to update each state value

> C,

Adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs . Green blocks: ®(WIh, .;x]+b), orange blocks: element-wise operation

-1t

https://colah.github.io/posts/2015-08-Understanding-LSTMs

1. Decide what parts of the cell state we are
going to output, the cell state is put
LSTM OUTPUT GATE through tanh and 2. multiplied by the
| output of the output gate, so that we only
output the parts we decided to.

sl

t-1

second step

output gate

Adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs . Green blocks: ®(WIh, .;x]+b), orange blocks: element-wise operation

-1t

https://colah.github.io/posts/2015-08-Understanding-LSTMs

LONG SHORT-TERM MEMORY (LSTM)

m previous hidden state and cell state

hilc. /stm(x e)2

‘ G(W Ri ht—l 25 bi)

input gate L1 |

forget gaics i il = a(W, x +Rh . +b)
candidate g, = anh(Wg x : Rg h ok b)
output gate 0, 7 i olW x +R h + b)
cell state c,.=lcc ®log:

hidden state h =00 tanh(ct)

LSTMS: APPLICATIONS & SUCCESS IN NLP

Language modeling (Mikolov et al., 2010; Sundermeyer et al.,
2012)

Parsing (Vinyals et al., 2015; Kiperwasser and Goldberg, 2016;
Dryer et al., 2016)

Machine translation (Bahdanau et al.,2015)

Image captioning (Bernardi et al., 2016)

Visual question answering (Antol et al., 2015)

.. and many other tasks!

94

6. TREE
LSTM

SENTENCE REPRESENTATIONS WITH NNS

e Bag of Words models
o sentence representations are order-independent functions of
the word representations

e Sequence models
o sentence representations are an order-sensitive function of a
sequence of word representations (surface form)

e Tree-structured models
o sentence representations are a function of the word
representations, sensitive to the syntactic structure of the
sentence

96

SECOND APPROACH: SENTENCE + SENTIMENT + SYNTAX

1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

97

EXPLOITING TREE STRUCTURE

Instead of treating our input as a sequence, we can take an alternative
approach:

assume a tree structure and use the principle of compositionality.

The meaning (vector) of a sentence is determined by:

1. the meanings of its words and
2. the rules that combine them

98

WHY WOULD IT BE USEFUL?

Helpful in disambiguation: similar “surface” / different structure

S
NP VP

I
PRP

I
He ypyz NP PP

I |
cats NNS IN NP

|
spaghetti wilth DT/\NN
| |

a spoon

Credits: https://cs224d.stanford.edu/lectures/CS224d-Lecturel0.pdf

S

TN

- NP

|
PRP

|
He

VBZ

eats

VP

NP
|
NNS

spaghetti

NP

IN
|

with

PP

NP
|
NN
|

meat

https://cs224d.stanford.edu/lectures/CS224d-Lecture10.pdf

CONSTITUENCY PARSE

Can we obtain a sentence vector using the tree structure given by a

parse?

Token PoS 3 4 5
; PRON »NP—
loved VERB | s
this DET — »vp—

movie NOUN——LpNP: —u

https://hanlp.hankcs.com/en/demos/con.html

100

https://hanlp.hankcs.com/en/demos/con.html

RECURRENT VS TREE RECURSIVE NN
looooe| 00000 ~00000e]| +00000]
Y e e e g

| loved | this movie
P o RNNs cannot capture
phrases without prefix
| context and often capture
too much of last words in
final vector

RECURRENT VS TREE RECURSIVE NN
looooe| 00000 ~00000e]| +00000]
4 e ok 4

| loved | this movie
- RNNs cannot capture
: . : : phrases without prefix
Tree Recursive neural 90000 | context and often capture
networks require a ' ; too much of last words in
parse tree for each : e final vector
sentence o

Adapted from Stanford cs224n.

TREE RECURSIVE NN

PRACTICAL Il DATA SET: STANFORD SENTIMENT TREEBANK (SST)

3
| e sentiment [abel for root node
' ; 4 ‘

I

I

I a4 I
I I ; I
[4 Y. |
s > | : |
I I I X i I
I I I [I
I I | I 4 |
I I I I
[| |
I I I I
I I 3 I I
I I Mot 4l I I
I I I 4 I 3 I 2 I I
I I I P I I : _ | R L I I
2 2 2 & 2 2 &l : : A (2 2 2 2 2
s sl I T s | : [IRR |l | | |
RS llo v chliy film.withlovely ..~ performances by Buy and jAcceorsi it

TREE LSTMS: GENERALIZE LSTM TO TREE STRUCTURE

Use the idea of LSTM (gates, memory cell) but allow for multiple inputs
(node children)

Proposed by 3 groups in the same summer:

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved
Semantic Representations From Tree-Structured Long Short-Term
Memory Networks. ACL 2015.

o Child-Sum Tree LSTM

o N-ary Tree LSTM
Phong Le and Willem Zuidema.
Compositional distributional semantics with long short term memory.
TSEM2015:
Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo.
Long short-term memory over recursive structures. ICML 2015

105

TREE LSTMS

e Child-Sum Tree LSTM

sums over all children of a node; can be used for any N of
children

e N-ary Tree LSTM
different parameters for each child; better granularity

(interactions between children) but maximum N of children
per node has to be fixed

https://www.slideshare.net/tuvistavie/tree-Istm

106

https://www.slideshare.net/tuvistavie/tree-lstm

CHILD-SUM TREE LSTM

Children outputs and memory cells are summed

1. NO children order
2. works with variable number of children (sum!)
3. shares gates weights between children

107

CHILD-SUM TREE LSTM
parent h [‘ 000 ']

oo A

parentcL‘“‘!]

candidates

oW A

© R
e

x [; ° o]

h c

O oo] x

= h,

h=%h X

state = sum of

children’s h!

N-ARY TREE LSTM

Separate parameter matrices for each child k
1. each node must have at most N (e.g. binary) ordered children
2. fine-grained control on how information propagates

3. forget gate can be parametrized (N matrices, one per k) so that
siblings affect each other

109

N-ARY TREE LSTM
parent h [‘ Y ‘]

oo A

parent ¢ L‘ 000 !] candidate values

Cinderiny |

| N
ij=0 (W(i)xj +3 U hye+ bm) :
=1

N-ARY TREE LSTM

N
fir=0 (W(ﬁxj +> U Ry + b(f)> ,

/=1
useful for ; ol
N - . (0) g .
S T o=0 (W(")xJ + ;Ue hjo + b(")) ,

constituency trees

N
uj = tanh (W(“):cj + Z Ue(u)hjﬁ o b(“)) B
1=l

N

cj =15 O uj -I—ije@Cje,
=1

hj =0;® tanh(cj),

LSTMS VS TREE-LSTMS

Standard LSTMs be Considered as (a special case of) Tree-LSTMs

TREE-LSTM VARIANTS

e Child-Sum Tree-LSTM

O

sum over the hidden representations of all children of a node
(no children order)

can be used for a variable number of children

shares parameters between children

suitable for dependency trees

e N-ary Tree-LSTM

©)

discriminates between children node positions (weighted
sum)

fixed maximum branching factor: can be used with N children
at most

different parameters for each child

suitable for constituency trees

113

TRANSITION
SEQUENCE
REPRESENTATION

BUILDING A TREE WITH A TRANSITION SEQUENCE

We can describe a binary tree using a shift-reduce transition sequence

(1 (loved (this movie)))
S5 SeS RRR

115

BUILDING A TREE WITH A TRANSITION SEQUENCE

We can describe a binary tree using a shift-reduce transition sequence

(1 (loved (this movie)))
S5 SeS RRR

We start with a buffer (queue) and an empty stack:
stack =[]
buffer = queue([l, loved, this, movie])

lterate through the transition sequence:
If SHIFT(S): take first word (leftmost) out of the buffer, push it
to the stack
If REDUCE(R): pop top 2 words from stack + reduce them into
a new node (w/ tree LSTM)

116

TRANSITION SEQUENCE EXAI\/\PLE

(l:Cloved (thisimovie))) &
S:44S St nsGris T R PR

stack

ah c h C h & h o

(l:Cloved (thisimovie))) &
S S S un Sk DR

TRANSITION SEQUENCE EXAMPLE

stack

buffer '

h C h & h o

(l:Cloved (thisimovie))) &
S48 Siaa S RRRE

TRANSITION SEQUENCE EXAMPLE

loved

stack

buffer '

TRANSITION SEQUENCE EXAMPLE

(1 (loved (this movie)))
S48 S g ciSited RRR

loved

stack

buffer '

TRANSITION SEQUENCE EXAMPLE

(1 (loved (this movie)))
S48 Sin S RRR

movie

this

loved

stack

buffer '

TRANSITION SEQUENCE EXAMPLE

(1 (loved (this movie)))
S48 b A RRR

this movie

this movie Tree LSTM

loved

stack

buffer

TRANSITION SEQUENCE EXAMPLE

(1 (loved (this movie)))
S48 b A RRR

loved this movie

Tree LSTM

this movie

loved this movie

stack

123

TRANSITION SEQUENCE EXAMPLE

(1 (loved (this movie)))
S48 b A RRR

| loved this movie

Tree LSTM

! ! loved this movie
| loved this movie

stack

124

MINI-BATCH
SGD

TRANSITION SEQUENCE EXAMPLE (MINI-BATCHED)

(I .(loved (thisimovie)))‘ _ (It (was boring))
S:44S St oL R R SiieSiiS RR
stack ‘ ‘ e '
T o | we | move

h c fLo e > h C h c

TRANSITION SEQUENCE EXAMPLE (MINI-BATCHED)

(I (loved (this movie))) (It (was boring))
S48 S g ciSites RRR S 955 RR

boring

wa

It

stack

movie

buffer *PAD*
ah c

TRANSITION SEQUENCE EXAMPLE (MINI-BATCHED)

(I (loved (this movie))) (It (was boring))
S48 S¥nS RRR S 955 RR

movie

this '

loved

was boring

‘

ah c

stack

TRANSITION SEQUENCE EXAMPLE (MINI-BATCHED)

(I (loved (this movie))) (It (was boring))
S48 b A RRR S 955 RR

It was boring

this movie

loved

_ Tree LSTM
It was boring

stack

129

TRANSITION SEQUENCE EXAMPLE (MINI-BATCHED)

(I (loved (this movie))) (It (was boring))
S48 b A RRR S 955 RR

loved this movie

“h g

stack

TRANSITION SEQUENCE EXAMPLE (MINI-BATCHED)

(I (loved (this movie))) (It (was boring))
S48 S48 RRR S 955 RR

| loved this movie It was boring

stack

131

SUMMARY

RECAP

e Bag of Words models: BOW, CBOW, Deep CBOW
o Can encode a sentence of arbitrary length, but loses word
order
e Seqguence models: RNN and LSTM
o Sensitive to word order
o RNN has vanishing gradient problem, LSTM deals with this
o LSTM has input, forget and output gates that control
information flow
e Tree-based models: Child-Sum & N-ary Tree LSTM
o Generalize LSTM to tree structures
o Exploit compositionality, but require a parse tree

133

EXTRA

INPUT

In a TreeLSTM over a constltuency tree (ours!), the leaf nodes take the
correspondlng word vectors as input '

RECAP: ACTIVATION FUNCTIONS

5 ReLU Activation Function
1
L}
4t {Threshold (x=0)
H
3 -
3 i
g '
L}
2+ ' 4
L}
'
'
1+]
'
L}
L}
° i
-5 0 5
Input
§ Swish Activation Function
E
4t {Threshold (x=0)
L}
3t H
L}
2.} : .
8 i
1 i
L}
0 1
L}
'
-4 1
5 0 5
Input

Output

Sigmoid Activation Function

-5 0

0.5

Input

tanh Activation Function
1 1 L

ELU Activation Function

Input

CHILD-SUM TREE LSTM
oty FLJZ Z hk,,

| =@ (W(i)fvj + U(i)izj + b(i)) ’

useful for

encoding | Qfin=0 (W(f)sz:j £ O, 4 b(f)) :
dependency trees LA

o =0 (W(O)xj + U, + b(")) ,
u; = tanh (W(u)xj -+ U(u)ﬁj -+ b(u)) ,

;=4 Qui+) fir@ck,
keC(j)

h; = 0; © tanh(e;),

