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● Compositional semantics

● Compositional distributional semantics

● Compositional semantics with neural 
networks
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COMPOSITIONAL SEMANTICS

● Principle of Compositionality: meaning of each whole phrase 
derivable from meaning of its parts.

● Sentence structure conveys some meaning.

● Deep grammars: model semantics alongside syntax, one semantic 
composition rule per syntax rule
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COMPOSITIONAL SEMANTICS
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NON-TRIVIAL ISSUES WITH SEMANTIC COMPOSITION
● Similar syntactic structures may have different meanings

○ it barks
○ it rains; it snows (pleonastic pronoun)
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NON-TRIVIAL ISSUES WITH SEMANTIC COMPOSITION
● Similar syntactic structures may have different meanings

○ it barks
○ it rains; it snows (pleonastic pronoun)

● Different syntactic structures may have the same meaning (e.g. 
passive constructions)
○ Kim ate the apple.
○ The apple was eaten by Kim.
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NON-TRIVIAL ISSUES WITH SEMANTIC COMPOSITION
● Similar syntactic structures may have different meanings

○ it barks
○ it rains; it snows (pleonastic pronoun)

● Different syntactic structures may have the same meaning (e.g. 
passive constructions)
○ Kim ate the apple.
○ The apple was eaten by Kim.

● Not all phrases are interpreted compositionally (e.g., idioms)
○ red tape
○ kick the bucket

but they can be interpreted compositionally too, so we cannot 
simply block them. 7



NON-TRIVIAL ISSUES WITH SEMANTIC COMPOSITION
● Additional meaning can arise through composition (e.g., logical 

metonymy)
○ fast programmer
○ fast plane
○ enjoy a book
○ enjoy a cup of tea
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NON-TRIVIAL ISSUES WITH SEMANTIC COMPOSITION
● Additional meaning can arise through composition (e.g., logical 

metonymy)
○ fast programmer
○ fast plane
○ enjoy a book
○ enjoy a cup of tea

● Meaning transfers and additional connotations can arise through 
composition (e.g., metaphor)
○ I can’t buy this story.
○ This sum will buy you a ride on the train.
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NON-TRIVIAL ISSUES WITH SEMANTIC COMPOSITION
● Additional meaning can arise through composition (e.g., logical 

metonymy)
○ fast programmer
○ fast plane
○ enjoy a book
○ enjoy a cup of tea

● Meaning transfers and additional connotations can arise through 
composition (e.g., metaphor)
○ I can’t buy this story.
○ This sum will buy you a ride on the train.

● Recursive composition
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NON-TRIVIAL ISSUES WITH SEMANTIC COMPOSITION
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MODELLING COMPOSITIONAL SEMANTICS

1. Compositional distributional semantics
● composition is modelled in a vector space
● unsupervised
● general purpose representations

2. Compositional semantics with neural networks
● supervised or self-supervised
● (typically) task-specific representations

12



O
U
T
L
I
N
E

● Compositional semantics

● Compositional distributional semantics

● Compositional semantics with neural 
networks
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COMPOSITIONAL DISTRIBUTIONAL SEMANTICS

Can distributional semantics be extended to account for the meaning 
of phrases and sentences?
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COMPOSITIONAL DISTRIBUTIONAL SEMANTICS

Can distributional semantics be extended to account for the meaning 
of phrases and sentences?

● Given a finite vocabulary, natural languages licence an infinite 
amount of sentences.

● So it is impossible to learn vector representations for all sentences.
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COMPOSITIONAL DISTRIBUTIONAL SEMANTICS

Can distributional semantics be extended to account for the meaning 
of phrases and sentences?

● Given a finite vocabulary, natural languages licence an infinite 
amount of sentences.

● So it is impossible to learn vector representations for all sentences.

But we can still use distributional word representations and learn to 
perform semantic composition in distributional space.
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VECTOR MIXTURE MODELS

Mitchell and Lapata, 2010. 
Composition in Distributional 
Models of Semantics Models

● Additive
● Multiplicative

Simple, but surprisingly 
effective!
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ADDITIVE AND MULTIPLICATIVE MODELS

● Correlate with human similarity judgments about adjective-noun, 
noun-noun, verb-noun and noun-verb pairs

additive multiplicative

dog cat old old + dog old + cat old ⊙ dog old ⊙ cat

runs 1 4 0 1 4 0 0

barks 5 0 7 12 7 35 0
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ADDITIVE AND MULTIPLICATIVE MODELS

● Correlate with human similarity judgments about adjective-noun, 
noun-noun, verb-noun and noun-verb pairs

● The additive and the multiplicative model are symmetric (commutative):
They do not take word order or syntax into account.
○ John hit the ball = The ball hit John

additive multiplicative

dog cat old old + dog old + cat old ⊙ dog old ⊙ cat

runs 1 4 0 1 4 0 0

barks 5 0 7 12 7 35 0
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ADDITIVE AND MULTIPLICATIVE MODELS

● Correlate with human similarity judgments about adjective-noun, 
noun-noun, verb-noun and noun-verb pairs

● The additive and the multiplicative model are symmetric (commutative):
They do not take word order or syntax into account.
○ John hit the ball = The ball hit John

● More suitable for modeling content words, would not apply well to function 
words (e.g. conjunctions, prepositions etc.):
○ some dogs, lice and dogs, lice on dogs

additive multiplicative

dog cat old old + dog old + cat old ⊙ dog old ⊙ cat

runs 1 4 0 1 4 0 0

barks 5 0 7 12 7 35 0
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LEXICAL FUNCTION MODELS

Distinguish between:

● words whose meaning is 
directly determined by their 
distributional profile, e.g. 
nouns

● words that act as functions 
transforming the distributional 
profile of other words, e.g., 
adjectives, adverbs
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LEXICAL FUNCTION MODELS
Baroni and Zamparelli. (2010). Nouns are vectors, adjectives are matrices: 
Representing adjective-noun constructions in semantic space. In Proceedings of 
EMNLP.

Adjectives modelled as lexical functions that are applied to nouns: old dog = 
old(dog)
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LEXICAL FUNCTION MODELS
Baroni and Zamparelli. (2010). Nouns are vectors, adjectives are matrices: 
Representing adjective-noun constructions in semantic space. In Proceedings of 
EMNLP.

Adjectives modelled as lexical functions that are applied to nouns: old dog = 
old(dog)

● Adjectives are parameter matrices (Aold, Abig, etc.)
● Nouns are vectors (house, dog, etc.)
● Composition is a linear transformation: old dog = Aold x dog.
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LEXICAL FUNCTION MODELS
Baroni and Zamparelli. (2010). Nouns are vectors, adjectives are matrices: 
Representing adjective-noun constructions in semantic space. In Proceedings of 
EMNLP.

Adjectives modelled as lexical functions that are applied to nouns: old dog = 
old(dog)

● Adjectives are parameter matrices (Aold, Abig, etc.)
● Nouns are vectors (house, dog, etc.)
● Composition is a linear transformation: old dog = Aold x dog.

OLD runs barks

runs 0.5 0

barks 0.3 1

x

dog

runs 1

barks 5

=

OLD(dog)

runs (0.5 x 1) + (0 x 5) = 0.5

barks (0.3 x 1) + (5 x 1) = 5.3
24



LEARNING ADJECTIVE MATRICES
For each adjective, learn a parameter matrix that allows to predict 
adjective-noun phrase vectors.

X Y

Training set house old house
dog old dog
car old car
cat old cat
toy old toy
… …

Test set
elephant old elephant
mercedes old mercedes
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LEARNING ADJECTIVE MATRICES
1. Obtain a distributional vector nj for each noun nj in the lexicon.
2. Collect adjective noun pairs (ai, nj) from the corpus.
3. Obtain a distributional vector pij of each pair (ai, nj) from the same 

corpus using a conventional DSM.
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LEARNING ADJECTIVE MATRICES
1. Obtain a distributional vector nj for each noun nj in the lexicon.
2. Collect adjective noun pairs (ai, nj) from the corpus.
3. Obtain a distributional vector pij of each pair (ai, nj) from the same 

corpus using a conventional DSM.
4. The set of tuples {(nj,pij)}j represents a dataset D(ai) for the 

adjective ai.
5. Learn matrix Ai from D(ai) using linear regression.

Minimize the squared error loss.
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● Compositional semantics

● Compositional distributional semantics

● Compositional semantics with neural 
networks
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1. How do we learn a (task-specific) representation of a sentence 
with a neural network?

2. How do we make a prediction for a given task from that 
representation?

We will see the task, dataset and models of Practical 2!
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TASK
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TASK: SENTIMENT CLASSIFICATION OF MOVIE REVIEWS

0. Very negative

1. Negative

You’ll probably love it. -> 2. Neutral

3. Positive

4. Very positive

Task-specific: The learned representation has to 
be “specialized” on sentiment!
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WORDS (AND SENTENCES) INTO VECTORS

y

x

trash

masterpiece

classic
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WORDS (AND SENTENCES) INTO VECTORS

y

x

trash

masterpiece

classic
an Oscar-winning movie
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SENTENCE REPRESENTATION: A (VERY) SIMPLIFIED PICTURE

cDSMs (sum) NNs

you will probably love it you will probably love it

you

will

probably

love

it

you

will

probably

love
it
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DATASET

35



DATASET: STANFORD SENTIMENT TREEBANK (SST)

~12K data-points including:

1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. more detailed sentiment scores (node-level)
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MODELS
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MODELS

1. Bag of Words (BOW)

2. Continuous Bag of Words (CBOW)

3. Deep Continuous Bag of Words (Deep CBOW)

4. Deep CBOW + pre-trained word embeddings

5. LSTM

6. Tree LSTM

38



FIRST APPROACH: SENTENCE + SENTIMENT

1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. node-level sentiment scores

39



1. BAG OF 
WORDS 
(BOW)
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WHAT IS A BAG OF WORDS?

● Additive model: does not take 
word order or syntax into 
account

● Task-specific word 
representations with fixed 
dimensionality (d=5)

● Dimensions of vector space 
are explicit, interpretable

Credits: CMU 41



BAG OF WORDS
Sum word embeddings, add bias
I

loved

this

movie

bias b
—-----
Σxt + b

argmax 3 42



BAG OF WORDS
this [0.0, 0.1, 0.1, 0.1, 0.0]
movie [0.0, 0.1, 0.1, 0.2, 0.1]
is [0.0, 0.1, 0.0, 0.0, 0.0]
stupid [0.9, 0.5, 0.1, 0.0, 0.0]

bias [0.0, 0.0, 0.0, 0.0, 0.0]
—----------------------------------
sum [0.9, 0.8, 0.3, 0.3, 0.1]

argmax: 0 (very negative)
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BAG OF WORDS
this [0.0, 0.1, 0.1, 0.1, 0.0]
movie [0.0, 0.1, 0.1, 0.2, 0.1]
is [0.0, 0.1, 0.0, 0.0, 0.0]
stupid [0.9, 0.5, 0.1, 0.0, 0.0]

bias [0.0, 0.0, 0.0, 0.0, 0.0]
—----------------------------------
sum [0.9, 0.8, 0.3, 0.3, 0.1]

argmax: 0 (very negative)

I hate that I love this movie = I love that I hate this movie
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TURNING WORDS INTO NUMBERS
We want to feed words to a neural network

How to turn words into numbers?

Bad idea: number 
sequence

cat 1
tree 2
chair 3
dog 4
mat 5

Good idea: one-hot 
vectors

cat [0,0,0,0,1]
tree [0,0,0,1,0]
chair [0,0,1,0,0]
dog [0,1,0,0,0]
mat [1,0,0,0,0]

cat is closer to tree 
than to dog?!

45



ONE-HOT VECTORS SELECT WORD EMBEDDINGS

one-hot vector parameters

=

embedding

Used as 
“lookup table” 

in practice

46



2. CONTINUOUS 
BAG OF WORDS 

(CBOW)
47



CBOW

● Additive model: does not take word order or syntax into account

● Task-specific word representations of arbitrary dimensionality

● Dimensions of vector space are not interpretable

● Prediction can be traced back to the sentence vector dimensions

48



CONTINUOUS BAG OF WORDS (CBOW)
Sum word embeddings, project to 5D using W, add bias: W(Σxt) + b
I

loved

this

movie

—-----
Σxt

Note that a bias term (of size 5) is added to the final output vector (not shown). Also, this is not the same as word2vec CBOW! 49



CONTINUOUS BAG OF WORDS (CBOW)
Sum word embeddings, project to 5D using W, add bias: W(Σxt) + b
I

loved

this

movie

—-----
Σxt

Note that a bias term (of size 5) is added to the final output vector (not shown). Also, this is not the same as word2vec CBOW!

W
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CONTINUOUS BAG OF WORDS (CBOW)
Sum word embeddings, project to 5D using W, add bias: W(Σxt) + b
I

loved

this

movie

—-----
Σxt

Note that a bias term (of size 5) is added to the final output vector (not shown). Also, this is not the same as word2vec CBOW!

W

W
Σxt
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WHAT ABOUT THIS?

I loved this movie

52



WHAT ABOUT THIS?

I loved this movie
Variable sentence vector size, dependent on sentence length
● Not very sensible conceptually

○ sentences in a different vector space than words
○ one vector space for each sentence length in the dataset

● Difficult in practice
○ what size should the transformation matrix be?
○ vector size can grow very large 53



3. DEEP 
CBOW
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DEEP CBOW

● Additive model: does not take word order or syntax into account

● Task-specific word representations of arbitrary dimensionality

● Dimensions of vector space are not interpretable

● More layers and non-linear transformations: prediction cannot be 
easily traced back

55



DEEP CBOW

I

loved

this

movie

—-----
Σxt

Note that a bias term is added whenever we multiply with a W (not shown)

W’’ tanh(W’ tanh( W(Σxt) + b ) + b’) + b’’)

Σxt

W’’

W’

W

tanh

tanh
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WHAT ABOUT THIS?

Σxt

W’’

W’

W
tanh

tanh

tanh WN

Is more complexity 
always better?
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QUESTION

We can learn more complex features, but the only error signal that we 
receive comes from sentiment prediction.

How can we further help the model?
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4. DEEP CBOW 
+ PRETRAINED 
EMBEDDINGS
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DEEP CBOW WITH PRETRAINED EMBEDDINGS

I

loved

this

movie

—-----
Σxt

Note that a bias term is added whenever we multiply with a W (not shown)

W’’ tanh(W’ tanh( W(Σxt) + b ) + b’) + b’’)

Σxt

W’’

W’

W

tanh

tanh

Instead of learning them from 
scratch, feed word2vec or 

Glove embeddings!
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DEEP CBOW + PRE-TRAINED EMBEDDINGS

● Additive model: does not take word order or syntax into account

● Dimensions of vector space are not interpretable

● Multiple layers and non-linear transformations: prediction cannot 
be easily traced back

● Pre-trained general-purpose word representations (e.g., 
Skip-gram, GloVe)
○ keep frozen: not updated during training
○ fine-tune: updated with task-specific learning signal 

(specialized)

61



RECAP: TRAINING A NEURAL NETWORK

We train our network with Stochastic Gradient Descent (SGD):

1. Sample a training example
2. Forward pass

a. Compute network activations, output vector
3. Compute loss

a. Compare output vector with true label using a loss function 
(Cross Entropy)

4. Backward pass (backpropagation)
a. Compute gradient of loss w.r.t. (learnable) parameters

(= weights + bias)
5. Take a small step in the opposite direction of the gradient

62



CROSS ENTROPY LOSS
Given:

Ŷ = [0.0589, 0.0720, 0.0720, 0.7177, 0.0795]
output vector (after softmax) from forward pass

Y = [0, 0, 0, 1, 0] target / label (y3=1)

When our output is categorical (i.e., a number of classes), we can use a 
Cross Entropy loss:

CE(y,ŷ) = - Σ yi log  ŷi

SparseCE(y=3, ŷ) = - log ŷy 63



CROSS ENTROPY LOSS
Given:

Ŷ = [0.0589, 0.0720, 0.0720, 0.7177, 0.0795]
output vector (after softmax) from forward pass

Y = [0, 0, 0, 1, 0] target / label (y3=1)

When our output is categorical (i.e., a number of classes), we can use a 
Cross Entropy loss:

CE(y,ŷ) = - Σ yi log  ŷi

SparseCE(y=3, ŷ) = - log ŷy

torch.nn.CrossEntropyLoss 
works like this and does the 

softmax on o for you!
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SOFTMAX

o = [-0.1, 0.1, 0.1, 2.4, 0.2]

softmax(oi) = exp(oi) / Σj exp(oj)

This makes o sum to 1.0:
softmax(o) = [0.0589, 0.0720, 0.0720, 0.7177, 0.0795]

We don’t need a softmax 
for prediction, there we 
simply take the argmax

But we do need a softmax 
combined to CE to 

compute model loss 
(argmax is NOT 
differentiable)
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BREAK
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RECURRENT 
NEURAL 

NETWORKS
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INTRODUCTION: RECURRENT NEURAL NETWORK (RNN)

● RNNs widely used for handling sequences!

● RNNs ~ multiple copies of same network, each passing a message 
to a successor

● Take an input vector x and output an output vector h

● Crucially, h influenced by entire history of inputs fed in in the past

● Internal state h gets updated at every time step -> in the simplest 
case, this state consists of a single hidden vector h

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179-211. 68



INTRODUCTION: RECURRENT NEURAL NETWORK (RNN)
RNNs model sequential data - 
one input xt per time step t

Example:
the cat sat on the mat
x1 x2 x3 x4 x5 x6

Let’s compute the RNN state 
after reading in this sentence.

Remember:
ht = f(xt,ht-1)

h1 = f(x1, h0)
h2 = f(x2, f(x1, h0))
h3 = f(x3, f(x2, f(x1, h0)))
…
h6 = f(x6, f(x5, f(x4, …)))
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INTRODUCTION: RECURRENT NEURAL NETWORK (RNN)
RNNs model sequential data - 
one input xt per time step t

Example:
the cat sat on the mat
x1 x2 x3 x4 x5 x6

Let’s compute the RNN state 
after reading in this sentence.

Remember:
ht = f(xt,ht-1)

h1 = f(x1, h0)
h2 = f(x2, f(x1, h0))
h3 = f(x3, f(x2, f(x1, h0)))
…
h6 = f(x6, f(x5, f(x4, …)))

the -> h1 = f(x1, h0)
cat -> h2 = f(x2, h1)
sat -> h3 = f(x3, h2)
…
mat -> h6 = f(x6, h5)
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INTRODUCTION: RECURRENT NEURAL NETWORK (RNN)
The transition function f consists of an affine transformation followed by  
a non-linear activation

Elman (1990). Finding structure in time.

W
xt

R

71



INTRODUCTION: RECURRENT NEURAL NETWORK (RNN)
The transition function f consists of an affine transformation followed by  
a non-linear activation

Elman (1990). Finding structure in time.

W
xt

R

ht = f(xt,ht-1)

= σ (Wxt + R ht-1 + b)

+ +

Matrix based on 
current input

Matrix based on the 
previous hidden state 72



INTRODUCTION: UNFOLDING THE RNN

Word embedding

Same R every time 
step!

Same W every 
time step!

W W W W

R R R

x1 x2
x3 x4
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INTRODUCTION: UNFOLDING THE RNN

W W W W

R R R

x1 x2
x3 x4

O

We can find the 
prediction using 

argmax

Training: apply softmax, 
compute cross entropy 

loss, backpropagate
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INTRODUCTION: THE VANISHING GRADIENT PROBLEM

For more details see: Kyunghyun Cho. Natural Language Understanding with Distributed Representation. Section 4.3.

Simple RNNs are hard to train because of the vanishing 
gradient problem.

During backpropagation, gradients can quickly become 
small, as they repeatedly go through multiplications (R) 
& non-linear functions (e.g. sigmoid or tanh)

75



INTRODUCTION: THE VANISHING GRADIENT PROBLEM

W W W W

R R R

x1
x2 x3

x4

O

For more details see: Kyunghyun Cho. Natural Language Understanding with Distributed Representation. Section 4.3.

compute loss & 
BPTT

Simple RNNs are hard to train because of the vanishing 
gradient problem.

During backpropagation, gradients can quickly become 
small, as they repeatedly go through multiplications (R) 
& non-linear functions (e.g. sigmoid or tanh)
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INTRODUCTION: THE VANISHING GRADIENT PROBLEM
R is shared across every timestep!

Imagine that R contains an entry value r1 =0.5
The first input gets multiplied by 0.5num. unrolls N

0.55 ~ 0.03
0.510 ~ 9e-4
0.515 ~ 3e-5
0.520 ~ 9e-7

…

W W W

x0.5

x1 x2 xN

O
x0.5 x0.5

For more details see: Kyunghyun Cho. Natural Language Understanding with Distributed Representation. Section 4.3. 77



WHAT ABOUT THIS?

78

W W W

x1.5

x1 x2 xN

O
x1.5 x1.5

For more details see: Kyunghyun Cho. Natural Language Understanding with Distributed Representation. Section 4.3.

Similar problem called exploding gradients!



RNN vs ANN

79

R R R

W1 W2 WL

<1 <1 <1

<1 >1 >1



5. LONG SHORT-TERM 
MEMORY NETWORK 

(LSTM)
80



LONG SHORT-TERM MEMORY (LSTM)

81

LSTMs are a special kind of RNN that can deal with long-term 
dependencies in the data by alleviating the vanishing gradient problem 
in RNNs

“I lived in France for a while when I was a kid so I can speak fluent…” -> 
French

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.



LSTM: CORE IDEA

1. Maintain a separate memory cell state ct from what is outputted 
(long term memory)

82MIT Introduction to Deep Learning 6.S191: Recurrent Neural Networks by Ava Soleimany



LSTM: CORE IDEA

1. Maintain a separate memory cell state ct from what is outputted 
(long term memory)

2. Use gates to control the flow of information:
a. Forget gate gets rid of irrelevant information
b. Input gate to store new relevant information from the current 

input
c. Selectively update the cell state
d. Output gate returns a filtered version of the cell state

83MIT Introduction to Deep Learning 6.S191: Recurrent Neural Networks by Ava Soleimany



LSTM: CORE IDEA

1. Maintain a separate memory cell state ct from what is outputted 
(long term memory)

2. Use gates to control the flow of information:
a. Forget gate gets rid of irrelevant information
b. Input gate to store new relevant information from the current 

input
c. Selectively update the cell state
d. Output gate returns a filtered version of the cell state

3. Backpropagation through time with partially uninterrupted gradient 
flow

84MIT Introduction to Deep Learning 6.S191: Recurrent Neural Networks by Ava Soleimany



LSTMS
RNN:
ht = f(xt,ht-1)

= σ (Wxt + R ht-1 + b)

LSTM:

ht ,ct= f(xt,ht-1,ct-1)

= lstm(xt,ht-1,ct-1)

85Image credits: https://colah.github.io/posts/2015-08-Understanding-LSTMs 

https://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM CELL

86Adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs . Green blocks: Φ(W[ht-1;xt]+b), orange blocks: element-wise operation 

X +

Xσ

ct-1

ht-1

ct

ht

tanh

ot

xt

σ σ

X

tanh

ft it gt

cell state

forget gate output gate

input gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM: CELL STATE

87Adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs . Green blocks: Φ(W[ht-1;xt]+b), orange blocks: element-wise operation 

X +

Xσ

ct-1

ht-1

ct

ht

tanh

ot

xt

σ σ

X

tanh

ft it gt

cell state

Runs straight down the entire chain, with 
only some minor linear interactions. LSTM 
can remove or add information to the cell 
state, carefully regulated by structures 
called gates.

https://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM: FORGET GATE

88Adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs . Green blocks: Φ(W[ht-1;xt]+b), orange blocks: element-wise operation 

X +

Xσ

ct-1

ht-1

ct

ht

tanh

ot

xt

σ σ

X

tanh

ft it gt

forget gate

Decide what information to throw 
away from the cell state.

https://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM: CANDIDATE CELL

89Adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs . Green blocks: Φ(W[ht-1;xt]+b), orange blocks: element-wise operation 

X +

Xσ

ct-1

ht-1

ct

ht

tanh

ot

xt

σ σ

X

tanh

ft it gt

candidates

Extracts new candidate values, 
gt, from the previous hidden 
state and the current input that 
could be added to the cell state.

https://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM: INPUT GATE

90Adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs . Green blocks: Φ(W[ht-1;xt]+b), orange blocks: element-wise operation 

X +

Xσ

ct-1

ht-1

ct

ht

tanh

ot

xt

σ σ

X

tanh

ft it gt

Decide what information to store 
in the cell state

input gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM

91Adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs . Green blocks: Φ(W[ht-1;xt]+b), orange blocks: element-wise operation 

X +

Xσ

ct-1

ht-1

ct

ht

tanh

ot

xt

σ σ

X

tanh

ft it gt

first step

second step

Update the cell state: 1. Forget things we decided to forget 
earlier, 2. Add the new candidate values scaled by how 
much we decided to update each state value

https://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM: OUTPUT GATE

92Adapted from https://colah.github.io/posts/2015-08-Understanding-LSTMs . Green blocks: Φ(W[ht-1;xt]+b), orange blocks: element-wise operation 

X +

Xσ

ct-1

ht-1

ct

ht

tanh

ot

xt

σ σ

X

tanh

ft it gt

second step

first step

1. Decide what parts of the cell state we are 
going to output, the cell state is put 
through tanh and 2. multiplied by the 
output of the output gate, so that we only 
output the parts we decided to.

output gate

https://colah.github.io/posts/2015-08-Understanding-LSTMs


LONG SHORT-TERM MEMORY (LSTM)

ht ,ct= lstm(xt,ht-1,ct-1)

input gate it =       σ(Wi xt + Ri ht-1 + bi)
forget gate ft =       σ(Wf xt + Rf ht-1 + bf)
candidate gt = tanh(Wg xt + Rg ht-1 + bg)
output gate ot =      σ(Wo xt + Ro ht-1 + bo)

cell state ct = ft ⊙ ct-1 + it ⊙ gt
hidden state ht = ot ⊙ tanh(ct)

93

hidden state cell state previous hidden state and cell state



LSTMS: APPLICATIONS & SUCCESS IN NLP

● Language modeling (Mikolov et al., 2010; Sundermeyer et al., 
2012)

● Parsing (Vinyals et al., 2015; Kiperwasser and Goldberg, 2016; 
Dryer et al., 2016)

● Machine translation (Bahdanau et al.,2015)
● Image captioning (Bernardi et al., 2016)
● Visual question answering (Antol et al., 2015)
● … and many other tasks!
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6. TREE 
LSTM

95



SENTENCE REPRESENTATIONS WITH NNS

● Bag of Words models
○ sentence representations are order-independent functions of 

the word representations

● Sequence models
○ sentence representations are an order-sensitive function of a 

sequence of word representations (surface form)

● Tree-structured models
○ sentence representations are a function of the word 

representations, sensitive to the syntactic structure of the 
sentence

96



SECOND APPROACH: SENTENCE + SENTIMENT + SYNTAX

1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. node-level sentiment scores

97



EXPLOITING TREE STRUCTURE

Instead of treating our input as a sequence, we can take an alternative 
approach:
assume a tree structure and use the principle of compositionality.

The meaning (vector) of a sentence is determined by:

1. the meanings of its words and
2. the rules that combine them

98Adapted from Stanford cs224n. 



WHY WOULD IT BE USEFUL?
Helpful in disambiguation: similar “surface” / different structure

99Credits: https://cs224d.stanford.edu/lectures/CS224d-Lecture10.pdf 

https://cs224d.stanford.edu/lectures/CS224d-Lecture10.pdf


CONSTITUENCY PARSE
Can we obtain a sentence vector using the tree structure given by a 
parse?

Token PoS     3       4     5

──────────────────────────── 

I     PRON───────────►NP──┐  

loved VERB──────────┐     ├►S

this  DET ──┐       ├►VP──┘  

movie NOUN──┴►NP ───┘    

100https://hanlp.hankcs.com/en/demos/con.html 

https://hanlp.hankcs.com/en/demos/con.html


RECURRENT VS TREE RECURSIVE NN

101

I loved this movie
RNNs cannot capture 

phrases without prefix 
context and often capture 
too much of last words in 

final vector



RECURRENT VS TREE RECURSIVE NN

102Adapted from Stanford cs224n. 

I loved this movie

I loved this movie

Tree Recursive neural 
networks require a 
parse tree for each 

sentence

RNNs cannot capture 
phrases without prefix 

context and often capture 
too much of last words in 

final vector



TREE RECURSIVE NN

103

I loved this movie

NODE

child child



PRACTICAL II DATA SET: STANFORD SENTIMENT TREEBANK (SST)
              3                                                                     
  ____________|____________________                                                  
 |                                 4                                                
 |        _________________________|______________________________________________   
 |       4                                                                        | 
 |    ___|______________                                                          |  
 |   |                  4                                                         | 
 |   |         _________|__________                                               |  
 |   |        |                    3                                              | 
 |   |        |               _____|______________________                        |  
 |   |        |              |                            4                       | 
 |   |        |              |            ________________|_______                |  
 |   |        |              |           |                        2               | 
 |   |        |              |           |                 _______|___            |  
 |   |        3              |           |                |           2           | 
 |   |    ____|_____         |           |                |        ___|_____      |  
 |   |   |          4        |           3                |       2         |     | 
 |   |   |     _____|___     |      _____|_______         |    ___|___      |     |  
 2   2   2    3         2    2     3             2        2   2       2     2     2 
 |   |   |    |         |    |     |             |        |   |       |     |     |  
 It  's  a  lovely     film with lovely     performances  by Buy     and Accorsi  . 

104

sentiment label for root node

sentiment label for each node



TREE LSTMS: GENERALIZE LSTM TO TREE STRUCTURE
Use the idea of LSTM (gates, memory cell) but allow for multiple inputs 
(node children)

Proposed by 3 groups in the same summer:

● Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved 
Semantic Representations From Tree-Structured Long Short-Term 
Memory Networks. ACL 2015.
○ Child-Sum Tree LSTM
○ N-ary Tree LSTM

● Phong Le and Willem Zuidema.
Compositional distributional semantics with long short term memory. 
*SEM 2015.

● Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo.
Long short-term memory over recursive structures. ICML 2015 105



TREE LSTMS
● Child-Sum Tree LSTM

sums over all children of a node; can be used for any N of
children

● N-ary Tree LSTM

different parameters for each child; better granularity
(interactions between children) but maximum N of children 
per node has to be fixed

106Credits: Daniel Perez https://www.slideshare.net/tuvistavie/tree-lstm 

https://www.slideshare.net/tuvistavie/tree-lstm


CHILD-SUM TREE LSTM

Children outputs and memory cells are summed

1. NO children order
2. works with variable number of children (sum!)
3. shares gates weights between children

107



CHILD-SUM TREE LSTM

108

c1
cNhN

h1

⊙f1

⊙fN

xĥ=Σh

⊙i

⊙o

state = sum of 
children’s h!

candidates

u

parent c

parent h



N-ARY TREE LSTM

Separate parameter matrices for each child k

1. each node must have at most N (e.g. binary) ordered children

2. fine-grained control on how information propagates

3. forget gate can be parametrized (N matrices, one per k) so that 
siblings affect each other

109

Implemented 
in Practical 2



N-ARY TREE LSTM

110

left c right cright hleft h

⊙fl

⊙fr

x

⊙i

⊙o
candidate values

u

parent c

parent h



N-ARY TREE LSTM

111

useful for 
encoding 

constituency trees



LSTMS VS TREE-LSTMS

Standard LSTMs be considered as (a special case of) Tree-LSTMs

112



TREE-LSTM VARIANTS
● Child-Sum Tree-LSTM

○ sum over the hidden representations of all children of a node 
(no children order)

○ can be used for a variable number of children
○ shares parameters between children
○ suitable for dependency trees

● N-ary Tree-LSTM
○ discriminates between children node positions (weighted 

sum)
○ fixed maximum branching factor: can be used with N children 

at most
○ different parameters for each child
○ suitable for constituency trees 113



TRANSITION 
SEQUENCE 

REPRESENTATION
114



BUILDING A TREE WITH A TRANSITION SEQUENCE

115

We can describe a binary tree using a shift-reduce transition sequence

(I ( loved ( this movie ) ) )
 S   S          S     S         RRR

practical II explains how 
to obtain this sequence



BUILDING A TREE WITH A TRANSITION SEQUENCE

116

We can describe a binary tree using a shift-reduce transition sequence

(I ( loved ( this movie ) ) )
 S   S          S     S         RRR

We start with a buffer (queue) and an empty stack:
stack = []
buffer = queue([I, loved, this, movie])

Iterate through the transition sequence:
If SHIFT(S): take first word (leftmost) out of the buffer, push it

to the stack
If REDUCE(R): pop top 2 words from stack + reduce them into 

a new node (w/ tree LSTM)

practical II explains how 
to obtain this sequence



TRANSITION SEQUENCE EXAMPLE
(I ( loved ( this movie ) ) )
 S   S          S     S         RRR

117

buffer I loved this movie

h c    h            c        h          c       h            c

stack



TRANSITION SEQUENCE EXAMPLE
(I ( loved ( this movie ) ) )
 S   S          S     S         RRR

118

buffer loved this movie

     h            c        h          c       h            c

I

stack



TRANSITION SEQUENCE EXAMPLE
(I ( loved ( this movie ) ) )
 S   S          S     S         RRR

119

buffer this movie

                             h          c       h            c

I

loved

stack



TRANSITION SEQUENCE EXAMPLE
(I ( loved ( this movie ) ) )
 S   S          S     S         RRR

120

buffer movie

                                                  h            c

I

loved

this

stack



TRANSITION SEQUENCE EXAMPLE
(I ( loved ( this movie ) ) )
 S   S          S     S         RRR

121

buffer

I

loved

this

movie

stack



TRANSITION SEQUENCE EXAMPLE
(I ( loved ( this movie ) ) )
 S   S          S     S         RRR

122

buffer

I

loved

this movie

stack

this movie

Tree LSTM

this movie



TRANSITION SEQUENCE EXAMPLE
(I ( loved ( this movie ) ) )
 S   S          S     S         RRR

123

buffer

I

loved this movie

stack

loved this movie

Tree LSTM

loved this movie



TRANSITION SEQUENCE EXAMPLE
(I ( loved ( this movie ) ) )
 S   S          S     S         RRR

124

buffer

I loved this movie

stack

I

Tree LSTM

I loved this movie

loved this movie

this is your root node 
for classification



MINI-BATCH 
SGD

125



TRANSITION SEQUENCE EXAMPLE (MINI-BATCHED)
(I ( loved ( this movie ) ) ) (It ( was boring ) )
 S   S          S     S         RRR  S    S     S     R R 

126

buffer It was boring *PAD*

h c    h            c        h          c       h            c

stack
I loved this movie



TRANSITION SEQUENCE EXAMPLE (MINI-BATCHED)

127

buffer

movie

h            c

I

loved

this

stack

It

was

boring

(I ( loved ( this movie ) ) ) (It ( was boring ) )
 S   S          S     S         RRR  S    S     S     R R 

*PAD*



(I ( loved ( this movie ) ) ) (It ( was boring ) )
 S   S          S     S         RRR  S    S     S     R R 

TRANSITION SEQUENCE EXAMPLE (MINI-BATCHED)

128

buffer

movie

h            c

I

loved

this

stack

It

was boring

*PAD*



(I ( loved ( this movie ) ) ) (It ( was boring ) )
 S   S          S     S         RRR  S    S     S     R R 

TRANSITION SEQUENCE EXAMPLE (MINI-BATCHED)

129

buffer

h            c

I

loved

this movie

stack

It was boring

*PAD*

this movie

Tree LSTM

It was boring

this movie

It was boring



(I ( loved ( this movie ) ) ) (It ( was boring ) )
 S   S          S     S         RRR  S    S     S     R R 

TRANSITION SEQUENCE EXAMPLE (MINI-BATCHED)

130

buffer

h            c

I

stack

It was boring

*PAD*

loved this movie



(I ( loved ( this movie ) ) ) (It ( was boring ) )
 S   S          S     S         RRR  S    S     S     R R 

TRANSITION SEQUENCE EXAMPLE (MINI-BATCHED)

131

buffer

h            c

I loved this movie

stack

It was boring

*PAD*



SUMMARY

132



RECAP
● Bag of Words models: BOW, CBOW, Deep CBOW

○ Can encode a sentence of arbitrary length, but loses word 
order

● Sequence models: RNN and LSTM
○ Sensitive to word order
○ RNN has vanishing gradient problem, LSTM deals with this
○ LSTM has input, forget and output gates that control 

information flow
● Tree-based models: Child-Sum & N-ary Tree LSTM

○ Generalize LSTM to tree structures
○ Exploit compositionality, but require a parse tree
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EXTRA

134



INPUT

In a TreeLSTM over a constituency tree (ours!), the leaf nodes take the 
corresponding word vectors as input

135



RECAP: ACTIVATION FUNCTIONS

136



CHILD-SUM TREE LSTM

137

useful for 
encoding 

dependency trees


