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Where are we at?

Week 1

e HCla: text classification

e HClb: language modelling
HC2a (today)

e Sequence labelling



In NGram LMs Words are Atomic Symbols

We gave words categorical treatment, namely, we treated words as
if they were completely unrelated to one another. This led to:

e large tabular cpds
where we store prob of conditional outcomes that are possible
e statistical inneficiency (struggles with data sparsity)

linguistically related outcomes do not share statistical evidence

Today we try to overcome this in 2 ways:

e a linguistically-motivated change in the data we model,

accompanied by a change in the model and new ideas for
factorisation

e a change in parameterisation
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Word Categories



Organising Words into Classes

Semantic criteria: what does the word refer to?
e nouns often refer to ‘people’, ‘places’ or ‘things’
Formal criteria: what form does the word have?

e in English, -1y makes an adverb out of an adjective

e in English, —tion makes a noun out of a verb
Distributional criteria: in what contexts can the word occur?
e in English, adjectives precede nouns

Word classes capture aspects of word relatedness.



Semantically Formally Distributionally
Nouns refer to things, -ness, -tion, After determiners,
concepts -ity, -ance possessives
Verbs refer to actions, -ate, -ize infinitives: to jump,
states to learn
Adjectives | properties of nouns -al, -ble appear before nouns
Adverbs properties of actions -ly next to verbs, beginning of

sentence



Word classes enable a form of delexicalised natural language
processing in which we can learn about patterns that are common

to all words that share a given property (e.g., in English, a pronoun
is typically followed by a verb).



How many classes are there?

This depends on what dimensions of ‘relatedness’ we focus on, and

what language we are talking about.
For example, for Parts-of-Speech (POS), which mostly capture a

word's syntactic function. For English,

e the Brown corpus [Francis and Kucera, 1979] has 87 categories

e the Penn Treebank [Marcus et al., 1993] has 45

Universal POS tags are simplified tags aimed at cross-lingual

compatibility (it maps variants of a base class to that base class,
e.g., VBD, VBN, VB, VBG, VBP — VERB)



Universal Parts-of-Speech [Petrov et al., 2012]

e ADJ (adjectives)

e ADP (prepositions and postpositions)
e ADV (adverbs)

e CONJ (conjunctions)

e DET (determiners and articles)
e NOUN (nouns)

e NUM (numerals)

e PRON (pronouns)

e PRT (particles)

e PUNCT (punctuation marks)
e VERB (verbs)

X (anything else, such as abbreviations or foreign words)



Example of POS-Tagged Data (PennTreebank-style)

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT
number/NN of /IN other/JJ topics/NNS ./.

There/EX was/VBD still/JJ lemonade/NN in/IN the/DT
bottle/NN ./.



Hidden Markov Model



POS-Tagged Data

We will prescribe a joint distribution over the space of texts
annotated with their POS tags.

That is, we will be learning to assign probability to sequence pairs
of the kind (wy.s, ¢1.¢), where wy .4 is a word sequence and ¢y is
the corresponding POS tag sequence.

Example: ((a, nice, dog), (DT, JJ, NN)).

wi:3 C1:3




Applications

e Text analysis: annotating text with POS tags
(e.g., input to other tools, such as tools for knowledge
extraction)

e Language modelling: address some limitations of NGram LMs
(e.g., linguistically related wordforms are treated as such)

e Also, the ideas we develop now will prove useful in many
labelling tasks

(e.g., entity recognition, semantic labelling, etc.)

10



Formalisation

W is a random word. An outcome w is a symbol in a vocabulary

W of size V.

C is a random POS tag. An outcome c is a symbol in the tagset C
of size K.

X = (Wi,..., W) is a random word sequence. An outcome wy.g

is a sequence of £ words from W.

Y =(C,...,CL) is a random tag sequence. An outcome ¢y is a

sequence of ¢ tags from C.

11



Statistical Task

Design a mechanism to assign probability Pxy (wi.z, c1.¢) to
POS-tagged text, that is, to any outcome (wy., c1.¢) € W* x C* .

e factorise Pxy (w1.¢, c1.0)

e.g., chain rule, conditional independencies

e parameterise its elementary factors
e.g., tabular Categorical cpds

Estimate the parameters of this mechanism from data (i.e., text
annotated with POS tags).

e eg., use MLE to estimate the free parameters of our
parameterisation

12



NLP Tasks

Predict a POS tag sequence for a given text.

The outcome assigned largest probability mass is known as the mode of the
probability distribution.

13



NLP Tasks

Predict a POS tag sequence for a given text. For example, via
mode-seeking search:

arg max Py‘x(clzﬁ‘ w1.)
Cl;gecz

The outcome assigned largest probability mass is known as the mode of the
probability distribution.
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NLP Tasks

Predict a POS tag sequence for a given text. For example, via
mode-seeking search:

arg max Py‘x(clzﬁ‘ w1.)
Cl;gecz

Assign probability to text that is not annotated with POS tags

The outcome assigned largest probability mass is known as the mode of the
probability distribution.
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NLP Tasks

Predict a POS tag sequence for a given text. For example, via

mode-seeking search:

arg max Py x(cr.¢|wiy)
Clpec

Assign probability to text that is not annotated with POS tags,

via marginalisation:

Px(wie) = > Pxy(wi, cr)

Cl:Zecé

The outcome assigned largest probability mass is known as the mode of the

probability distribution.
13



Let’s get started — Factorisation

Challenge. Pxy is a distribution over a countably infinite space of
sequence pairs.

Key Idea. Express the probability of a sequence pair using the
probabilities of the “steps” needed to generate it. Design steps

such that they have a simple, countably finite sample space.

14



Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

Generative story

BoS

We pad the tag sequence with a BOS symbol. We pad both sequences with a
EO0S symbol.

ii5)



Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC
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Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

Generative story

BosS —>

We pad the tag sequence with a BOS symbol. We pad both sequences with a
EOS symbol.



Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

Generative story

BosS —»’7

We pad the tag sequence with a BOS symbol. We pad both sequences with a
EOS symbol.



Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

Generative story

"2

We pad the tag sequence with a BOS symbol. We pad both sequences with a
EOS symbol.
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Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

Generative story

H* @

® e O

We pad the tag sequence with a BOS symbol. We pad both sequences with a
EOS symbol.



Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

Generative story

H* ()
® & O

We pad the tag sequence with a BOS symbol. We pad both sequences with a
EOS symbol.



Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

Generative story

H* @

® e O

®
®
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We pad the tag sequence with a BOS symbol. We pad both sequences with a
EOS symbol.



Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

Generative story

H* & & ©
ONCRONCO

We pad the tag sequence with a BOS symbol. We pad both sequences with a
EOS symbol.



Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

Generative story

H* &0

ONCRONC)

®
®
®
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We pad the tag sequence with a BOS symbol. We pad both sequences with a
EOS symbol.



Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

Generative story

H* () HH
®

We pad the tag sequence with a BOS symbol. We pad both sequences with a
EOS symbol.



Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

Generative story

H* & 06

®
®
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We pad the tag sequence with a BOS symbol. We pad both sequences with a
EOS symbol.



Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

Generative story

H* (= H’H &
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We pad the tag sequence with a BOS symbol. We pad both sequences with a
EOS symbol.



Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

Generative story
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We pad the tag sequence with a BOS symbol. We pad both sequences with a
EOS symbol.



Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

® @
O

Generative story

H* & 06

We pad the tag sequence with a BOS symbol. We pad both sequences with a
EOS symbol.



Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

°°
O @

Generative story

H* & 06

We pad the tag sequence with a BOS symbol. We pad both sequences with a
EOS symbol.



Modelling POS-tagged data: illustration

Joint observations
the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

Generative story

"62e0000s
© ©®

Joint probability

Pcic,..(DET|BOS) Py c(the|DET)
% Pc|c,..(NOUN|DET)Pyy,c(book|NOUN)
X ooo

X Pc Core (EOS|PUNC)PWK(EOS|EOS)

We pad the tag sequence with a BOS symbol. We pad both sequences with a
EOS symbol.



Chain Rule for the HMM

Conditional independences

e W, is independent of all but C;;
e (; is independent of all but C;_;.

Leading to

¢
ind.
Pxy (wie; ce) = 1] Pejgpe(cileio1) Pwic(wile) (1)

i=1

transition emission

Hint. Pad the sequences with a BOS tag (context for the first
transition) and EOS tag (for the final transition) and EOS token
(for the final emission).

16



Generative Story

1. Start with X = (Wp = BOS), Y = (Co = BOS) and set i = 1;

2. Condition on the previous class ¢;_1 and draw a class ¢; with
probability chprev(c,-|c,-_1) extending Y with it;

3. Condition on the current class ¢; and draw a word w; with
probability Pyy|c(wi|c;) extending X with it;

4. If w; is a special end-of-sequence symbol (EOS), terminate,
else increment i and repeat from (2).

This specifies a factorisation of Pxy in terms of elementary
factors of the kind Pcc,,, and Pyc.

17



Tabular Parameterisation

Transition distributions. Given a previous tag r, the transition
distribution over (next) tags is Categorical:

ClCorev =1 ~ Categorical(/\(lfb

18



Tabular Parameterisation

Transition distributions. Given a previous tag r, the transition
distribution over (next) tags is Categorical:

C|Corev =r ~ Categorical(/\(lfb hence, Pcic,..(clr) = )\(Cr)
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Tabular Parameterisation

Transition distributions. Given a previous tag r, the transition
distribution over (next) tags is Categorical:

C|Corev =r ~ Categorical(/\gfk) hence, P¢ic,.,(clr) = )\E:’)

Emission distribution. Given a tag c, the emission distribution
over words is also Categorical:

WI|C =cn~ Categorical(ﬂgf\)/)
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Tabular Parameterisation

Transition distributions. Given a previous tag r, the transition
distribution over (next) tags is Categorical:

C|Corev =r ~ Categorical(/\gfk) hence, P¢ic,.,(clr) = )\E:’)

Emission distribution. Given a tag c, the emission distribution
over words is also Categorical:

W|C = ¢ ~ Categorical(6{%),)  hence, Py c(wlc) = 0

Probability mass function (pmf).

ny ng,Clg H >\C,Cl 1) % 9(61)

tran5|t|on emission
18



For a/DT nice/JJ dog/NN, we have probability mass:

ng':l A(Cfi—l) % 0‘(”5:) _
~—— ~—
transition  emission

)\(DB_I_OS)egDT))\SIJDT)H(JJ))\(NJ,;ll)e

nice

(NN) | (NN) ,(EOS)
dog EOS UEOS

19



Parameter Estimation via MLE

Given a dataset of observed texts annotated with POS, the
maximum likelihood estimate of:

e Transition. The conditional probability Pc|c,.,(c|r) of
generating a tag c right after having generated a tag r is

20



Parameter Estimation via MLE

Given a dataset of observed texts annotated with POS, the
maximum likelihood estimate of:
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Parameter Estimation via MLE

Given a dataset of observed texts annotated with POS, the
maximum likelihood estimate of:

e Transition. The conditional probability Pc|c,.,(c|r) of
generating a tag c right after having generated a tag r is

A\(1) MLE countg,,,c(r,c)  countg,,c(r,c)
U=

YK countc,, c(r, k) countg,,,(r)

e Emission. The conditional probability Pyc(w|c) of
generating word w from tag c is
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Parameter Estimation via MLE

Given a dataset of observed texts annotated with POS, the
maximum likelihood estimate of:

e Transition. The conditional probability Pc|c,.,(c|r) of
generating a tag c right after having generated a tag r is

A\(1) MLE countg,,,c(r,c)  countg,,c(r,c)
U=

YK countc,, c(r, k) countg,,,(r)

e Emission. The conditional probability Pyc(w|c) of
generating word w from tag c is
MLE  countcw/(c,w) countcw (c, w)

6% " -
SV countew(c, o) count¢(c)

20



Data Sparsity

It's still possible that this model suffers from data sparsity (e.g.,
unseen transitions or unseen emissions), but much less so than an
NGram LM: contextual information is only available through the
POS tag of the previous position (only K possible outcomes,
instead of VN=1 outcomes).

21



Strong Conditional Independence Assumptions

PLAN as a verb (I read that the government plans to ...) or noun (I read
the government plans to ...)

e older history (read that vs. read the) affects the analysis
HER as determiner (I read her book) or object (I saw her there).
e the (semantics of the) verb (to read vs. to see) affects the analysis

Agreement features cannot always be delexicalised: a cat vs a cats.

LIKE as verb (Children like to play outside) or preposition (Children like
their parents need support).

e analysing like requires looking ahead of it

22



Possible Improvements

Relax some independencies, e.g.

e trigram transitions: have C; depend on (G2, Ci_1);
e bigram emissions: have W; depend on W;_;

e other, e.g., have Wj depend on C;_1, etc.

These ideas can lead to better models, but tabular representations
become larger (and sparser) and they lead to other problems (as

we will see next).

23



Evaluation




Tagging Performance

Predict a POS tag sequence for novel text. For example via
mode-seeking search:

1 = argmax Py x(c1.elwie)
Civ € Ce

Evaluate the mode by comparison of the predicted ¢;4 to a
human-annotated cj.,,. This is usually done by regarding the task
as a per-step multiclass classification problem: compute per-POS
F1 and report macro (or weighted) average.

24



Let's understand what it means to solve this expression

1.0 = arg max Py x(cr.elwi)
cl;gEC‘

the cute cat

&) @ a

25



Let's understand what it means to solve this expression

1.0 = arg max Py x(cr.elwi)
cl;gEC‘

the cute cat

1. Enumerate all a @ o
candidate tag D D D
sequences D D J

D D N
D D \%
D D X
D J D
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Let's understand what it means to solve this expression

1.0 = arg max Py x(cr.elwi)
CMEC‘

the cute cat

1. Enumerate all C a
candidate tag D D D
sequences D D J

2. Assess the probability D D N
of each candidate D D Vv

3. Sort by probability b b X

D J D

and pick the best

We have K! candidates, enumeration is intractable! 25



LM Performance

Assign marginal probability to observed text wi.y:

Px(wie) = > Pxy(wie, i)

Cl;gece

Evaluate the model in terms of its perplexity estimated on text
heldout from training.

26



Let's understand what it means to solve this expression

> Pxy(wis, cre)

C1¢ Ecl

the cute cat

&) @ a
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Let's understand what it means to solve this expression

1. Enumerate all
candidate tag
sequences
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C1¢ Ecl
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D D D
D D J
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D D V
D D X
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Let's understand what it means to solve this expression

> Pxy(wa, cre)

C1¢ Ecl

the cute cat

1. Enumerate all C a3
candidate tag D D D
sequences D D J

2. Assess the probability D D N
of each candidate D D \%

D D X
D J D
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Let's understand what it means to solve this expression

> Pxy(wis, cre)

C1¢ Ecl

1. Enumerate all
candidate tag
sequences

2. Assess the probability
of each candidate

3. Sum their
probabilities

the cute cat
a @ c3
D D D
D D J

D D N
D D V
D D X
D J D

27



Let's understand what it means to solve this expression

> Pxy(wis, cre)

C1¢ Ecl

the cute cat

1. Enumerate all a ) C3

candidate tag
sequences

2. Assess the probability
of each candidate

3. Sum their
probabilities

O O 0O 000
O X< 2“0

We have K* candidates, enumeration is intractable! 27



Dynamic Programming

Enumeration is intractable, but, as it turns out, it's unnecessary.
Because of the conditional independences in the HMM, changing
the POS tag of position i can only affect

e one emission probability (G — w;)

e and two transition probabilities (C;i—1 — C; and G; — Ci11).
This allows us to solve search and marginalisation incrementally
from left to right in time O(L x K?) using the Viterbi or Forward

algorithms. Watch the video | prepared for you:
https://youtu.be/rVCd7NrGcSI

28
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Sequence Labelling




POS Tagging

We are given the text and we do not care to assign probability to
it.

pa ki

Part of Speech Tagger
{ I | ! |
Janet will back the bill
X X X X X

1 2 3 4 5

Our goal is to develop a system that can POS tag the input
sequence.

Figure from Chl7 https://web.stanford.edu/~jurafsky/slp3/17.pdf 29
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Named-Entity Recognition

NER is a labelling task from a semantic perspective, where we
recognise proper nouns that refer to a certain type of entity.

Citing high fuel prices, [org United Airlines] said [Tpyg Friday] it
has increased fares by [yyongy $6] per round trip on flights to some
cities also served by lower-cost carriers. [grg American Airlines], a
unit of [ogrg AMR Corp.], immediately matched the move, spokesman
[per Tim Wagner] said. [grg United], a unit of [jrg UAL Corp.],
said the increase took effect [ty\g Thursday] and applies to most
routes where it competes against discount carriers, such as [; o Chicago]
to [ oc Dallas] and [; oc Denver] to [[ oc San Francisco].

The text (in black) is given and we do not care to assign
probability to it. Our goal is to develop a system that can detect
and categorise mentions to named entities (i.e., the blue spans)

Figure from Ch17 https://web.stanford.edu/~jurafsky/slp3/17.pdf
30
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Chunking as Labelling

We can see NER as sequence labelling by labelling tokens as inside
or outside a span of text that refers to a named-entity.

Words 10 Label BIO Label BIOES Label
Jane I-PER B-PER B-PER
Villanueva I-PER I-PER E-PER
of (0] (0] (0]
United I-ORG B-ORG B-ORG
Airlines I-ORG I-ORG I-ORG
Holding I-ORG I-ORG E-ORG
discussed (0] (0) (0]
the (0] (0] (0]
Chicago I-LOC B-LOC S-LOC
route (0] (0] (0]

(0] (0] (0]

I3 PN NER as a sequence model, showing IO, BIO, and BIOES taggings.

These annotation schemes fit right into the sequence labelling
framework we developed for POS tagging.

31



Key Technical Limitation

Because HMMs need to generate text, they power sequence
labellers that make fairly limited use of linguistic context in wy.y.

Having C; interact with words other than W; would make key
quantities in the HMM very hard to compute (e.g., marginal and
mode probabilities). It would also make the tabular CPDs rather

sparse.

32



Limitations from a Linguistic Perspective

Unseen words and phrases (e.g., proper names and acronyms,
inflected verbs, phrasal verbs) are actually quite frequent.

In many cases, their likely interpretation (e.g., syntactic or
semantic function) are identifiable from fine-grained features:
capitalisation (in English), prefixes and suffixes (e.g., ‘un-" or
‘-ed"), knowing the words surrounding a certain position (e.g., a

window of 5 words), etc.

33



Local Log-Linear Models




Rethinking Factorisation

Sequence labelling tasks map from a token sequence to the tag
sequence that's assigned highest probability under the model

o = argmax Py x(c1.elwie)
Ciy € CZ

In an HMM, we obtain this conditional by inferring it from a joint
distribution (which we design, i.e., factorise and parameterise).

What if, instead, we attempted to factorise and parameterise this

conditional directly?

34



Conditional modelling

The HMM is a generative model of labelled text.

We may choose to regard the text as a predictor, and model the
conditional distribution of tag sequences.

85



First Idea: 0-order model

Let's start even simpler and make a 0-order Markov assumption:
C,' 1 CHA,‘X :X,I = 1.

Py x(crelwie) = ﬁ Pexi(cilwag, i) (4)
i=1
PRS0 G

he * went to the store "EoS
Ci L G4i|X = x,I =i is pronounced: given x and that we want to tag the
ith word, the distribution of the ith tag C; is independent of the rest of the tag

sequence.

36



First Idea: 0-order model

Let's start even simpler and make a 0-order Markov assumption:
C,' 1 CHA,‘X :X,I = 1.

¢
ind. :
Pyix(crelwae) "= T Pealeilwase, i) (4)
i=1

P4

he * went to the store "EoS

To make this happen, we will need to rethink parameterisation!

Ci L G4i|X = x,I =i is pronounced: given x and that we want to tag the
ith word, the distribution of the ith tag C; is independent of the rest of the tag
sequence.

36



Rethinking Parameterisation

In the O-order conditional model, the cpd of any one tag depends
on the entire text wy.p, for each position i € [{].

C| X =wpy,| =i ~ Categorical( Oy, ...,0k )
—_— —_———
conditioning context conditional probs

Since the conditioning context is a high-dimensional,
variable-length outcome, we cannot give this cpd tabular treatment
(i.e., store conditional probs for every (wy.g,i)).

Instead we can learn to predict conditional probs from a
D-dimensional representation of the conditioning context.

Note how this parallels the design of a text classifier: in a given textual
context we want to predict a distribution over K labels.

37



Feature Function

Let ¢(wi.g, i) € RP be a feature vector representing (‘describing’)
the ith position of wy ..

Examples:

o ¢((he, went, to, the, store), 3) is a vector u such that

Uid(word:to) = L, Uid(before:went) = 1L Uid(after:the) = 1,
Uid(position) = 3/5, and other coordinates of u are 0;

38



Feature Function

Let ¢(wi.g, i) € RP be a feature vector representing (‘describing’)
the ith position of wy ..

Examples:

o ¢((he, went, to, the, store), 3) is a vector u such that

Uid(word:to) = L, Uid(before:went) = 1L Uid(after:the) = 1,
Uid(position) = 3/5, and other coordinates of u are 0;

e ¢((he, went, to, the, store),5) is a vector v such that

Vid(word:store) = 1, Vid(before:the) = L, Vid(after:EOS) = L,
Vid(position) = /5, and other coordinates of v are 0;

38



Logistic CPDs

We map any given conditioning context (wy.z, /) to a
K-dimensional probability vector by

1. mapping it to the real coordinate space;
2. linearly mapping the result to K scores;

3. projecting the result to the probability simplex:

step 2
——
f(wip, i; @) = softmax(W ¢(wy., i) +b)
—_———

step 1

step 3

with @ = {W € RK*D b ¢ RK1.
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Exercise (for after class)

Here are templates for the coordinates of a feature function
¢(wr.p, i): word:w;, before:w;_1, after:w;;1, all binary-valued. If
we know a total of V words, what is the dimensionality D of this

feature space?
What if we add the templates before2:w; - and after2:w; 7

And what if we add the templates wordpref:prefix(w;),
wordsuff:suffix(w;) and wordstem:stem(w;)? Assume we know R

prefixes, S suffixes, and a number V/ o« V of stems.

For example, prefix(unwanted) = un, stem(unwanted) = want,

suffix(unwanted) = ed.
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Pmf

For i € [¢], here's our model
C| X =wyy,| =i ~ Categorical(f(wy.s, i;0))
—_—— —_———

conditioning context predicted probs

Here's the pmf
¢

Py x(crelwie) = H Peixi(cilwig, i)
'jl (5)
= H[f(Wl;g, I 9)]Ci
=1

1=

The notation [v]; is equivalent to vj, it's easier to read when the vector

argument is the output of a function with multiple arguments. 41



Pmf

For i € [¢], here's our model
C| X =wyy,| =i ~ Categorical(f(wy.s, i;0))
—_—— —_———
conditioning context predicted probs

Here's the pmf
¢

Py x(crelwie) = H Peixi(cilwig, i)
'jl (5)
= H[f(Wl;g, I 9)]Ci
=1

1=

Note how this amounts to designing 1 ‘text classifier'-type thing
and re-using it for each and every step of the sequence.

The notation [v]; is equivalent to vj, it's easier to read when the vector

argument is the output of a function with multiple arguments. 41



Exercise (for after class)

About the 0-order model we designed.
Claim 1: it cannot be used as a language model.

Claim 2: finding the best tag sequence for a given text wy.y can be
done by solving a sequence of £ independent classifications.

Accept or reject the claims, justifying your decision in each case.
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Likelihood Function

Just like before, we do MLE. Unlike before, this time we will not

have an exact, closed-form expression.

We have a training corpus D = {(x1,y1),--.,(xn,yn)} of N data
points, the nth of which is a labelled sequence of length Z,,.

We assess the log-likelihood of @ given D

N
L0(8) =" log Py ix(valx)

n=1

N ¢,
=Y ") "log Pcixi(Vn,ilxn, i)
N—_————

n=1 j=1
—[Fn0)]e

The technical term from statistics is likelihood of model parameter given
observed data, in ML and applied ML, esp in recent years, Lp(6) is often
referred to as ‘likelihood of data’. 43



Gradient-Based Optimisation

We search for the parameter value that optimises the log-likelihood
function:
OMLE = argmax Lp(0) (7)
0

There's no closed-form solution to this optimisation problem (for
our log-linear model), but we can approximately solve it via an
iterative gradient-based optimisation

0' = 0 +VoLlp(0) (8)

We typically use autodiff [Baydin et al., 2018] and a stochastic
optimiser.
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More Dependencies: 1-order model

We could make a 1-order Markov assumption:
¢

Py x(crelwi:e) = H PeixiCpe, (CilW1ee, i, Ci1) (9)
=1

BoS

he’ went to the store EoS

G L Ggi—1,i}|X = x,1 =i, Gyrew = r: given x, that we want to tag the ith

word, and that the previous word received tag Cyev = r, the distribution of the

ith tag G is independent of all but the previous tag in the tag sequence. i



More Dependencies: 1-order model

We could make a 1-order Markov assumption:
¢

Py x(crelwi:e) = H PeixiCpe, (CilW1ee, i, Ci1) (9)
=1

BoS

he’ went to the store EoS

A feature function for this has access to the previous class: e.g.,
¢((he, went, to, the, store), 3, Verb) is a vector u such that
Uid(word:to) — 1L Uid(before:went) — L, Uid(after:the) — 1,

Uid(position) = 3/s, Uid(prevtag:Verb) = 1 and other coordinates are 0

G L Ggi—1,i}|X = x,1 =i, Gyrew = r: given x, that we want to tag the ith

word, and that the previous word received tag Cyev = r, the distribution of the

ith tag G is independent of all but the previous tag in the tag sequence. i



Exercise (for after class)

Claim 1. Compared to the example feature function for the 0-order
model, the example feature function for the 1-order model has K
new coordinates.

Claim 2. Finding the best tag sequence for the 1-order model can
be done as follows: start with ¢y = BOS, iteratively for each i from
1 to ¢, solve:

& = argmax Pcix(k|wi, i, &i-1)
ke[K]

Accept or reject the claims, justifying your decision in each case.
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Conditional Chain Rule

We could use chain rule, conditioned on the word sequence

¢
Pyix(crelwie) 2 T Pexn(cilwie, c<i) (10)
i=1

he went to the store " EoS

For now, a powerful feature function for this is not trivial to
design. That's because to describe the complex dependencies in
the history using indicators, we increase the dimensionality of the

feature space exponentially with length of history.
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Log-linear models can achieve a /ot!

e \We can use more context, word internal features, etc.

e They are more statistically efficient than tabular cpds: the size
of the model does not depend on how many
condition-outcome pairs are possible.

e They have been applied to POS tagging, NER, semantic role
labelling, etc.

But they are tricky to design

e Good feature functions require enough intuitions about what's
likely useful for a task.

e Interesting feature spaces are typically very large.
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e HMMs combine generation and classification, they can be

used as taggers or LMs.

e HMMs make strong factorisation assumptions and have are
parameterised inefficiently (tabular cpds).

e Log-linear models are a good alternative parameterisation of
Categorical cpds.

e Local log-linear models can power direct modelling of complex
conditional distributions.

e These ideas power various sequence labelling tasks.
We can extend these in two ways: global modelling (not covered in

this course, look for CRFs), and fewer Markov assumptions (with

neural parameterisation).
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Self-study Videos on Canvas Media Gallery

e Exercises throughout slides (solutions at the end of slides)

e Watch the video on Viterbi/Forward
e Watch the videos on logistic CPDs: theory, example, and

code.
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https://youtu.be/rVCd7NrGcSI
https://youtu.be/5oz2vAzAs8k
https://youtu.be/DsflDpm5h-c
https://colab.research.google.com/drive/19LiLszW61-XCvMMdyrQKq8x_hVqEpM_P?usp=sharing

Solutions



Feature Spaces

Here are templates for the coordinates of a feature function ¢(wi.s, i):
word:w;, before:w; 1, after:w; 1, all binary-valued. If we know a total of
V words, what is the dimensionality D of this feature space? The feature
space has to accommodate every possible instantiation of those
templates, there are V' ways to instantiate each of the 3 templates, hence
D=3xV.

What if we add the templates before2:w; » and after2:w;,»? That would
increment D with 2 x V features, since each of these templates can be

instantiated in V possible ways.

And what if we add the templates wordpref:prefix(w;), wordsuff:suffix(w;)
and wordstem:stem(w;)? Assume we know R prefixes, S suffixes, and a
number V'’ o V of stems. The are R ways to instantiate the wordpref
template, S ways to instantiate the wordsuff template, and a number

V'’ o< V ways to instantiate the template wordstem, hence we would
increment D by R+ S + V.



0-order model

About the 0-order model we designed.
Claim 1: it cannot be used as a language model.

This is true because the model is not inferred from a joint distribution
over the space of labelled text, instead, it is a probability distribution
directly specified over the space of tag sequences.

Claim 2: finding the best tag sequence for a given text wy., can be done
by solving a sequence of £ independent classifications.

This is true because the definition of the Categorical parameter
f(We(wi.p, i) + b) is such that for any position i we would like to
classify, it only has access to the text wy.p itself. In other words, for each
and every step, there are no dependencies on other tags, and hence the
tagging of each position is independent of the tagging of any other
position.



About 1st-order model

Claim 1. Compared to the example feature function for the 0-order model, the
example feature function for the 1-order model has K new coordinates.

This is true because the new feature function has a template prevtag:ci—1 for
the previous tag, which can be instantiated in K possible ways.

Claim 2. Finding the best tag sequence for the 1-order model can be done as
follows: start with & = BQOS, iteratively for each i from 1 to ¢, solve:

& = argmax Pcx(k|lwi, i, 1)
KkelK]

This is false because now each tagging decision depends on the tagging
decision done previously. It is possible that a decision that's locally optimal for
step i = 2 is not globally optimal a few steps later. Extra information for you:
To solve this correctly, we need dynamic programming. As the unobserved
variables of this problem (the tags in the tag sequence) depend on one another
in the same way as they would in the standard HMM (i.e., in a 1st-order linear
chain), we can actually use a version of the Viterbi algorithm for this.
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