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Where are we at?

Week 1

• HC1a: text classification

• HC1b: language modelling

Week 2

• HC2a: sequence labelling

• Today: syntax (and morphology)
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Modelling Language Thus Far

Bag-of-words (e.g., NB)

• ignore word order entirely

Markov models (e.g., bigram LM)

• memorise short observed phrases

HMM

• capture shallow syntactic patterns

through adjacent word classes

• no semantic dependency amongst

words
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If you want to learn more about how to read these diagrams, you can check a

link from our earlier classes: introduction to PGMs
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https://www.youtube.com/watch?v=9lmFfhzpWag


Phrase Categories

Much like we abstracted from words to their (syntactic) categories,

we can abstract from phrases to their syntactic categories.
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On Mentimeter...
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Generalising POS categories

POS categories indicate which words are substitutable:

I saw a [ADJ] cat.

Phrasal categories indicate which phrases are substitutable:

[NP. . .] sleep soundly.

Phrasal categories; noun phrase (NP), verb phrase (VP),

prepositional phrase (PP), etc.
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Heads and Phrases

The class that a word belongs to is closely linked to the name of

the phrase it customarily appears in.

In English,

NPs are commonly of the form

• (Det) Adj* Noun

(PP|RelClause)*
NP

(PP|RelativeClause)*

that tried to bite me

Noun

duck

Adj*

angry

(Det)

the

VPs are commonly of the form

• (Aux) Adv* Verb Arg*

Adjunct*

VP

Adjunct*

for dinner

Arg*

pasta

Verb

eat

Adv*

usually

(Aux)

would

6



Constituency

Syntactic constituency is the idea that groups of words can behave

as single units, or constituents.

Example: noun phrases (NPs)

One evidence for their existence is that they appear in similar

syntactic environments (e.g., NPs tend to appear before a verb).

Figures from Section 18.1 of textbook.
7

https://web.stanford.edu/~jurafsky/slp3/18.pdf


Nesting

Constituents can be hierarchically embedded in other constituents.

You can view the result as a tree-like structure.
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Context-Free Grammars



Context-Free Grammar (CFG)

A rewriting system with two types of symbols and a set of

symbol-rewriting rules.

Symbols

• Terminals (or constants): words;

• Nonterminals (or variables): word and phrasal categories.

Rules

• X → β where X is a nonterminal, and β is any string of

terminal and nonterminal symbols.
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Example

Nonterminals: S, NP, VP, PP, Pron, N, V, P

Terminals: I, eat, pizza, with, anchovies

• S → NP VP

• NP → NP PP

• VP → VP PP

• VP → VP NP

• PP → P NP

• VP → V

• NP → Pron

• NP → N

• V → eat

• Pron → I

• P → with

• N → pizza

• N → anchovies
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Parses

Text: I eat pizza with anchovies
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CFG Formally

Σ is a finite set of terminal symbols

V is a finite set of nonterminal symbols, with a distinguished start

symbol S ∈ V and V ∩ Σ = ∅

R is a finite set of rules of the kind: X → β with X ∈ V and

β ∈ (Σ ∪ V)∗.

A CFG is the tuple ⟨Σ,V,S,R⟩
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CFG Terminology

Arity (length of rule’s RHS)

• unary: A → B

• binary: X → B C

• n-ary: X → X1, . . . , Xn

• if the longest rule has arity a, we say the grammar has arity a

No matter the CFG, we can always re-express the same set of

strings in Chomsky normal form (CNF), which gives us a grammar

of arity 2.
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Derivation

We can use CFGs to derive strings

A derivation is a sequence of strings

• we start from the string ⟨S⟩

• and at each step we rewrite the leftmost nonterminal X by

application of a rule X → β

• until only terminals remain

If a string w1 · · ·wℓ is derivable from S we write: S
∗⇒ w1 · · ·wℓ.
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Example

Rule Derivation

BoS → S ⟨S⟩

S → NP VP ⟨NP VP⟩
NP → D N ⟨D N VP⟩
D → the ⟨the N VP⟩
N → dog ⟨the dog VP⟩
VP → V ⟨the dog V⟩
V → barks ⟨the dog barks ⟩

We can denote the derivation (i.e., sequence of rule applications) by δ.

The fact that δ derives a specific string (e.g., the dog barks ) can be

denoted by S
δ⇒ w1 · · ·wℓ.
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So we write some rules. What could go wrong?

On Mentimeter...
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Probabilistic Context-Free

Grammars



Probabilistic CFG (PCFG)

A probability distribution over the space of all derivations

(including their yields) supported by a grammar.
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Factorisation

A random derivation D = ⟨R1, . . . ,RM⟩ is a sequence of M

random rule applications. A valid derivation rewrites S into a

sequence of random words X = ⟨W1, . . . ,WL⟩.

The CFG backbone gives us a mechanism to factorise probabilities.

We can assign probability mass to r1:m via chain rule

PD(r1:m) =
m∏
j=1

PR|H(rj |r<j)

r<j is the history of rule applications relative to the jth rule in the

derivation.

Dyer et al. [2016] introduce a neural parameterisation of such as model.
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Markov Model over Steps

A random derivation D = ⟨R1, . . . ,RM⟩ is a sequence of M

random rule applications.

A random rule is a pair (N,S) of a random LHS nonterminal and a

random RHS string.

We can assign probability mass to r1:m via chain rule under a

Markov assumption:

PD(r1:m)
ind.
=

m∏
j=1

PR(rj) =
m∏
j=1

PS|N(βj |vj)

with vj ∈ V and βj ∈ (V ∪ Σ)∗

Note: pretend every derivation starts with r0 = BoS → S.
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Example

Rule Probability Derivation

1 ⟨S⟩
PS|N(NP VP|S) ⟨NP VP⟩
PS|N(D N|NP) ⟨D N VP⟩
PS|N(the |D) ⟨the N VP⟩
PS|N(dog |N) ⟨the dog VP⟩
PS|N(V|VP) ⟨the dog V⟩
PS|N(barks |V) ⟨the dog barks ⟩
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Generative Story

1. Start with D = ⟨S⟩
2. If all symbols in D are terminal, stop. Else, go to (3).

3. Condition on the left-most nonterminal symbol ν in the

derivation, and draw a RHS string β with probability

PS |N(β|v), replace ν in D by β. Repeat from (2).

This corresponds to a depth-first expansion of nonterminals. See

my commented Colab demo.
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https://colab.research.google.com/drive/11UGhml-TKGh10eKDF5y5-ZSHzwSNvvfF?usp=sharing


Parameterisation

If we can rewrite a nonterminal variable ν into K different ways,

associate a K -dimensional Categorical distribution with S |N = ν:

Examples:

S |N = S ∼ Categorical(θS→NP VP, θS→VP)

S |N = N ∼ Categorical(θN→cat , θN→dog , θN→bird )

The pmf assigns mass
∏m

j=1 θνj→βj
to a derivation

r1:m = ⟨ν1 → β1, . . . , νm → βm⟩
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Parameter Estimation via MLE

Relative frequency of observed rule application

θν→β =
count(ν → β)∑

(ν→γ)∈R count(ν → γ)
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Evaluation



On Mentimeter...
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Probability of Sentence

Due to structural ambiguities, there are potentially many

derivations for any one sentence w1:ℓ.

The PCFG assigns marginal probability

PX (w1:ℓ) =
∑

δ:S
δ⇒w1:ℓ

PD(δ)

equal to the sum of the probabilities of all derivations whose yield

is the sentence we want a marginal probability for.

The sum is over the space of all derivations that have w1:ℓ as yield.
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Evaluation as LM

Assess perplexity of model using marginal probability of sentences

in heldout dataset of valid sentences.
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Evaluation as Syntactic Parser

Obtain the most probable derivation subject to its yield being

the sentence we want to parse:

δ̂ = argmax
δ:S

δ⇒w1:ℓ

PD(δ)

Compare model prediction to a human annotated tree. Think of it

in terms of span classification (i.e., did we classify wi :j correctly as

an NP?), report the constituent label precision, recall, F1.

See section 18.8 of textbook.
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https://web.stanford.edu/~jurafsky/slp3/18.pdf


Parse Forest

The key to both uses of PCFG (as an LM or as a parser) is to find

all derivations of a given sentence w1:ℓ, a set we refer to as a parse

forest for w1:ℓ.

Enumeration is bad. We typically work with binary-branching trees

(arity=2), then the number of trees for a sentence of L words is

the Catalan number CL = (2L)!
(L+1)!L! .

28

https://en.wikipedia.org/wiki/Catalan_number
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CKY

But to find the sum of probabilities or the maximum probability we

do not need to enumerate the trees, we can exploit the Markov

assumption in yet another dynamic programme.

The CKY algorithm is a compact representation of a forest. It

can be used to find marginal probability (Inside algorithm) and

maximum probability (Viterbi algorithm).
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CKY - Intuition

A forest is made of elementary building blocks that are reused:

phrase categories over input spans.
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CKY - Intuition

A forest is made of elementary building blocks that are reused:

phrase categories over input spans.

A span is identified by a pair of positions from 0 to ℓ
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CKY - Intuition

A forest is made of elementary building blocks that are reused:

phrase categories over input spans.

POS tags span single words
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CKY - Intuition

A forest is made of elementary building blocks that are reused:

phrase categories over input spans.

Some phrase categories are derived by unary rules
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CKY - Intuition

A forest is made of elementary building blocks that are reused:

phrase categories over input spans.

Some phrase categories merge two spans
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CKY - Intuition

A forest is made of elementary building blocks that are reused:

phrase categories over input spans.

Some spans are common across derivations, while others
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CKY - Intuition

A forest is made of elementary building blocks that are reused:

phrase categories over input spans.

Some spans are common across derivations, while others aren’t

0

S

5

1

VP

5

2NP5

3PP5

4NP5

4N5

4anchovies 5

3P4

3with 4

2NP3

2N3

2pizza 3

1VP2

1V2

1eat 2

0NP1

0Pron1

0I 1

0

S

5

1

VP

5

3PP5

4NP5

4N5

4anchovies 5

3P4

3with 4

1VP3

2NP3

2N3

2pizza 3

1VP2

1V2

1eat 2

0NP1

0Pron1

0I 1

30



CKY - Intuition

A forest is made of elementary building blocks that are reused:

phrase categories over input spans.

We may derive the same phrase category in different ways
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CKY - Intuition

A forest is made of elementary building blocks that are reused:

phrase categories over input spans.
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CKY - Intuition

We can construct a

graph-like view of the forest,

compressed to size that is

cubic in sentence length.

Resources:

• my video tutoriala

• Appendix C of textbook

can be useful.

aOn Canvas Media Gallery
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https://youtu.be/jM0x_YMmEMM
https://web.stanford.edu/~jurafsky/slp3/C.pdf


Limitations

Limited use of linguistic context due to generative formulation.

The context-free assumption is not enough in general: some

linguistic constructions violate it.

Dynamic programming for PCFGs takes time that is cubic in

sentence length.
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Extensions

Like the HMM, the PCFG is a generative model. If all we care

about is a mechanism to predict parse trees, then we can

parameterise the model conditionally using an expressive feature

function. Examples: transition-based parsers, CRF parsers.

We may care about relations between words, more so than

constituency, for that we develop dependency grammars.

Optional reading: Chapter 19 of textbook.
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https://web.stanford.edu/~jurafsky/slp3/19.pdf


What Next

Self-study Videos on Canvas Media Gallery

• Watch the video on dynamic programming for PCFGs

• Watch Katia’s class on Morphology

(first 43 minutes of the video)

Other, useful (but optional) material

• Check the colab demo on sampling from PCFGs

• Chapter 18 of textbook

• Appendix C of textbook
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https://youtu.be/jM0x_YMmEMM
https://hva-uva.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=ddcd1207-fdfd-4af1-8f09-b153005e380a&start=172.733
https://colab.research.google.com/drive/11UGhml-TKGh10eKDF5y5-ZSHzwSNvvfF?usp=sharing
https://web.stanford.edu/~jurafsky/slp3/18.pdf
https://web.stanford.edu/~jurafsky/slp3/C.pdf
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