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Where are we at?

Week 1

e HCla: text classification

e HClb: language modelling
Week 2

e HC2a: sequence labelling

e Today: syntax (and morphology)



Modelling Language Thus Far

Bag-of-words (e.g., NB)

®
-®

e ignore word order entirely

Markov models (e.g., bigram LM)
O—@—

e memorise short observed phrases ,

HMM
E—Or—»

e capture shallow syntactic patterns
through adjacent word classes @ a

e no semantic dependency amongst
words

If you want to learn more about how to read these diagrams, you can check a

link from our earlier classes: introduction to PGMs


https://www.youtube.com/watch?v=9lmFfhzpWag

Phrase Categories

Much like we abstracted from words to their (syntactic) categories,
we can abstract from phrases to their syntactic categories.



On Mentimeter...



Generalising POS categories

POS categories indicate which words are substitutable:
| saw a [ADJ] cat.
Phrasal categories indicate which phrases are substitutable:
[np- - -] sleep soundly.

Phrasal categories; noun phrase (NP), verb phrase (VP),
prepositional phrase (PP), etc.



Heads and Phrases

The class that a word belongs to is closely linked to the name of
the phrase it customarily appears in.

In English,
NPs are commonly of the form VPs are commonly of the form
e (Det) Adj* Noun e (Aux) Adv* Verb Arg*
(PP|RelClause)* Adjunct*
NP VP
(Det) Adj* Noun (PP|RelativeClause)* (Aux) Adv* Verb Arg* Adjunct*
the angry duck that tried to bite me would usually eat pasta for dinner



Constituency

Syntactic constituency is the idea that groups of words can behave
as single units, or constituents.

Example: noun phrases (NPs)

Harry the Horse a high-class spot such as Mindy’s
the Broadway coppers the reason he comes into the Hot Box
they three parties from Brooklyn

One evidence for their existence is that they appear in similar
syntactic environments (e.g., NPs tend to appear before a verb).

three parties from Brooklyn arrive. ..

a high-class spot such as Mindy’s attracts. . .
the Broadway coppers love. ..

they sit

Figures from Section 18.1 of textbook.


https://web.stanford.edu/~jurafsky/slp3/18.pdf

Constituents can be hierarchically embedded in other constituents.

You can view the result as a tree-like structure.

S
/\
S S NP VP
N AN T
NP VP NP VP NP cC NP \Y
SN ] A N
D N v N \ N and N TUN
| L |
the dog Tuns cats run cats dogs



Context-Free Grammars



Context-Free Grammar (CFG)

A rewriting system with two types of symbols and a set of
symbol-rewriting rules.

Symbols

e Terminals (or constants): words;

e Nonterminals (or variables): word and phrasal categories.
Rules

e X — [ where X is a nonterminal, and (8 is any string of
terminal and nonterminal symbols.



Nonterminals: S, NP, VP, PP, Pron, N, V, P

Terminals: I, eat, pizza, with, anchovies

e S — NP VP e NP — N

e NP — NP PP oV o eat

e VP — VP PP

e Pron — I
e VP — VP NP

e P — with

e PP — P NP
e VP — V 0N—>p'izza
e NP — Pron e N — anchovies
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Text: I eat pizza with anchovies

NP/\ /S\

VP
\ T NP VP
Pron VP NP \ T~

A Pron VP PP
NP PP

|

v P NN
‘ ‘ A I VP NP P NP

eat N P NP ‘ ‘ ‘ ‘

‘ ‘ ‘ v N with N

pizza with N ‘ ‘ ‘

‘ eat pizza anchovies
anchovies
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CFG Formally

> is a finite set of terminal symbols

V is a finite set of nonterminal symbols, with a distinguished start
symbolS€Vand VNE =10

R is a finite set of rules of the kind: X — 8 with X € V and
g e (XU

A CFG is the tuple (X,V,S,R)

12



CFG Terminology

Arity (length of rule’s RHS)

e unary: A— B
e binary: X — BC
e n-ary: X = X1,...,X,

e if the longest rule has arity a, we say the grammar has arity a

No matter the CFG, we can always re-express the same set of
strings in Chomsky normal form (CNF), which gives us a grammar
of arity 2.

13



Derivation

We can use CFGs to derive strings

A derivation is a sequence of strings

e we start from the string (S)

e and at each step we rewrite the leftmost nonterminal X by
application of a rule X — (3

e until only terminals remain

If a string wy - - - wy is derivable from S we write: S = wy - - - wy.

14



Rule Derivation

BoS — S (s)

ii5)



Rule Derivation

BoS — S (s)
S—NP VP (NP VP)

ii5)



Rule Derivation

BoS — S (s)
S— NP VP (NP VP)
NP—-DDN (DN VP)

ii5)



Rule Derivation

BoS — S (s)

S—NP VP (NP VP)
NP—DN (DN VP)
D — the (the N VP)

ii5)



Rule Derivation
BoS — S (s)

S—NP VP (NP VP)
NP—-DDN (DN VP)

D — the (the N VP)

N — dog (the dog VP)

ii5)



Rule Derivation
BoS — S (s)

S—NP VP (NP VP)
NP—DN (DN VP)

D — the (the N VP)

N — dog (the dog VP)
VP —V (the dog V)

ii5)



Rule Derivation

BoS —»S (S

S—NP VP (NP VP)

NP DN (DN VP)

D— the  (the N VP)

N — dog (the dog VP)

VP —V (the dog V)

V — barks (the dog barks)

We can denote the derivation (i.e., sequence of rule applications) by 4.

The fact that ¢ derives a specific string (e.g., the dog barks) can be
denoted by S :5> Wy Wy

ii5)



So we write some rules. What could go wrong?

On Mentimeter...
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Probabilistic Context-Free
Grammars




Probabilistic CFG (PCFG)

A probability distribution over the space of all derivations
(including their yields) supported by a grammar.

17



Dyer et al. [2016] introduce a neural parameterisation of such as model.

18



A random derivation D = (Ry,..., Ry) is a sequence of M
random rule applications. A valid derivation rewrites S into a
sequence of random words X = (W4,..., W).

The CFG backbone gives us a mechanism to factorise probabilities.
We can assign probability mass to ry.,, via chain rule

Po(rim) = [ [ Prin(rilr<))
j=1

r<j is the history of rule applications relative to the jth rule in the

derivation.

Dyer et al. [2016] introduce a neural parameterisation of such as model.

18



Markov Model over Steps

A random derivation D = (Ry, ..., Ry) is a sequence of M
random rule applications.

A random rule is a pair (N, S) of a random LHS nonterminal and a
random RHS string.

We can assign probability mass to r., via chain rule under a
Markov assumption:

ind. - -
Po(r.m) = H Pr(r;) = H Psin(8j]v))
j=1 j=1
with v € V and §j € (VU X)*

Note: pretend every derivation starts with rp = BoS — S.

19



Rule Probability Derivation

1 ()

Psin(NP VPIS) (NP VP)

Psn(D NJNP) (D N VP)
Psin(the D) (the N VP)
Pon(dogl)  (the dog VP)
Pon(VIVP)  (the dog V)
Psin(barks V)  (the dog barks)

20



Generative Story

1. Start with D = (S)
2. If all symbols in D are terminal, stop. Else, go to (3).

3. Condition on the left-most nonterminal symbol v in the
derivation, and draw a RHS string 3 with probability
Psin(B|v), replace v in D by 3. Repeat from (2).

This corresponds to a depth-first expansion of nonterminals. See
my commented Colab demo.

21


https://colab.research.google.com/drive/11UGhml-TKGh10eKDF5y5-ZSHzwSNvvfF?usp=sharing

Parameterisation

If we can rewrite a nonterminal variable v into K different ways,
associate a K-dimensional Categorical distribution with S|N = v:

Examples:

S|N = s ~ Categorical(0s_np vp, 05— vp)

S|N = N ~ Categorical(fy— cat ; O dog s Oi—svira)

The pmf assigns mass H —1 0y, p; to a derivation
n:m= <’/1 _>B17---7Vm _>6m>
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Parameter Estimation via MLE

Relative frequency of observed rule application

count(v — f)
Z(V*)’Y)ER COUﬂt(V - ’Y)

01/—)5 =
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Evaluation




On Mentimeter...
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Probability of Sentence

Due to structural ambiguities, there are potentially many
derivations for any one sentence wy.y.

The PCFG assigns marginal probability
x(wi:) Z Pp(é
4:S

equal to the sum of the probabilities of all derivations whose yield

is the sentence we want a marginal probability for.

The sum is over the space of all derivations that have ws., as yield.

25



Evaluation as LM

Assess perplexity of model using marginal probability of sentences
in heldout dataset of valid sentences.

26



Evaluation as Syntactic Parser

Obtain the most probable derivation subject to its yield being

the sentence we want to parse:

6 = argmax Pp(0)

S0
0:S= Wy

Compare model prediction to a human annotated tree. Think of it
in terms of span classification (i.e., did we classify w;.; correctly as
an NP?), report the constituent label precision, recall, F;.

See section 18.8 of textbook.

27


https://web.stanford.edu/~jurafsky/slp3/18.pdf

The key to both uses of PCFG (as an LM or as a parser) is to find
all derivations of a given sentence wy.4, a set we refer to as a parse
forest for wy.p.

28


https://en.wikipedia.org/wiki/Catalan_number

The key to both uses of PCFG (as an LM or as a parser) is to find

all derivations of a given sentence wy.4, a set we refer to as a parse
forest for wy.p.

Enumeration is bad. We typically work with binary-branching trees
(arity=2), then the number of trees for a sentence of L words is

the Catalan number C; = (L(JEB.'L,

28


https://en.wikipedia.org/wiki/Catalan_number

But to find the sum of probabilities or the maximum probability we
do not need to enumerate the trees, we can exploit the Markov

assumption in yet another dynamic programme.

The CKY algorithm is a compact representation of a forest. It
can be used to find marginal probability (Inside algorithm) and

maximum probability (Viterbi algorithm).

29



CKY - Intuition

A forest is made of elementary building blocks that are reused:
phrase categories over input spans.

S
/\ s
NP VP T T
\ A NP VP
Pron VP NP | T T
| | T~ Pron VP PP
I v NP PP | N T
\ \ /\ I VP NP P NP
eat N P NP | | | |
| | | v N with N
pizza with N ‘ ‘ ‘
‘ eat pizza anchovies
anchovies

30



CKY - Intuition

A forest is made of elementary building blocks that are reused:
phrase categories over input spans.

A span is identified by a pair of positions from 0 to ¢

S
///////\\\\\\\ s
NP VP T T
\ A NP VP
Pron VP NP | T T
| | T~ Pron VP PP
ol1 v NP PP | N T
‘ ‘ P ol1 VP NP P NP
teaty; N P NP | | | |
\ \ \ v N swithy N
o2pizza3 3wWithy N ‘ ‘ ‘
‘ 1eaty 2pizza3z sanchoviess

sanchoviess 30



CKY - Intuition

A forest is made of elementary building blocks that are reused:

phrase categories over input spans.

POS tags span single words

S
/\
NP VP
oPron; VP NP |
I S8
ol1 Vo NP PP ‘
‘ ‘ /\ ol1
1eat 2N3 3P4 NP
| | |
gpizzag 3with4 4N5
|
sanchoviess

S

/\

VP

/\

VP PP
/\ A
VP NP 3P4 NP
| | | |
1Vo oN3 3withg 4N5
| | |
1eaty 2pizza3z sanchoviess

30



CKY - Intuition

A forest is made of elementary building blocks that are reused:
phrase categories over input spans.

Some phrase categories are derived by unary rules

S
/\ s
oNP; VP T T
| T oNP; VP
oPron; 1VPy NP ‘ /\
| | T~ oPron; VP PP
oli V2 oNPg PP | N T
‘ ‘ /\ ol1 1VP; 2NP3 3Py 4NPsg

1eat 2N3 3Py 4NPg ‘ ‘ ‘ ‘
‘ ‘ ‘ 1V2 2oN3 3withy 4Ns
gpizzag 3with4 4N5 ‘ ‘ ‘
‘ 1eaty 2pizza3z sanchoviess

sanchoviess 30



CKY - Intuition

A forest is made of elementary building blocks that are reused:
phrase categories over input spans.

Some phrase categories merge two spans

S
/\ s
oNP; VP T T
| T oNP; VP
oPron; 1VP, NP | T T
| | T~ oPron; VP 3PPs
oli V2 oNPg 3PPs | N T
‘ ‘ /\ ol1 1VP; 2NP3 3Py 4NPsg

1eat 2N3 3Py 4NPg ‘ ‘ ‘ ‘
‘ ‘ ‘ 1V2 2oN3 3withy 4Ns
gpizzag 3with4 4N5 ‘ ‘ ‘
‘ 1eaty 2pizza3z sanchoviess

sanchoviess 30



CKY - Intuition

A forest is made of elementary building blocks that are reused:
phrase categories over input spans.

Some spans are common across derivations, while others

S
/\ s
oNP; VP T T
‘ A oNP1 VP
oPron; 1VPy NP ‘ /\
‘ ‘ /\ oPron; 1VP3 3PPsg
o1 1V2 NP 3PPs | N T
‘ ‘ /\ ol1 1VP; 2NP3 3Py 4NPsg

1eat 2N3 3Py 4NPg ‘ ‘ ‘ ‘
‘ ‘ ‘ 1V2 2oN3 3withy 4Ns
gpizzag 3with4 4N5 ‘ ‘ ‘
‘ 1eaty 2pizza3z sanchoviess

sanchoviess 30



CKY - Intuition

A forest is made of elementary building blocks that are reused:
phrase categories over input spans.

Some spans are common across derivations, while others aren’t

S
/\ s
oNP; VP T T
‘ A oNP1 VP
oPron; 1VPy > NP5 ‘ /\
‘ ‘ /\ oPron; 1VP3 3PPsg
o1 1V2 NP 3PPs | N T
‘ ‘ /\ ol1 1VP; 2NP3 3Py 4NPsg

1eat 2N3 3Py 4NPg ‘ ‘ ‘ ‘
‘ ‘ ‘ 1V2 2oN3 3withy 4Ns
gpizzag 3with4 4N5 ‘ ‘ ‘
‘ 1eaty 2pizza3z sanchoviess

sanchoviess 30



CKY - Intuition

A forest is made of elementary building blocks that are reused:
phrase categories over input spans.

We may derive the same phrase category in different ways

S
/\ s
oNP; 1VPs /\
| T oNPy 1VPs
oPron; 1VPy >NP5 ‘ /\
| | T~ oPron; 1VP3 3PPs
ol1 1V2 2NP3 3PPs | PN T
‘ ‘ /\ 0l1 1VP2 2NP3 3P4 4NPs

1eat 2N3 3P4 4NPg ‘ ‘ ‘ ‘
‘ ‘ ‘ 1V2 2N3 3withy 4N5
opizza3 3withg 4N5 ‘ ‘ ‘
‘ 1eaty 2pizzas sanchoviess

sanchoviess 30



CKY - Intuition

A forest is made of elementary building blocks that are reused:
phrase categories over input spans.

We may derive the same phrase category in different ways

0S5
T~ 055
oNP; 1VPs /\
| T olNP; 1VPs
oPron; 1VPy >NP5 ‘ /\
| | T~ oPron; 1VP3 3PPs
ol1 1V2 2NP3 3PPs ‘ /\ A
‘ ‘ /\ 0l1 1VP2 2NP3 3P4 4NPs

1eat 2N3 3P4 4NPg ‘ ‘ ‘ ‘
‘ ‘ ‘ 1V2 2N3 3withy 4N5
opizza3 3withg 4N5 ‘ ‘ ‘
‘ 1eaty 2pizzas sanchoviess

sanchoviess 30



CKY - Intuition

Leveck

We can construct a 5
graph-like view of the forest, y
compressed to size that is
cubic in sentence length.
Resources:

e my video tutorial® 2

e Appendix C of textbook

can be useful. 1

?On Canvas Media Gallery

31


https://youtu.be/jM0x_YMmEMM
https://web.stanford.edu/~jurafsky/slp3/C.pdf

Limited use of linguistic context due to generative formulation.

The context-free assumption is not enough in general: some
linguistic constructions violate it.

Dynamic programming for PCFGs takes time that is cubic in

sentence length.

32



Extensions

Like the HMM, the PCFG is a generative model. If all we care
about is a mechanism to predict parse trees, then we can
parameterise the model conditionally using an expressive feature

function. Examples: transition-based parsers, CRF parsers.

We may care about relations between words, more so than
constituency, for that we develop dependency grammars.
Optional reading: Chapter 19 of textbook.

33


https://web.stanford.edu/~jurafsky/slp3/19.pdf

Self-study Videos on Canvas Media Gallery

e Watch the video on dynamic programming for PCFGs

e Watch Katia's class on Morphology
(first 43 minutes of the video)

Other, useful (but optional) material

e Check the colab demo on sampling from PCFGs
e Chapter 18 of textbook
e Appendix C of textbook

34


https://youtu.be/jM0x_YMmEMM
https://hva-uva.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=ddcd1207-fdfd-4af1-8f09-b153005e380a&start=172.733
https://colab.research.google.com/drive/11UGhml-TKGh10eKDF5y5-ZSHzwSNvvfF?usp=sharing
https://web.stanford.edu/~jurafsky/slp3/18.pdf
https://web.stanford.edu/~jurafsky/slp3/C.pdf
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