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Discourse structure

Document structure and discourse structure

I Most types of document are highly structured, implicitly or
explicitly:

I Scientific papers: conventional structure (differences
between disciplines).

I News stories: first sentence is a summary.
I Blogs, etc etc

I Topics within documents.
I Relationships between sentences.
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Discourse structure

Rhetorical relations

Max fell. John pushed him.

can be interpreted as:
1. Max fell because John pushed him.

EXPLANATION
or

2 Max fell and then John pushed him.
NARRATION

Implicit relationship: discourse relation or rhetorical relation
because, and then are examples of cue phrases
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Discourse structure

Rhetorical relations

Analysis of text with rhetorical relations generally gives a binary
branching structure:

I nucleus (the main phrase) and satellite (the subsidiary
phrase: e.g., EXPLANATION, JUSTIFICATION

Max fell because John pushed him.

I equal weight: e.g., NARRATION

Max fell and Kim kept running.
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Discourse structure

Coherence

Discourses have to have connectivity to be coherent:

Kim got into her car. Sandy likes apples.

Can be OK in context:

Kim got into her car. Sandy likes apples, so Kim thought she’d
go to the farm shop and see if she could get some.
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Discourse structure

Coherence in interpretation

Discourse coherence assumptions can affect interpretation:

John likes Bill. He gave him a nice Christmas present.

If EXPLANATION - ‘he’ is probably Bill.
If JUSTIFICATION (supplying evidence for another sentence),
‘he’ is John.
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Discourse structure

Factors influencing discourse interpretation

1. Cue phrases (e.g. because, and)
2. Punctuation (also prosody) and text structure.

Max fell (John pushed him) and Kim laughed.
Max fell, John pushed him and Kim laughed.

3. Real world content:
Max fell. John pushed him as he lay on the ground.

4. Tense and aspect.
Max fell. John had pushed him.
Max was falling. John pushed him.
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Discourse structure

Discourse parsing

Discourse parsing: identifying discourse structure and relations

Hard problem, much research has focused on labelling relations
between pairs of sentences / clauses

1. Classification with hand-engineered features

I e.g. punctuation, cue phrases, syntactic and lexical

2. Neural models

I take two sentences as input
I train a sentence encoder
I objective: predict the relation

Or learn document representations in a given task
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Learning document representations

Document representations

Document classification tasks:

I text categorization (e.g. by topic)
I sentiment analysis
I authorship attribution
I spam and phishing email filtering
I misinformation detection
I and many more
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Learning document representations

Learning document representations
I Last time we have seen LSTMs for learning sentence

representations

Long Short-Term Memory (LSTM)

24

LSTMs are a special kind of RNN that can deal with long-term dependencies in the data
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Learning document representations

Bidirectional LSTM

Bidirectional LSTM: BiLSTM

I Traverse the sentence in both directions

−→
ht = LSTMforward(

−→
h t−1, xt)

←−
ht = LSTMbackward(

←−
h t+1, xt)

ht = [
−→
ht ,
←−
ht ]
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Learning document representations

What is the sentence representation?

Options:

1. use hL — the final hidden state of the LSTM
2. use an average of LSTM hidden states at all time steps

(mean-pooling)
3. use max-pooling — take the maximum value in each vector

component of all hidden states
4. use an attention mechanism, i.e. a weighted sum of the

hidden states at all time steps
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Learning document representations

Attention mechanism

Sentence representation as a weighted sum of all hidden states
I the model learns a weight vector wα, and computes its dot

product with the hidden state ht transformed by a FFNN:

αt = wα · FFNNα(ht)

I normalise the weights into a distribution via softmax

at =
eαt∑L

k=1 eαk

I compute the sentence representation hATT as a weighted sum

hATT =
L∑

t=1

at · ht
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Learning document representations

Building a document representation

Options:

1. Feed the whole document to an LSTM word by word
I possibly use word-level attention to learn what are the

useful words
2. Build a hierarchical model

I first compute sentence representations
I combine sentence representations into a document

representation
I using another LSTM and / or attention over sentences
I train with a document level objective
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Learning document representations

Hierarchical attention networks

Yang et al. 2016. Hierarchical Attention Networks for Document
Classification. NAACL.

I Take pretrained word embeddings as input

I LSTM sentence encoder with word-level attention (to construct
sentence representations)

I LSTM document encoder with sentence-level attention (to
construct document representations)

I trained with document-level objective

Experiments with sentiment analysis and text categorization
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Learning document representations

Hierarchical attention network
tance of words and sentences are highly context de-
pendent, i.e. the same word or sentence may be dif-
ferentially important in different context (§3.5). To
include sensitivity to this fact, our model includes
two levels of attention mechanisms (Bahdanau et al.,
2014; Xu et al., 2015) — one at the word level and
one at the sentence level — that let the model to
pay more or less attention to individual words and
sentences when constructing the representation of
the document. To illustrate, consider the example
in Fig. 1, which is a short Yelp review where the
task is to predict the rating on a scale from 1–5. In-
tuitively, the first and third sentence have stronger
information in assisting the prediction of the rat-
ing; within these sentences, the word delicious,
a-m-a-z-i-n-g contributes more in implying
the positive attitude contained in this review. At-
tention serves two benefits: not only does it often
result in better performance, but it also provides in-
sight into which words and sentences contribute to
the classification decision which can be of value in
applications and analysis (Shen et al., 2014; Gao et
al., 2014).

The key difference to previous work is that our
system uses context to discover when a sequence of
tokens is relevant rather than simply filtering for (se-
quences of) tokens, taken out of context. To evaluate
the performance of our model in comparison to other
common classification architectures, we look at six
data sets (§3). Our model outperforms previous ap-
proaches by a significant margin.

2 Hierarchical Attention Networks
The overall architecture of the Hierarchical Atten-
tion Network (HAN) is shown in Fig. 2. It con-
sists of several parts: a word sequence encoder, a
word-level attention layer, a sentence encoder and a
sentence-level attention layer. We describe the de-
tails of different components in the following sec-
tions.

2.1 GRU-based sequence encoder

The GRU (Bahdanau et al., 2014) uses a gating
mechanism to track the state of sequences without
using separate memory cells. There are two types of
gates: the reset gate rt and the update gate zt. They
together control how information is updated to the
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Figure 2: Hierarchical Attention Network.

state. At time t, the GRU computes the new state as

ht = (1 � zt) � ht�1 + zt � h̃t. (1)

This is a linear interpolation between the previous
state ht�1 and the current new state h̃t computed
with new sequence information. The gate zt decides
how much past information is kept and how much
new information is added. zt is updated as:

zt = �(Wzxt + Uzht�1 + bz), (2)

where xt is the sequence vector at time t. The can-
didate state h̃t is computed in a way similar to a tra-
ditional recurrent neural network (RNN):

h̃t = tanh(Whxt + rt � (Uhht�1) + bh), (3)

Here rt is the reset gate which controls how much
the past state contributes to the candidate state. If rt
is zero, then it forgets the previous state. The reset
gate is updated as follows:

rt = �(Wrxt + Urht�1 + br) (4)

2.2 Hierarchical Attention
We focus on document-level classification in this
work. Assume that a document has L sentences
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Learning document representations

HAN output with attention visualised

Sentiment analysis of Yelp reviews

GT: 4 Prediction: 4
pork belly = delicious .
scallops ?
i do n’t .
even .
like .
scallops , and these were a-m-a-z-i-n-g .
fun and tasty cocktails .
next time i ’m in phoenix , i will go

back here .
highly recommend .

GT: 0 Prediction: 0
terrible value .
ordered pasta entree .
.
$ 16.95 good taste but size was an

appetizer size .
.
no salad , no bread no vegetable .
this was .
our and tasty cocktails .
our second visit .
i will not go back .

Figure 5: Documents from Yelp 2013. Label 4 means star 5, label 0 means star 1.

GT: 1 Prediction: 1
why does zebras have stripes ?
what is the purpose or those stripes ?
who do they serve the zebras in the

wild life ?
this provides camouflage - predator

vision is such that it is usually difficult

for them to see complex patterns

GT: 4 Prediction: 4
how do i get rid of all the old web

searches i have on my web browser ?
i want to clean up my web browser

go to tools > options .
then click “ delete history ” and “

clean up temporary internet files . ”

Figure 6: Documents from Yahoo Answers. Label 1 denotes Science and Mathematics and label 4 denotes Computers and Internet.

explore the structure of a sentence and use a tree-
structured LSTMs for classification. There are also
some works that combine LSTM and CNN struc-
ture to for sentence classification (Lai et al., 2015;
Zhou et al., 2015). Tang et al. (2015) use hierarchi-
cal structure in sentiment classification. They first
use a CNN or LSTM to get a sentence vector and
then a bi-directional gated recurrent neural network
to compose the sentence vectors to get a document
vectors. There are some other works that use hier-
archical structure in sequence generation (Li et al.,
2015) and language modeling (Lin et al., 2015).

The attention mechanism was proposed by (Bah-
danau et al., 2014) in machine translation. The en-
coder decoder framework is used and an attention
mechanism is used to select the reference words in
original language for words in foreign language be-
fore translation. Xu et al. (2015) uses the attention
mechanism in image caption generation to select the
relevant image regions when generating words in the
captions. Further uses of the attention mechanism
include parsing (Vinyals et al., 2014), natural lan-
guage question answering (Sukhbaatar et al., 2015;

Kumar et al., 2015; Hermann et al., 2015), and im-
age question answering (Yang et al., 2015). Un-
like these works, we explore a hierarchical attention
mechanism (to the best of our knowledge this is the
first such instance).

5 Conclusion
In this paper, we proposed hierarchical attention net-
works (HAN) for classifying documents. As a con-
venient side-effect we obtained better visualization
using the highly informative components of a doc-
ument. Our model progressively builds a document
vector by aggregating important words into sentence
vectors and then aggregating important sentences
vectors to document vectors. Experimental results
demonstrate that our model performs significantly
better than previous methods. Visualization of these
attention layers illustrates that our model is effective
in picking out important words and sentences.

Acknowledgments This work was supported by
Microsoft Research.
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Learning document representations

HAN output with attention visualised

Topic classification
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Referring expressions and coreference

Co-reference and referring expressions

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an hour
being charmed in the historian’s Oxford study.

referent a real world entity that some piece of text (or
speech) refers to. the actual Prof. Ferguson

referring expressions bits of language used to perform
reference by a speaker. ‘Niall Ferguson’, ‘he’, ‘him’

antecedent the text initially evoking a referent. ‘Niall Ferguson’
anaphora the phenomenon of referring to an antecedent.
cataphora pronouns appear before the referent (rare)

What about a snappy dresser?
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Referring expressions and coreference

Pronoun resolution

I Identifying the referents of pronouns
I Anaphora resolution: generally only consider cases which

refer to antecedent noun phrases.

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an hour
being charmed in the historian’s Oxford study.
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Algorithms for coreference resolution

Coreference resolution as supervised classification

I instances: potential pronoun/antecedent pairings
I class is TRUE/FALSE
I training data labelled with correct pairings
I candidate antecedents are all NPs in current sentence and

preceeding 5 sentences

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an hour
being charmed in the historian’s Oxford study.
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Algorithms for coreference resolution

Constraints on coreference resolution

1. Agreement in number and gender

I A little girl is at the door — see what she wants, please?
I My dog has hurt his foot — he is in a lot of pain.

2. Reflexive pronouns are coreferential with a preceeding argument
of the same verb.

I Johni cut himselfi shaving. (himself = John)

3. Pleonastic pronouns are semantically empty, and don’t refer:

I It is snowing
I It is not easy to think of good examples.
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Algorithms for coreference resolution

Other factors that affect coreference resolution

I Recency: More recent antecedents are preferred. They
are more accessible.

Kim has a big car. Sandy has a smaller one. Lee
likes to drive it.

I Grammatical role: Subjects > objects > everything else:
Fred went to the shopping centre with Bill. He
bought a CD.

I Repeated mention: Entities that have been mentioned
more frequently are preferred.
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Algorithms for coreference resolution

Other factors that affect coreference resolution

I Parallelism Entities which share the same role as the
pronoun in the same sort of sentence are preferred:

Bill went with Fred to the lecture. Kim went with
him to the bar. Him=Fred

I Coherence effects: The pronoun resolution may depend on
the rhetorical / discourse relation that is inferred.

Bill likes Fred. He has a great sense of humour.
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Algorithms for coreference resolution

Features used in classification
Cataphoric Binary: t if pronoun before antecedent.

Number agreement Binary: t if pronoun compatible with
antecedent.

Gender agreement Binary: t if gender agreement.
Same verb Binary: t if the pronoun and the candidate

antecedent are arguments of the same verb.
Sentence distance Discrete: { 0, 1, 2 . . . }
Grammatical role Discrete: { subject, object, other } The role of

the potential antecedent.
Parallel Binary: t if the potential antecedent and the

pronoun share the same grammatical role.
Linguistic form Discrete: { proper, definite, indefinite, pronoun }
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Algorithms for coreference resolution

Problems with simple classification model

I Cannot implement ‘repeated mention’ effect.
I Cannot use information from previous links.

Not really pairwise: need a discourse model with real world
entities corresponding to clusters of referring expressions.
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Algorithms for coreference resolution

Neural end-to-end coreference resolution

Lee et al. 2017. End-to-end Neural Coreference Resolution. EMNLP.

I Mention-ranking paradigm, i.e. output a probability distribution
over candidate mentions

I considers all text spans of certain length (e.g. bigrams, trigrams)
as possible mentions

I coreference of all mentions considered (not only pronouns)

I end-to-end trainable neural architecture, based on an LSTM
sentence encoder
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Algorithms for coreference resolution

Task definition

Assign each span i an antecedent yi

I out of all possible spans in Yi = {1, ..., i − 1, ε}
I empty token ε is included to indicate the span i is

non-referential or discourse-new

To do this, for each pair of spans i and j
I the model assigns a score s(i , j) for their coreference link
I and computes a distribution P(yi) over the antecedents of i

P(yi) =
es(i,yi )∑

y ′∈Y (i) es(i,y ′)
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Algorithms for coreference resolution

Computing the score s

The score s(i , j) includes three factors:

I m(i): whether span i is a mention
I m(j): whether span j is a mention
I c(i , j): whether j is the antecedent of i

s(i , j) = m(i) + m(j) + c(i , j)

s(i , ε) is set to 0, i.e. the model predicts the antecedent with the
highest positive score or abstains
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Algorithms for coreference resolution

Computing the scoring functions m and c

I Compute m(i), m(j) and c(i , j) based on the vectors gi and gj ,
which represent the spans i and j

I span representations are constructed from hidden states of the
LSTM encoder:

gi = [hSTART (i),hEND(i),hATT (i), φ(i)],

where φ(i) is a single feature: the length of the span

m(i) = wm · FFNNm(gi)

c(i , j) = wc · FFNNc([gi ,gj ,gi � gj , φ(i , j)])

φ(i , j) – distance between the spans in text
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Algorithms for coreference resolution

Learning span representations
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And then the attention distribution is used to create a vector hATT(i) which is an
attention-weighted sum of words in span i:

hATT(i) =

END(i)X

t=START(i)

ai,t ·wt (22.55)

Each span i is then represented by a vector gi, a concatenation of the hidden rep-
resentations of the start and end tokens of the span, the head, and a feature vector
containing only one feature: the length of span i.

gi = [hSTART(i),hEND(i),hATT(i),f(i)] (22.56)

Fig. 22.5 from Lee et al. (2017b) shows the computation of the span representation
and the mention score.

General Electric said the Postal Service contacted the company

General Electric

+

Electric said the

+

the Postal Service

+

Service contacted the

+

the company

+

Mention score (sm)

Span representation (g)

Span head (x̂)

Bidirectional LSTM (x�)

Word & character
embedding (x)

Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-
sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a
manageable number of spans is considered for coreference decisions. In general, the model considers all
possible spans up to a maximum width, but we depict here only a small subset.

General Electric the Postal Service the company

s(the company,
General Electric)

s(the company,
the Postal Service)

s(the company, �) = 0

Softmax (P (yi | D))

Coreference
score (s)

Antecedent score (sa)

Mention score (sm)

Span
representation (g)

Figure 2: Second step of our model. Antecedent
scores are computed from pairs of span represen-
tations. The final coreference score of a pair of
spans is computed by summing the mention scores
of both spans and their pairwise antecedent score.

By fixing the score of the dummy antecedent �
to 0, the model predicts the best scoring antecedent
if any non-dummy scores are positive, and it ab-
stains if they are all negative.

A challenging aspect of this model is that its
size is O(T 4) in the document length. As we will
see in Section 5, the above factoring enables ag-
gressive pruning of spans that are unlikely to be-
long to a coreference cluster according the men-
tion score sm(i).

Scoring Architecture We propose an end-to-
end neural architecture that computes the above
scores given the document and its metadata.

At the core of the model are vector representa-
tions gi for each possible span i, which we de-
scribe in detail in the following section. Given
these span representations, the scoring functions

above are computed via standard feed-forward
neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi � gj ,�(i, j)])

where · denotes the dot product, � denotes
element-wise multiplication, and FFNN denotes a
feed-forward neural network that computes a non-
linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-
cludes explicit element-wise similarity of each
span gi � gj and a feature vector �(i, j) encoding
speaker and genre information from the metadata
and the distance between the two spans.

Span Representations Two types of infor-
mation are crucial to accurately predicting
coreference links: the context surrounding
the mention span and the internal structure
within the span. We use a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) to en-
code the lexical information of both the inside and
outside of each span. We also include an attention
mechanism over words in each span to model head
words.

We assume vector representations of each word
{x1, . . . ,xT }, which are composed of fixed pre-
trained word embeddings and 1-dimensional con-
volution neural networks (CNN) over characters
(see Section 7.1 for details)

To compute vector representations of each span,
we first use bidirectional LSTMs to encode every

Mention score (m)

Span representation (g)

Span head (hatt)

Bidirectional LSTM (h)

Input word embeddings  
(ELMo)

Figure 22.5 Computation of the span representation and the mention score in the end-to-
end coreference model of Lee et al. (2017b). The model considers all spans up to a maximum
width; the figure shows a small subset of these. Figure after Lee et al. (2017b).

Fig. 22.6 shows the computation of the score s for the three possible antecedents
of the company in the example sentence from Fig. 22.5.

General Electric said the Postal Service contacted the company

General Electric

+

Electric said the

+

the Postal Service

+

Service contacted the

+

the company

+

Mention score (sm)

Span representation (g)

Span head (x̂)

Bidirectional LSTM (x�)

Word & character
embedding (x)

Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-
sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a
manageable number of spans is considered for coreference decisions. In general, the model considers all
possible spans up to a maximum width, but we depict here only a small subset.

General Electric the Postal Service the company

s(the company,
General Electric)

s(the company,
the Postal Service)

s(the company, �) = 0

Softmax (P (yi | D))

Coreference
score (s)

Antecedent score (sa)

Mention score (sm)

Span
representation (g)

Figure 2: Second step of our model. Antecedent
scores are computed from pairs of span represen-
tations. The final coreference score of a pair of
spans is computed by summing the mention scores
of both spans and their pairwise antecedent score.

By fixing the score of the dummy antecedent �
to 0, the model predicts the best scoring antecedent
if any non-dummy scores are positive, and it ab-
stains if they are all negative.

A challenging aspect of this model is that its
size is O(T 4) in the document length. As we will
see in Section 5, the above factoring enables ag-
gressive pruning of spans that are unlikely to be-
long to a coreference cluster according the men-
tion score sm(i).

Scoring Architecture We propose an end-to-
end neural architecture that computes the above
scores given the document and its metadata.

At the core of the model are vector representa-
tions gi for each possible span i, which we de-
scribe in detail in the following section. Given
these span representations, the scoring functions

above are computed via standard feed-forward
neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi � gj ,�(i, j)])

where · denotes the dot product, � denotes
element-wise multiplication, and FFNN denotes a
feed-forward neural network that computes a non-
linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-
cludes explicit element-wise similarity of each
span gi � gj and a feature vector �(i, j) encoding
speaker and genre information from the metadata
and the distance between the two spans.

Span Representations Two types of infor-
mation are crucial to accurately predicting
coreference links: the context surrounding
the mention span and the internal structure
within the span. We use a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) to en-
code the lexical information of both the inside and
outside of each span. We also include an attention
mechanism over words in each span to model head
words.

We assume vector representations of each word
{x1, . . . ,xT }, which are composed of fixed pre-
trained word embeddings and 1-dimensional con-
volution neural networks (CNN) over characters
(see Section 7.1 for details)

To compute vector representations of each span,
we first use bidirectional LSTMs to encode every

(m)

(c)

Figure 22.6 The computation of the score s for the three possible antecedents of the com-
pany in the example sentence from Fig. 22.5. Figure after Lee et al. (2017b).

At inference time, some method is generally used to prune the mentions (for
example using the mention score m as a filter to keep only the best few mentions
as a function like 0.4T of the sentence length T ). Then the joint distribution of
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And then the attention distribution is used to create a vector hATT(i) which is an
attention-weighted sum of words in span i:

hATT(i) =

END(i)X

t=START(i)

ai,t ·wt (22.55)

Each span i is then represented by a vector gi, a concatenation of the hidden rep-
resentations of the start and end tokens of the span, the head, and a feature vector
containing only one feature: the length of span i.

gi = [hSTART(i),hEND(i),hATT(i),f(i)] (22.56)

Fig. 22.5 from Lee et al. (2017b) shows the computation of the span representation
and the mention score.
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Figure 1: First step of the end-to-end coreference resolution model, which computes embedding repre-
sentations of spans for scoring potential entity mentions. Low-scoring spans are pruned, so that only a
manageable number of spans is considered for coreference decisions. In general, the model considers all
possible spans up to a maximum width, but we depict here only a small subset.
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scores are computed from pairs of span represen-
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By fixing the score of the dummy antecedent �
to 0, the model predicts the best scoring antecedent
if any non-dummy scores are positive, and it ab-
stains if they are all negative.

A challenging aspect of this model is that its
size is O(T 4) in the document length. As we will
see in Section 5, the above factoring enables ag-
gressive pruning of spans that are unlikely to be-
long to a coreference cluster according the men-
tion score sm(i).

Scoring Architecture We propose an end-to-
end neural architecture that computes the above
scores given the document and its metadata.

At the core of the model are vector representa-
tions gi for each possible span i, which we de-
scribe in detail in the following section. Given
these span representations, the scoring functions

above are computed via standard feed-forward
neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi � gj ,�(i, j)])

where · denotes the dot product, � denotes
element-wise multiplication, and FFNN denotes a
feed-forward neural network that computes a non-
linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-
cludes explicit element-wise similarity of each
span gi � gj and a feature vector �(i, j) encoding
speaker and genre information from the metadata
and the distance between the two spans.

Span Representations Two types of infor-
mation are crucial to accurately predicting
coreference links: the context surrounding
the mention span and the internal structure
within the span. We use a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) to en-
code the lexical information of both the inside and
outside of each span. We also include an attention
mechanism over words in each span to model head
words.

We assume vector representations of each word
{x1, . . . ,xT }, which are composed of fixed pre-
trained word embeddings and 1-dimensional con-
volution neural networks (CNN) over characters
(see Section 7.1 for details)

To compute vector representations of each span,
we first use bidirectional LSTMs to encode every
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Figure 22.5 Computation of the span representation and the mention score in the end-to-
end coreference model of Lee et al. (2017b). The model considers all spans up to a maximum
width; the figure shows a small subset of these. Figure after Lee et al. (2017b).

Fig. 22.6 shows the computation of the score s for the three possible antecedents
of the company in the example sentence from Fig. 22.5.
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scores are computed from pairs of span represen-
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of both spans and their pairwise antecedent score.

By fixing the score of the dummy antecedent �
to 0, the model predicts the best scoring antecedent
if any non-dummy scores are positive, and it ab-
stains if they are all negative.

A challenging aspect of this model is that its
size is O(T 4) in the document length. As we will
see in Section 5, the above factoring enables ag-
gressive pruning of spans that are unlikely to be-
long to a coreference cluster according the men-
tion score sm(i).

Scoring Architecture We propose an end-to-
end neural architecture that computes the above
scores given the document and its metadata.

At the core of the model are vector representa-
tions gi for each possible span i, which we de-
scribe in detail in the following section. Given
these span representations, the scoring functions

above are computed via standard feed-forward
neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi � gj ,�(i, j)])

where · denotes the dot product, � denotes
element-wise multiplication, and FFNN denotes a
feed-forward neural network that computes a non-
linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-
cludes explicit element-wise similarity of each
span gi � gj and a feature vector �(i, j) encoding
speaker and genre information from the metadata
and the distance between the two spans.

Span Representations Two types of infor-
mation are crucial to accurately predicting
coreference links: the context surrounding
the mention span and the internal structure
within the span. We use a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) to en-
code the lexical information of both the inside and
outside of each span. We also include an attention
mechanism over words in each span to model head
words.

We assume vector representations of each word
{x1, . . . ,xT }, which are composed of fixed pre-
trained word embeddings and 1-dimensional con-
volution neural networks (CNN) over characters
(see Section 7.1 for details)

To compute vector representations of each span,
we first use bidirectional LSTMs to encode every
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Figure 22.6 The computation of the score s for the three possible antecedents of the com-
pany in the example sentence from Fig. 22.5. Figure after Lee et al. (2017b).

At inference time, some method is generally used to prune the mentions (for
example using the mention score m as a filter to keep only the best few mentions
as a function like 0.4T of the sentence length T ). Then the joint distribution of

Train to maximize probabilities of valid mention pairings
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And then the attention distribution is used to create a vector hATT(i) which is an
attention-weighted sum of words in span i:

hATT(i) =

END(i)X

t=START(i)

ai,t ·wt (22.55)

Each span i is then represented by a vector gi, a concatenation of the hidden rep-
resentations of the start and end tokens of the span, the head, and a feature vector
containing only one feature: the length of span i.

gi = [hSTART(i),hEND(i),hATT(i),f(i)] (22.56)

Fig. 22.5 from Lee et al. (2017b) shows the computation of the span representation
and the mention score.
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By fixing the score of the dummy antecedent �
to 0, the model predicts the best scoring antecedent
if any non-dummy scores are positive, and it ab-
stains if they are all negative.

A challenging aspect of this model is that its
size is O(T 4) in the document length. As we will
see in Section 5, the above factoring enables ag-
gressive pruning of spans that are unlikely to be-
long to a coreference cluster according the men-
tion score sm(i).

Scoring Architecture We propose an end-to-
end neural architecture that computes the above
scores given the document and its metadata.

At the core of the model are vector representa-
tions gi for each possible span i, which we de-
scribe in detail in the following section. Given
these span representations, the scoring functions

above are computed via standard feed-forward
neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi � gj ,�(i, j)])

where · denotes the dot product, � denotes
element-wise multiplication, and FFNN denotes a
feed-forward neural network that computes a non-
linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-
cludes explicit element-wise similarity of each
span gi � gj and a feature vector �(i, j) encoding
speaker and genre information from the metadata
and the distance between the two spans.

Span Representations Two types of infor-
mation are crucial to accurately predicting
coreference links: the context surrounding
the mention span and the internal structure
within the span. We use a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) to en-
code the lexical information of both the inside and
outside of each span. We also include an attention
mechanism over words in each span to model head
words.

We assume vector representations of each word
{x1, . . . ,xT }, which are composed of fixed pre-
trained word embeddings and 1-dimensional con-
volution neural networks (CNN) over characters
(see Section 7.1 for details)

To compute vector representations of each span,
we first use bidirectional LSTMs to encode every
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end coreference model of Lee et al. (2017b). The model considers all spans up to a maximum
width; the figure shows a small subset of these. Figure after Lee et al. (2017b).

Fig. 22.6 shows the computation of the score s for the three possible antecedents
of the company in the example sentence from Fig. 22.5.
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A challenging aspect of this model is that its
size is O(T 4) in the document length. As we will
see in Section 5, the above factoring enables ag-
gressive pruning of spans that are unlikely to be-
long to a coreference cluster according the men-
tion score sm(i).

Scoring Architecture We propose an end-to-
end neural architecture that computes the above
scores given the document and its metadata.

At the core of the model are vector representa-
tions gi for each possible span i, which we de-
scribe in detail in the following section. Given
these span representations, the scoring functions

above are computed via standard feed-forward
neural networks:

sm(i) = wm · FFNNm(gi)

sa(i, j) = wa · FFNNa([gi,gj,gi � gj ,�(i, j)])

where · denotes the dot product, � denotes
element-wise multiplication, and FFNN denotes a
feed-forward neural network that computes a non-
linear mapping from input to output vectors.

The antecedent scoring function sa(i, j) in-
cludes explicit element-wise similarity of each
span gi � gj and a feature vector �(i, j) encoding
speaker and genre information from the metadata
and the distance between the two spans.

Span Representations Two types of infor-
mation are crucial to accurately predicting
coreference links: the context surrounding
the mention span and the internal structure
within the span. We use a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) to en-
code the lexical information of both the inside and
outside of each span. We also include an attention
mechanism over words in each span to model head
words.

We assume vector representations of each word
{x1, . . . ,xT }, which are composed of fixed pre-
trained word embeddings and 1-dimensional con-
volution neural networks (CNN) over characters
(see Section 7.1 for details)

To compute vector representations of each span,
we first use bidirectional LSTMs to encode every
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Figure 22.6 The computation of the score s for the three possible antecedents of the com-
pany in the example sentence from Fig. 22.5. Figure after Lee et al. (2017b).

At inference time, some method is generally used to prune the mentions (for
example using the mention score m as a filter to keep only the best few mentions
as a function like 0.4T of the sentence length T ). Then the joint distribution of

Train to maximize probabilities of valid mention pairings
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Model output with attention visualised

1

(A fire in a Bangladeshi garment factory) has left at least 37 people dead and 100 hospitalized. Most
of the deceased were killed in the crush as workers tried to flee (the blaze) in the four-story building.

A fire in (a Bangladeshi garment factory) has left at least 37 people dead and 100 hospitalized. Most
of the deceased were killed in the crush as workers tried to flee the blaze in (the four-story building).

2

We are looking for (a region of central Italy bordering the Adriatic Sea). (The area) is mostly
mountainous and includes Mt. Corno, the highest peak of the Apennines. (It) also includes a lot of
sheep, good clean-living, healthy sheep, and an Italian entrepreneur has an idea about how to make a
little money of them.

3
(The flight attendants) have until 6:00 today to ratify labor concessions. (The pilots’) union and ground
crew did so yesterday.

4

(Prince Charles and his new wife Camilla) have jumped across the pond and are touring the United
States making (their) first stop today in New York. It’s Charles’ first opportunity to showcase his new
wife, but few Americans seem to care. Here’s Jeanie Mowth. What a difference two decades make.
(Charles and Diana) visited a JC Penney’s on the prince’s last official US tour. Twenty years later
here’s the prince with his new wife.

5
Also such location devices, (some ships) have smoke floats (they) can toss out so the man overboard
will be able to use smoke signals as a way of trying to, let the rescuer locate (them).

Table 4: Examples predictions from the development data. Each row depicts a single coreference cluster

predicted by our model. Bold, parenthesized spans indicate mentions in the predicted cluster. The

redness of each word indicates the weight of the head-finding attention mechanism (ai,t in Section 4).
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Figure 4: Indirect measure of mention precision

using agreement with gold syntax. Constituency

precision: % of unpruned spans matching syn-

tactic constituents. Head word precision: % of

unpruned constituents whose syntactic head word

matches the most attended word. Frequency: % of

gold spans with each width.

high, since no explicit supervision of syntactic

heads is provided. The model simply learns from

the clustering data that these head words are useful

for making coreference decisions.

9.4 Qualitative Analysis

Our qualitative analysis in Table 4 highlights the

strengths and weaknesses of our model. Each row

is a visualization of a single coreference cluster

predicted by the model. Bolded spans in paren-

theses belong to the predicted cluster, and the red-

ness of a word indicates its weight from the head-

finding attention mechanism (ai,t in Section 4).

Strengths The effectiveness of the attention

mechanism for making coreference decisions can

be seen in Example 1. The model pays attention

to fire in the span A fire in a Bangladeshi gar-

ment factory, allowing it to successfully predict

the coreference link with the blaze. For a sub-

span of that mention, a Bangladeshi garment fac-

tory, the model pays most attention instead to fac-

tory, allowing it successfully predict the corefer-

ence link with the four-story building.

The task-specific nature of the attention mecha-

nism is also illustrated in Example 4. The model

generally pays attention to coordinators more than

the content of the coordination, since coordinators,

such as and, provide strong cues for plurality.

The model is capable of detecting relatively

long and complex noun phrases, such as a re-

gion of central Italy bordering the Adriatic Sea

in Example 2. It also appropriately pays atten-
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(A fire in a Bangladeshi garment factory) has left at least 37 people dead and 100 hospitalized. Most
of the deceased were killed in the crush as workers tried to flee (the blaze) in the four-story building.

A fire in (a Bangladeshi garment factory) has left at least 37 people dead and 100 hospitalized. Most
of the deceased were killed in the crush as workers tried to flee the blaze in (the four-story building).

2

We are looking for (a region of central Italy bordering the Adriatic Sea). (The area) is mostly
mountainous and includes Mt. Corno, the highest peak of the Apennines. (It) also includes a lot of
sheep, good clean-living, healthy sheep, and an Italian entrepreneur has an idea about how to make a
little money of them.

3
(The flight attendants) have until 6:00 today to ratify labor concessions. (The pilots’) union and ground
crew did so yesterday.

4

(Prince Charles and his new wife Camilla) have jumped across the pond and are touring the United
States making (their) first stop today in New York. It’s Charles’ first opportunity to showcase his new
wife, but few Americans seem to care. Here’s Jeanie Mowth. What a difference two decades make.
(Charles and Diana) visited a JC Penney’s on the prince’s last official US tour. Twenty years later
here’s the prince with his new wife.

5
Also such location devices, (some ships) have smoke floats (they) can toss out so the man overboard
will be able to use smoke signals as a way of trying to, let the rescuer locate (them).

Table 4: Examples predictions from the development data. Each row depicts a single coreference cluster

predicted by our model. Bold, parenthesized spans indicate mentions in the predicted cluster. The

redness of each word indicates the weight of the head-finding attention mechanism (ai,t in Section 4).
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Figure 4: Indirect measure of mention precision

using agreement with gold syntax. Constituency

precision: % of unpruned spans matching syn-

tactic constituents. Head word precision: % of

unpruned constituents whose syntactic head word

matches the most attended word. Frequency: % of

gold spans with each width.

high, since no explicit supervision of syntactic

heads is provided. The model simply learns from

the clustering data that these head words are useful

for making coreference decisions.

9.4 Qualitative Analysis

Our qualitative analysis in Table 4 highlights the

strengths and weaknesses of our model. Each row

is a visualization of a single coreference cluster

predicted by the model. Bolded spans in paren-

theses belong to the predicted cluster, and the red-

ness of a word indicates its weight from the head-

finding attention mechanism (ai,t in Section 4).

Strengths The effectiveness of the attention

mechanism for making coreference decisions can

be seen in Example 1. The model pays attention

to fire in the span A fire in a Bangladeshi gar-

ment factory, allowing it to successfully predict

the coreference link with the blaze. For a sub-

span of that mention, a Bangladeshi garment fac-

tory, the model pays most attention instead to fac-

tory, allowing it successfully predict the corefer-

ence link with the four-story building.

The task-specific nature of the attention mecha-

nism is also illustrated in Example 4. The model

generally pays attention to coordinators more than

the content of the coordination, since coordinators,

such as and, provide strong cues for plurality.

The model is capable of detecting relatively

long and complex noun phrases, such as a re-

gion of central Italy bordering the Adriatic Sea

in Example 2. It also appropriately pays atten-
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