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Where are we at?

HC1a

• What makes NLP hard

• Text classification

HC1b (today)

• Language modelling
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Goals for this class

• what LMs are

• how to design LMs

• how to estimate LMs

• how to evaluate LMs
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Intuition

On Mentimeter...
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What LMs are



Language model

A language model is a probability distribution over the set of all

strings in a language.

Being a probability distribution means that

1. an LM can assign probability to text

2. you can generate text by drawing samples from the LM
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Applications

• Order alternative sentences (e.g., in speech recognition)

• Generate text in context (e.g., autocomplete)

• Backbone of various NLP systems: translation,

summarisation, chatbots
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Let’s try to assign probability ourselves

On Mentimeter...
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Probabilities are Made-Up Quantities

Probability IS NOT a property of text,1

• we cannot learn LMs by regressing from text to “observed

target probabilities”

Probability is an expression of preference (by a model or observer),2

• we can learn to assign probability to text by

• designing a probabilistic model of how texts come about

• and optimising the parameters of this model using observed

data and a statistical criterion of our choice.

1De Finetti’s seminal Theory of Probability starts with a provocative claim:

PROBABILITY DOES NOT EXIST.
2On occasion, we can make it capture sample frequency in a population.

7



Let’s see if we are on the same page

On Mentimeter...
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A Good LM is. . .

A probability distribution whose samples resemble observed text.3

Examples:

• if the typical sentence has 30 words, sampling from a good

LM will reproduce that pattern;

• if the typical sentence has SUBJ VERB OBJ (in this order),

samples from a good LM will exhibit that pattern too;

• etc.

3This is a statistical notion of ‘goodness’, we will discuss other notions later.
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Language Model

How to design LMs



Designing LMs

Since an LM is a probability distribution, designing one requires

choosing:

• A sample space. The set of outcomes that the LM can

generate and assign probability to.

• A probability mass function (pmf). A function mapping

each and every outcome in the sample space to its assigned

probability mass.
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Text as a Data Type

We regard text as a finite sequence of discrete symbols which we

generally refer to as ‘words’ (or, even more generally, as ‘tokens’).

Digital text is a sequence of characters. Using a tokenisation

algorithm we ‘segment’ digital text into a sequence of tokens.

Example: with a tokenisation procedure based on spaces and

punctuation, the English text what a nice dog! is regarded as a

sequence of 5 tokens: (what, a, nice, dog, !).4

4Modern, general-purpose tokenisers are based on compression algorithms

[Sennrich et al., 2016].
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Sample Space

Start with a vocabulary of ‘words’ W (for example, all unique

tokens found in some large, representative dataset).

The sample space of choice is typically the set of all finite-length

sequences made of symbols from this vocabulary. This set is what

we call the ‘language’ (in a formal, non-linguistic sense), it is

denoted by W∗.

Example

• with W = {a, cat, dog, nice}
• then a nice cat and a dog are sentences in the language W∗,

just like a a or nice a nice a nice, but a cute dog isn’t.

It is possible to constrain the language to a subset of W∗, for example to

only include ‘grammatical’ text. We will cover this later in the course.
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Formalisation

W is a random word. An outcome w is a symbol in a vocabulary

W of size V .

X = ⟨W1, . . . ,WL⟩ is a random sequence of L words. We can also

denote it W1:L. An outcome ⟨w1, . . . ,wℓ⟩ is a sequence in W∗,

that is, a sequence of ℓ symbols from W.

A language model is a mechanism to assign a probability value

PX (w1:ℓ) to each and every outcome w1:ℓ ∈ W∗.

We now design a pmf to map w1:ℓ to its probability mass.
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Challenge

PX is a distribution over a countably infinite space of

variable-length sequences.

Intuition. To see that this is a real challenge, let’s list outcomes

of X in a table and associate each outcome with a scalar

parameter for the outcome’s probability mass.

Unique id Outcome x Probability PX (x)

1 nice! θ1

2 a cat! θ2

3 a cute cat! θ3

4 a nasty cat! θ4

5 what a cute cat! θ5

6 what a nasty cat! θ6

. . .

How many parameters do we need in order to specify PX fully?
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Tabular Representation of Discrete Distributions

What we just tried to use is a tabular representation of the pmf of

a discrete random variable.

In this representation, assigning probability to X = x takes a

simple table lookup:

PX (x) = θid(x)

The tabular representation is based on enumeration of outcomes

and its parameters are statistically independent of one another.

This is computationally and statistically inefficient, and, with

countably infinite sample spaces, this is unusable.
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Factorisation



Key Idea

Think of an outcome w1:ℓ ∈ W∗ as a decomposable structure.

Imagine a procedure by which you could derive this structure in a

sequence of steps.

We can then express the probability of any one sequence w1:ℓ in

W∗ using probabilities assigned to the steps that jointly derive it.
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Example – Deriving Text

Consider the sequence x = ⟨He, went, to, the, store, EOS⟩.6 Now think

of x as the result of incrementally expanding an empty sequence, one

symbol at a time. Start with h1 = ⟨⟩, then

1. Given h1, choose the first word: He. Make h2 ← h1 ◦ ⟨He⟩.

2. Given h2, choose the second word: went. Make h3 ← h2 ◦ ⟨went⟩.
3. Given h3, choose the third word: to. Make h4 ← h3 ◦ ⟨to⟩.
4. Given h4, choose the fourth word: the. Make h5 ← h4 ◦ ⟨the⟩.
5. Given h5, choose the fifth word: store. Make h6 ← h5 ◦ ⟨store⟩.
6. Given h6, choose the sixth word: EOS. Make x = h6 ◦ ⟨EOS⟩.

Assign probability to X = x by assigning probability to each of these

‘steps’, all of which must be taken in order to reproduce x .

6EOS marks the end of the sequence, the need for it will become clear.
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Example – Assigning Probability

PX (⟨He, went, to, the, store⟩)
≜ PW |H(He|⟨⟩)
× PW |H(went|⟨He⟩)
× PW |H(to|⟨He,went⟩)
× PW |H(the|⟨He,went, to⟩)
× PW |H(store|⟨He,went, to, the⟩)
× PW |H(EOS|⟨He,went, to, the, store⟩)

We are specifying how the distribution PX assigns probability to the text

⟨He, went, to, the, store⟩. We choose to express that number as a

product of probabilities which some other distributions (of the form

PW |H) assign to the words in the text as we traverse the sequence from

left-to-right. Each time, we assign probability to a word, we do it

conditioned on an ordered history of words that precede it. 18



Designing LMs via Chain Rule of Probabilities

Our most general LM assigns probability to w1:ℓ as defined below:

PX (w1:ℓ) ≜
ℓ∏

i=1

PW |H(wi |w<i ) (1)

This is what we call an autoregressive factorisation of the

probability of a sequence.

We will work on the design of the conditional distributions that

appear on the right-hand side of the equation.
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Conditional Probability Distribution (cpd)

For any given history h, such as ⟨He,went, to, the⟩, we need to

assign probability PW |H(w |h) to any symbol w in the vocabulary

(there are V = |W| such symbols).

In tabular representation, the

pmf of the Categorical random

variable W |H = h can be

represented by a unit-norm,

V -dimensional vector θ(h) of

probability masses.

id w PW |H(w |h)

1 a θ
(h)
1

2 amazing θ
(h)
2

. . .

V zyzzyva θ
(h)
V

Tabular representation

We denote this compactly as W |H = h ∼ Categorical(θ
(h)
1:V ) which

implies PW |H(w |h) = θ
(h)
w .

20

https://en.wikipedia.org/wiki/Zyzzyva


Assigning Probability or Generating Outcomes

Our procedure to assign probability to an outcome also prescribes

a sampler (or simulator, or generator), that is, an algorithm to

generate outcomes from the LM distribution PX .

This procedure is also known as a generative story.
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Generative Story

1. Start with an empty history h1 = ⟨⟩. Set i = 1.

2. Condition on the available history hi and draw a word wi with

probability PW |H(wi |hi ) extending the history with it.

3. If wi is a special end-of-sequence symbol (EOS), terminate,

else increment i and repeat (2).

This specifies a factorisation of PX in terms of elementary factors

of the kind PW |H .
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Summary

• An LM is a distribution PX over the space of all texts

• Rather than working with PX directly, we re-express it via

chain rule

• For any given history h, we must be able to prescribe a

distribution PW |H=h over the vocabulary

• The vocabulary is finite, so the pmf of PW |H=h is

representable by a tractable V -dimensional vector.

• There’s no limit to the set of possible histories (any sequence

of any number of words, so long as it does not end in EOS).

We deal with this next!
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Parameterisation



Factorising and Parameterising

Factorising PX (x) means decomposing this quantity using a

product of elementary factors.7 We have used chain rule to

decompose it as PX (w1:ℓ) =
∏ℓ

i=1 PW |H(w |h).

We now design a mechanism to compute PW |H(w |h) for any
choice of (h,w). This design is what we call a parameterisation.

7For intuition, consider this analogy. The composite number 24 can be

factorised into a product of prime numbers: 2× 2× 2× 3 = 23 × 3. Prime

numbers are ‘elementary’ in that they cannot be further factorised.
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Major Ideas in NLP

Assign probability to any w ∈ W given any h ∈ W∗

1. using the relative frequency of h ◦ ⟨w⟩, as observed in a large

corpus;

2. informed by the count of h ◦ ⟨w⟩, and of its subsequences, in

a large corpus;

3. using a log-linear model with features ϕ(h) ∈ RD ;

4. using a non-linear model to map from h directly to the

(parameters of the) pmf.

We discuss 1 and 2 today, 3 and 4 later in the course.

1–2 are Frequentist ideas. For Bayesian ideas, see Cohen and Hirst [2019].
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Relative Frequency

If we want to assign probability to say store given say he went to

the, we use the frequency of he went to the store relative to the

frequency of he went to the • (that is followed by any known word)

in a large corpus. Or, generically, for a word w and a history h:

PW |H(w |h)
MLE
=

countHW (h,w)∑
o∈W countHW (h, o)

(2)

This corresponds to maximum likelihood estimation (MLE) for

tabular Categorical cpds of the kind PW |H=h.

Do you see any problem with this idea?

26
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Data Sparsity!

If we have not seen a given h followed by a certain w , the relative

frequency is 0. If we have not seen a given h, the relative

frequency is not even defined.

Unavoidable truth about empirical methods: not seeing something

is not evidence of it not being possible. It’s just data sparsity

speaking.

An answer that was popular for decades: change the factorisation,

simplifying h to retain only words that are closest to the next one.
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NGram LMs

Make a simplifying

Markov assumption:

Next word is

conditionally independent

of all but the N − 1

preceding words.

He went to the store

He went to the store

HeBoS went to the store

HeBoSBoS went to the store

Top-down: autoregressive LM, unigram LM (N=1), bigram LM (N=2),

trigram LM (N=3).
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Conditional Independence and Markov Assumptions

The key idea in the NGram LM is to make a conditional

independence assumption:

PX (w1:ℓ)
ind.
=

ℓ∏
i=1

PW |H(wi |⟨wi−N+1, . . . ,wi−1⟩) (3)

a word is independent on all but the recent history of N − 1 words.

This is the so-called Markov assumption of order N − 1.

Note how the elementary factors of the NGram LM always depend on the

same number (N − 1) of previous words.
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Tabular CPDs for NGram LMs

Store relative frequencies of observed NGrams in a table.

If we design a 3-gram LM (i.e., N = 3) to assign probability to say

store given say ⟨he, went, to, the⟩, we first truncate the history to

the last 2 words ⟨to, the⟩ such that it has length 2 and then use

the frequency of to the store relative to the frequency of to the •
(that is followed by any known word) in a large corpus.

Generically, for a word w , a history h and NGram size N:

PW |H(w |h) =
countHW (lastN−1(h),w)∑
o∈W countHW (lastN−1(h), o)

(4)

Any problems with this?
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Smoothing

Reserve probability for unseen NGrams:

PW |H(w |h) =
countHW (h,w) + α(h)∑

o∈W(countHW (h, o) + α(h))

=
countHW (h,w) + α(h)

V × α(h) + countH(h)

(5)

Example with α(h) = 1 a.k.a. ‘Laplace Smoothing’

• countH(⟨a, nice⟩) = 100

• rabbit ∈ W

• but countHW (⟨a, nice⟩, rabbit) = 0.

Then, PW |H(rabbit|⟨a, nice⟩) = 1
V+100 .

Tip. When implementing smoothed models, it’s easier to store counts (rather

than parameters), because counts are sparse (many 0s) but parameters aren’t.
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Unknown Words

Here the situation is a little different. We want to deal with a

symbol that’s not at all in the vocabulary.

Idea: augment the vocabulary with a placeholder symbol such as

UNK, whenever you encounter an unknown symbol in the future

(e.g., “hare”) treat it as UNK.

In combination with smoothing, this should help avoid assigning 0

probabilities.
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Exercises

On Mentimeter...
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Memorise phrases

The NGram LM makes up a sentence by gluing phrases, which it

memorises in its tabular cpds along with their counts.

An increase in the order has an exponential cost: VN → VN+1

The longer the history, the less likely it is that we have seen it.

Most of the possible history-word pairs will never be seen.

Tricks: smoothing, interpolation, backoff, etc. For an overview

(though I consider it optional knowledge) see section 3.5 of

textbook.
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Limitations

Our Markov assumptions are motivated by convenience alone, long

range dependency is a very common thing in natural languages.

To overcome this we need to move beyond ‘storing’ probabilities

(or the counts that are used to compute them). The key idea that

will unlock the most powerful LMs is to learn to predict probability

masses using parametric (log-linear or nonlinear) models.
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Evaluation



Intrinsic

We assess the average surprisal (negative log probability) that our

model assigns to heldout texts {x (1), . . . , x (S)}:

1

S

S∑
s=1

logPX (x
(s)) (6)

For ease of interpretation, we re-express it in terms of perplexity

per token, a measure of average confusion.12

Required reading: section 3.8 of textbook.

12If perplexity per token is 5, on average across histories, the model’s

uncertainty over the next token spreads over 5 candidates from the vocabulary.
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Extrinsic

Plug the LM in a task (e.g., autocomplete) and measure the

performance in that task.
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Statistical

Compare how the statistics of generated text distribute in relation

to statistics of observed text.

Examples:

• Meister and Cotterell [2021]

• Giulianelli et al. [2023]
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Be Critical

Your statistical model is as good as your statistical assumptions,

your estimation procedure, and the data you use to fit it.

Most assumptions are wrong or insufficient. Any dataset (however

large) is at best a snippet of language production by some groups

of speakers: not good enough to represent a whole world of

speakers, not good enough to represent any one specific group of

speakers.

Models are not trained to understand, they are not trained to

respond, they are not trained to comply with the values of the

humans using it, they are not trained to produce factually correct

text, they are trained such that their samples look like they could

have been found in the training data.
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Summary

• LMs are distributions over texts

• Chain rule is the key to prescribing an LM

• Classic NGram LMs: Markov assumption + tabular

parameterisation

• Tabular parameterisation is statistically inefficient

• Modern approaches parameterise cpds using NNs

Check our website for some auxiliary self-study material.
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What Next?

Self-study Videos on Canvas Media Gallery

• Read section 3.8 of textbook

https://web.stanford.edu/~jurafsky/slp3/3.pdf

• Short video on representing and estimating tabular Categorical

distributions

• Short video on sampling from a Categorical distribution

(watch video and/or read section 3.4 of textbook)

Optional, but useful: introduction to directed graphical models.

41
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