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Where are we at?

Week 1

• HC1a: text classification

• HC1b: language modelling

HC2a (today)

• Sequence labelling
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In NGram LMs Words are Atomic Symbols

We gave words categorical treatment, namely, we treated words as

if they were completely unrelated to one another. This led to:

• large tabular cpds

where we store prob of conditional outcomes that are possible

• statistical inneficiency (struggles with data sparsity)

linguistically related outcomes do not share statistical evidence

Today we try to overcome this in 2 ways:

• a linguistically-motivated change in the data we model,

accompanied by a change in the model and new ideas for

factorisation

• a change in parameterisation
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Word Categories



Organising Words into Classes

Semantic criteria: what does the word refer to?

• nouns often refer to ‘people’, ‘places’ or ‘things’

Formal criteria: what form does the word have?

• in English, -ly makes an adverb out of an adjective

• in English, -tion makes a noun out of a verb

Distributional criteria: in what contexts can the word occur?

• in English, adjectives precede nouns

Word classes capture aspects of word relatedness.
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Examples

Semantically Formally Distributionally

Nouns refer to things, -ness, -tion, After determiners,

concepts -ity, -ance possessives

Verbs refer to actions, -ate, -ize infinitives: to jump,

states to learn

Adjectives properties of nouns -al, -ble appear before nouns

Adverbs properties of actions -ly next to verbs, beginning of

sentence
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Why?

Word classes enable a form of delexicalised natural language

processing in which we can learn about patterns that are common

to all words that share a given property (e.g., in English, a pronoun

is typically followed by a verb).
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How many classes are there?

This depends on what dimensions of ‘relatedness’ we focus on, and

what language we are talking about.

For example, for Parts-of-Speech (POS), which mostly capture a

word’s syntactic function. For English,

• the Brown corpus [Francis and Kucera, 1979] has 87 categories

• the Penn Treebank [Marcus et al., 1993] has 45

Universal POS tags are simplified tags aimed at cross-lingual

compatibility (it maps variants of a base class to that base class,

e.g., VBD, VBN, VB, VBG, VBP → VERB)
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Universal Parts-of-Speech [Petrov et al., 2012]

• ADJ (adjectives)

• ADP (prepositions and postpositions)

• ADV (adverbs)

• CONJ (conjunctions)

• DET (determiners and articles)

• NOUN (nouns)

• NUM (numerals)

• PRON (pronouns)

• PRT (particles)

• PUNCT (punctuation marks)

• VERB (verbs)

• X (anything else, such as abbreviations or foreign words)
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Example of POS-Tagged Data (PennTreebank-style)

The/DT grand/JJ jury/NN commented/VBD on/IN a/DT

number/NN of/IN other/JJ topics/NNS ./.

There/EX was/VBD still/JJ lemonade/NN in/IN the/DT

bottle/NN ./.
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Hidden Markov Model



POS-Tagged Data

We will prescribe a joint distribution over the space of texts

annotated with their POS tags.

That is, we will be learning to assign probability to sequence pairs

of the kind (w1:ℓ, c1:ℓ), where w1:ℓ is a word sequence and c1:ℓ is

the corresponding POS tag sequence.

Example: (⟨a, nice, dog⟩︸ ︷︷ ︸
w1:3

, ⟨DT, JJ, NN⟩︸ ︷︷ ︸
c1:3

).
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Applications

• Text analysis: annotating text with POS tags

(e.g., input to other tools, such as tools for knowledge

extraction)

• Language modelling: address some limitations of NGram LMs

(e.g., linguistically related wordforms are treated as such)

• Also, the ideas we develop now will prove useful in many

labelling tasks

(e.g., entity recognition, semantic labelling, etc.)
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Formalisation

W is a random word. An outcome w is a symbol in a vocabulary

W of size V .

C is a random POS tag. An outcome c is a symbol in the tagset C
of size K .

X = ⟨W1, . . . ,WL⟩ is a random word sequence. An outcome w1:ℓ

is a sequence of ℓ words from W.

Y = ⟨C1, . . . ,CL⟩ is a random tag sequence. An outcome c1:ℓ is a

sequence of ℓ tags from C.
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Statistical Task

Design a mechanism to assign probability PXY (w1:ℓ, c1:ℓ) to any

outcome (w1:l , c1:ℓ) ∈ W∗ × C∗ .

• factorise PXY (w1:ℓ, c1:ℓ)

e.g., chain rule, conditional independencies

• parameterise its elementary factors

e.g., tabular Categorical cpds

Estimate the parameters of this mechanism from data (i.e., text

annotated with POS tags).

• e.g., use MLE to estimate the free parameters of our

parameterisation
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NLP Tasks

Predict a POS tag sequence for a given text.

For example, via

mode-seeking search:

arg max
c1:ℓ∈Cℓ

PY |X (c1:ℓ|w1:ℓ)

Assign probability to text that is not annotated with POS tags,

via marginalisation:

PX (w1:ℓ) =
∑

c1:ℓ∈Cℓ

PXY (w1:ℓ, c1:ℓ)

The outcome assigned largest probability mass is known as the mode of the

probability distribution.
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Let’s get started – Factorisation

Challenge. PXY is a distribution over a countably infinite space of

sequence pairs.

Key Idea. Re-express the probability of a sequence pair using the

probabilities of the “steps” needed to generate it. Design steps

such that they have a simple, countably finite sample space.
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Modelling POS-tagged data: illustration

Joint observations

the/DET book/NOUN is/VERB on/ADP the/DET table/NOUN ./PUNC

Generative story

BoS

Joint probability

PC |Cprev(DET|BoS)PW |C (the|DET)

× PC |Cprev(NOUN|DET)PW |C (book|NOUN)

× . . .

× PC |Cprev(EoS|PUNC)PW |C (EoS|EoS)

We pad the tag sequence with a BoS symbol. We pad both sequences with a

EoS symbol.
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Chain Rule for the HMM

Conditional independences

• Wi is independent of all but Ci ;

• Ci is independent of all but Ci−1.

Leading to

PXY (w1:ℓ, c1:ℓ)
ind.
=

ℓ∏
i=1

PC |Cprev
(ci |ci−1)︸ ︷︷ ︸

transition

PW |C (wi |ci )︸ ︷︷ ︸
emission

(1)

Hint. Pad the sequences with a BOS tag (context for the first

transition) and EOS tag (for the final transition) and EOS token

(for the final emission).
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Generative Story

1. Start with X = ⟨W0 = BOS⟩, Y = ⟨C0 = BOS⟩ and set i = 1;

2. Condition on the previous class ci−1 and draw a class ci with

probability PC |Cprev
(ci |ci−1) extending Y with it;

3. Condition on the current class ci and draw a word wi with

probability PW |C (wi |ci ) extending X with it;

4. If wi is a special end-of-sequence symbol (EOS), terminate,

else increment i and repeat from (2).

This specifies a factorisation of PXY in terms of elementary

factors of the kind PC |Cprev
and PW |C .
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Tabular Parameterisation

Transition distributions. Given a previous tag r , the transition

distribution over (next) tags is Categorical:

C |Cprev = r ∼ Categorical(λ
(r)
1:K )

hence, PC |Cprev
(c |r) = λ

(r)
c

Emission distribution. Given a tag c , the emission distribution

over words is also Categorical:

W |C = c ∼ Categorical(θ
(c)
1:V ) hence, PW |C (w |c) = θ

(c)
w

Probability mass function (pmf).

PXY (w1:ℓ, c1:ℓ) =
ℓ∏

i=1

λ
(ci−1)
ci︸ ︷︷ ︸

transition

× θ
(ci )
wi︸︷︷︸

emission
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Example

For a/DT nice/JJ dog/NN, we have probability mass:

λ
(BOS)
DT θ

(DT)
a λ

(DT)
JJ θ

(JJ)
niceλ

(JJ)
NN θ

(NN)
dog λ

(NN)
EOS θ

(EOS)
EOS
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Parameter Estimation via MLE

Given a dataset of observed texts annotated with POS, the

maximum likelihood estimate of:

• Transition. The conditional probability PC |Cprev
(c |r) of

generating a tag c right after having generated a tag r is

λ
(r)
c

MLE
=

countCprevC (r , c)∑K
k=1 countCprevC (r , k)

=
countCprevC (r , c)

countCprev(r)

• Emission. The conditional probability PW |C (w |c) of
generating word w from tag c is

θ
(c)
w

MLE
=

countCW (c ,w)∑V
o=1 countCW (c, o)

=
countCW (c ,w)

countC (c)
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Data Sparsity

It’s still possible that this model suffers from data sparsity (e.g.,

unseen transitions or unseen emissions), but much less so than an

NGram LM: contextual information is only available through the

POS tag of the previous position (only K possible outcomes,

instead of VN−1 outcomes).
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Strong Conditional Independence Assumptions

PLAN as a verb (I read that the government plans to . . .) or noun (I read

the government plans to . . .)

• older history (read that vs. read the) affects the analysis

HER as possessive determiner (I read her book) or personal pronoun (I

saw her there).

• the (semantics of the) verb (to read vs. to see) affects the analysis

Agreement features cannot always be delexicalised: a cat vs a cats.

LIKE as verb (Children like to play outside) or preposition (Children like

their parents need support).

• analysing like requires looking ahead of it

22



Possible Improvements

Relax some independencies, e.g.

• trigram transitions: have Ci depend on (Ci−2,Ci−1);

• bigram emissions: have Wi depend on Wi−1

• other, e.g., have W1 depend on Ci−1, etc.

These ideas can lead to better models, but tabular representations

become larger (and sparser) and they lead to other problems (as

we will see next).
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Evaluation



Tagging Performance

Predict a POS tag sequence for novel text. For example via

mode-seeking search:

ĉ1:ℓ = argmax

c1:ℓ ∈ Cℓ
PY |X (c1:ℓ|w1:ℓ)

Compare predicted ĉ1:ℓ to human-annotated c⋆1:ℓ step by step:

assess the rate at which the ith prediction matches the ith target

(accuracy). Or, since POS categories are likely imbalanced,

compute per-POS F1 and report macro (or weighted) average.
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Search

Let’s understand what it means to solve this expression

ĉ1:ℓ = arg max
c1:ℓ∈Cℓ

PY |X (c1:ℓ|w1:ℓ)

1. Enumerate all

candidate tag

sequences

2. Assess the probability

of each candidate

3. Sort by probability

and pick the best

the cute cat

c1 c2 c3

D D D

D D J

D D N

D D V

D D X

D J D

. . .

We have K ℓ candidates, enumeration is intractable!

25



Search

Let’s understand what it means to solve this expression
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LM Performance

Use the HMM to assign probability to observed text w1:ℓ

PX (w1:ℓ) =
∑

c1:ℓ∈Cℓ

PXY (w1:ℓ, c1:ℓ)

Use a heldout dataset and the marginal pmf to assess the

perplexity of the model.
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Marginal

Let’s understand what it means to solve this expression∑
c1:ℓ∈Cℓ

PXY (w1:ℓ, c1:ℓ)

1. Enumerate all

candidate tag

sequences

2. Assess the probability

of each candidate

3. Sum their

probabilities

the cute cat

c1 c2 c3

D D D

D D J

D D N

D D V

D D X

D J D

. . .

We have K ℓ candidates, enumeration is intractable!
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Dynamic Programming

Enumeration is intractable, but, as it turns out, it’s unnecessary.

Because of the conditional independences in the HMM, changing

the POS tag of position i can only affect

• one emission probability (Ci → wi )

• and two transition probabilities (Ci−1 → Ci and Ci → Ci+1).

This allows us to solve search and marginalisation incrementally

from left to right in time O(L× K 2) using the Viterbi or Forward

algorithms. Watch the video I prepared for you:

https://youtu.be/rVCd7NrGcSI
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Sequence Labelling



POS Tagging

We are given the text and we do not care to assign probability to

it.

Our goal is to develop a system that can POS tag the input

sequence.

Figure from Ch17 https://web.stanford.edu/~jurafsky/slp3/17.pdf 29

https://web.stanford.edu/~jurafsky/slp3/17.pdf


Named-Entity Recognition

NER is a labelling task from a semantic perspective, where we

recognise proper nouns that refer to a certain type of entity.

The text (in black) is given and we do not care to assign

probability to it. Our goal is to develop a system that can detect

and categorise mentions to named entities (i.e., the blue spans)

Figure from Ch17 https://web.stanford.edu/~jurafsky/slp3/17.pdf
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Chunking as Labelling

We can see NER as sequence labelling by labelling tokens as inside

or outside a span of text that refers to a named-entity.

These annotation schemes fit right into the sequence labelling

framework we developed for POS tagging.
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Key Technical Limitation

Because HMMs need to generate text, they power sequence

labellers that make fairly limited use of linguistic context in w1:ℓ.

Having Ci interact with words other than Wi would make key

quantities in the HMM very hard to compute (e.g., marginal and

mode probabilities). It would also make the tabular CPDs rather

sparse.
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Limitations from a Linguistic Perspective

Unseen words and phrases (e.g., proper names and acronyms,

inflected verbs, phrasal verbs) are actually quite frequent.

In many cases, their likely interpretation (e.g., syntactic or

semantic function) are identifiable from fine-grained features:

capitalisation (in English), prefixes and suffixes (e.g., ‘un-’ or

‘-ed’), knowing the words surrounding a certain position (e.g., a

window of 5 words), etc.
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Local Log-Linear Models



Rethinking Factorisation

Sequence labelling tasks map from a token sequence to the tag

sequence that’s assigned highest probability under the model

ĉ1:ℓ = argmax

c1:ℓ ∈ Cℓ
PY |X (c1:ℓ|w1:ℓ)

In an HMM, we obtain this conditional by inferring it from a joint

distribution (which we design, i.e., factorise and parameterise).

What if, instead, we attempted to factorise and parameterise this

conditional directly?
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Conditional modelling

The HMM is a generative model of labelled text.

Pro

he

BoS Ver

went

Pre

to

Det

the

Nou

store

EoS

EoS

We may choose to regard the text as a predictor, and model the

conditional distribution of tag sequences.

Pro

he

BoS Ver

went

Pre

to

Det

the

Nou

store

EoS

EoS
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First Idea: 0-order model

Let’s start even simpler and make a 0-order Markov assumption:

Ci ⊥ Cj ̸=i |X = x , I = i .

PY |X (c1:ℓ|w1:ℓ)
ind.
=

ℓ∏
i=1

PC |XI (ci |w1:ℓ, i) (4)

Pro

he

Ver

went

Pre

to

Det

the

Nou

store

EoS

EoS

To make this happen, we will need to rethink parameterisation!

Ci ⊥ Cj ̸=i |X = x , I = i is pronounced: given x and that we want to tag the

ith word, the distribution of the ith tag Ci is independent of the rest of the tag

sequence.
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Rethinking Parameterisation

In the 0-order conditional model, the cpd of any one tag depends

on the entire text w1:ℓ, for each position i ∈ [ℓ].

C | X = w1:ℓ, I = i︸ ︷︷ ︸
conditioning context

∼ Categorical( □1, . . . ,□K︸ ︷︷ ︸
conditional probs

)

Since the conditioning context is a high-dimensional,

variable-length outcome, we cannot give this cpd tabular treatment

(i.e., store conditional probs for every (w1:ℓ, i)).

Instead we can learn to predict conditional probs from a

D-dimensional representation of the conditioning context.

Note how this parallels the design of a text classifier: in a given textual

context we want to predict a distribution over K labels.

37



Feature Function

Let ϕ(w1:ℓ, i) ∈ RD be a feature vector representing (‘describing’)

the ith position of w1:ℓ.

Examples:

• ϕ(⟨he, went, to, the, store⟩, 3) is a vector u such that

uid(word:to) = 1, uid(before:went) = 1, uid(after:the) = 1,

uid(position) = 3/5, and other coordinates of u are 0;

• ϕ(⟨he, went, to, the, store⟩, 5) is a vector v such that

vid(word:store) = 1, vid(before:the) = 1, vid(after:EOS) = 1,

vid(position) = 5/5, and other coordinates of v are 0;
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Logistic CPDs

We map any given conditioning context (w1:ℓ, i) to a

K-dimensional probability vector by

1. mapping it to the real coordinate space;

2. linearly mapping the result to K scores;

3. projecting the result to the probability simplex:

f(w1:ℓ, i ;θ) = softmax(

step 2︷ ︸︸ ︷
Wϕ(w1:ℓ, i)︸ ︷︷ ︸

step 1

+b)

︸ ︷︷ ︸
step 3

with θ = {W ∈ RK×D ,b ∈ RK}.
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Exercise (for after class)

Here are templates for the coordinates of a feature function

ϕ(w1:ℓ, i): word:wi , before:wi−1, after:wi+1, all binary-valued. If

we know a total of V words, what is the dimensionality D of this

feature space?

What if we add the templates before2:wi−2 and after2:wi+2?

And what if we add the templates wordpref:prefix(wi ),

wordsuff:suffix(wi ) and wordstem:stem(wi )? Assume we know R

prefixes, S suffixes, and a number V ′ ∝ V of stems.

For example, prefix(unwanted) = un, stem(unwanted) = want,

suffix(unwanted) = ed.
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Pmf

For i ∈ [ℓ], here’s our model

C | X = w1:ℓ, I = i︸ ︷︷ ︸
conditioning context

∼ Categorical( f(w1:ℓ, i ;θ)︸ ︷︷ ︸
predicted probs

)

Here’s the pmf

PY |X (c1:ℓ|w1:ℓ) =
ℓ∏

i=1

PC |XI (ci |w1:ℓ, i)

=
ℓ∏

i=1

[f(w1:ℓ, i ;θ)]ci

(5)

Note how this amounts to designing 1 ‘text classifier’-type thing

and re-using it for each and every step of the sequence.

The notation [v]i is equivalent to vi , it’s easier to read when the vector

argument is the output of a function with multiple arguments. 41
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Exercise (for after class)

About the 0-order model we designed.

Claim 1: it cannot be used as a language model.

Claim 2: finding the best tag sequence for a given text w1:ℓ can be

done by solving a sequence of ℓ independent classifications.

Accept or reject the claims, justifying your decision in each case.
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Likelihood Function

Just like before, we do MLE. Unlike before, this time we will not

have an exact, closed-form expression.

We have a training corpus D = {(x1, y1), . . . , (xN , yN)} of N data

points, the nth of which is a labelled sequence of length ℓn.

We assess the log-likelihood of θ given D

LD(θ) =
N∑

n=1

logPY |X (yn|xn)

=
N∑

n=1

ℓn∑
i=1

logPC |XI (yn,i |xn, i)︸ ︷︷ ︸
=[f(xn,i ;θ)]cn,i

(6)

The technical term from statistics is likelihood of model parameter given

observed data, in ML and applied ML, esp in recent years, LD(θ) is often

referred to as ‘likelihood of data’. 43



Gradient-Based Optimisation

We search for the parameter value that optimises the log-likelihood

function:

θMLE = argmax
θ

LD(θ) (7)

There’s no closed-form solution to this optimisation problem (for

our log-linear model), but we can approximately solve it via an

iterative gradient-based optimisation

θ′ = θ + γ∇θLD(θ) (8)

We typically use autodiff [Baydin et al., 2018] and a stochastic

optimiser.
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More Dependencies: 1-order model

We could make a 1-order Markov assumption:

PY |X (c1:ℓ|w1:ℓ) ≜
ℓ∏

i=1

PC |XICprev
(ci |w1:ℓ, i , ci−1) (9)

Pro

he

BoS Ver

went

Pre

to

Det

the

Nou

store

EoS

EoS

A feature function for this has access to the previous class: e.g.,

ϕ(⟨he, went, to, the, store⟩, 3,Verb) is a vector u such that

uid(word:to) = 1, uid(before:went) = 1, uid(after:the) = 1,

uid(position) = 3/5, uid(prevtag:Verb) = 1 and other coordinates are 0

Ci ⊥ Cj ̸∈{i−1,i}|X = x , I = i ,Cprev = r : given x , that we want to tag the ith

word, and that the previous word received tag Cprev = r , the distribution of the

ith tag Ci is independent of all but the previous tag in the tag sequence.
45
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Exercise (for after class)

Claim 1. Compared to the example feature function for the 0-order

model, the example feature function for the 1-order model has K

new coordinates.

Claim 2. Finding the best tag sequence for the 1-order model can

be done as follows: start with ĉ0 = BOS, iteratively for each i from

1 to ℓ, solve:

ĉi = argmax
k∈[K ]

PC |XI (k |w1:ℓ, i , ĉi−1)

Accept or reject the claims, justifying your decision in each case.
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Conditional Chain Rule

We could use chain rule, conditioned on the word sequence

PY |X (c1:ℓ|w1:ℓ) ≜
ℓ∏

i=1

PC |XH(ci |w1:ℓ, c<i ) (10)

Pro

he

BoS Ver

went

Pre

to

Det

the

Nou

store

EoS

EoS

For now, a powerful feature function for this is not trivial to

design. That’s because to describe the complex dependencies in

the history using indicators, we increase the dimensionality of the

feature space exponentially with length of history.
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Overview

Log-linear models can achieve a lot!

• We can use more context, word internal features, etc.

• They are more statistically efficient than tabular cpds: the size

of the model does not depend on how many

condition-outcome pairs are possible.

• They have been applied to POS tagging, NER, semantic role

labelling, etc.

But they are tricky to design

• Good feature functions require enough intuitions about what’s

likely useful for a task.

• Interesting feature spaces are typically very large.
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Summary

• HMMs combine generation and classification, they can be

used as taggers or LMs.

• HMMs make strong factorisation assumptions and have are

parameterised inefficiently (tabular cpds).

• Log-linear models are a good alternative parameterisation of

Categorical cpds.

• Local log-linear models can power direct modelling of complex

conditional distributions.

• These ideas power various sequence labelling tasks.

We can extend these in two ways: global modelling (not covered in

this course, look for CRFs), and fewer Markov assumptions (with

neural parameterisation).
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What Next?

Self-study

• Exercises throughout slides (solutions at the end of slides)

• Watch the video on Viterbi/Forward

• Watch the videos on logistic CPDs: theory, example, and

code.
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Solutions



Feature Spaces

Here are templates for the coordinates of a feature function ϕ(w1:ℓ, i):

word:wi , before:wi−1, after:wi+1, all binary-valued. If we know a total of

V words, what is the dimensionality D of this feature space? The feature

space has to accommodate every possible instantiation of those

templates, there are V ways to instantiate each of the 3 templates, hence

D = 3× V .

What if we add the templates before2:wi−2 and after2:wi+2? That would

increment D with 2× V features, since each of these templates can be

instantiated in V possible ways.

And what if we add the templates wordpref:prefix(wi ), wordsuff:suffix(wi )

and wordstem:stem(wi )? Assume we know R prefixes, S suffixes, and a

number V ′ ∝ V of stems. The are R ways to instantiate the wordpref

template, S ways to instantiate the wordsuff template, and a number

V ′ ∝ V ways to instantiate the template wordstem, hence we would

increment D by R + S + V ′.



0-order model

About the 0-order model we designed.

Claim 1: it cannot be used as a language model.

This is true because the model is not inferred from a joint distribution

over the space of labelled text, instead, it is a probability distribution

directly specified over the space of tag sequences.

Claim 2: finding the best tag sequence for a given text w1:ℓ can be done

by solving a sequence of ℓ independent classifications.

This is true because the definition of the Categorical parameter

f(Wϕ(w1:ℓ, i) + b) is such that for any position i we would like to

classify, it only has access to the text w1:ℓ itself. In other words, for each

and every step, there are no dependencies on other tags, and hence the

tagging of each position is independent of the tagging of any other

position.



About 1st-order model

Claim 1. Compared to the example feature function for the 0-order model, the

example feature function for the 1-order model has K new coordinates.

This is true because the new feature function has a template prevtag:ci−1 for

the previous tag, which can be instantiated in K possible ways.

Claim 2. Finding the best tag sequence for the 1-order model can be done as

follows: start with ĉ0 = BOS, iteratively for each i from 1 to ℓ, solve:

ĉi = argmax
k∈[K ]

PC |XI (k|w1:ℓ, i , ĉi−1)

This is false because now each tagging decision depends on the tagging

decision done previously. It is possible that a decision that’s locally optimal for

step i = 2 is not globally optimal a few steps later. Extra information for you:

To solve this correctly, we need dynamic programming. As the unobserved

variables of this problem (the tags in the tag sequence) depend on one another

in the same way as they would in the standard HMM (i.e., in a 1st-order linear

chain), we can actually use a version of the Viterbi algorithm for this.
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