NLP12023/24

Sequence Labelling

Lecturer: Wilker Aziz
(week 2, lecture Q)



\Where are we at?

> What makes NLP hard
» Text classification

» Language modelling
- Sequence labelling



Self-study: logistic CPDs (theory and example)




Ask me anything about logistic CPDs

4 questions
/ upvotes



Outline

> Word classes

> Hidden Markov model

> Evaluation

> Sequence labelling

> Conditional random fields



\We can organise words into classes

> semantic criteria: what does the word refer to?

> nouns often refer to ‘people, ‘places’ or ‘things'

> formal criteria: what form does the word have?

> -ly makes an adverb out of an adjective
> -tion makes a noun out of a verb

> distributional criteria: in what contexts can the word occur?

> adjectives precede nouns



But why do that?
10 responses

Reduce the number of dimensions

fixes ambiguity

Smaller representation

What is your native language?

to generalize prediction

Conditional probabilities. Feature
extraction

Lower dimensionality

help improve vocabulary

Vibes



But why do that?
10 responses

We can use these classes as features



But why?

Remember one of the limitations of our
tabular CPDs? We treated words as if they
were completely unrelated to one another,

word classes capture some aspects of word
relatedness.




Semantically Formally Distributionally
Nouns refer to things, -ness, -tion, After determiners,
concepts -ity, -ance possessives
Verbs refer to actions, -ate, -ize infinitives: to jump,
states to learn
Adjectives | properties of nouns -al, -ble appear before nouns
Adverbs properties of actions -ly next to verbs, beginning of

Examples of criteria

sentence



More on motivation

Word classes enable a form of
delexicalised natural language
processing in which we can learn
about patterns that are common to
all words that share a given property
(e.g. in English, a pronoun is typically
followed by a verb).



Those zorls you splarded were malgy

Noun

splarded

malgy

Verb



How many classes are there?

This is very much language dependent.

The English Brown corpus has 87, the Penn
Treebank has 45.

Universal POS tags are a simplifying tags
aimed at cross-lingual compatibility (it maps
variants of a base class to that base class,

edg.
VBD, VBN, VB, VBG, VBP — VERB)




Universal parts-of-speech (POS)

ADJ (adjectives)

ADP (prepositions and postpositions)
ADV (adverbs)

CONJ (conjunctions)

DET (determiners and articles)
NOUN (nouns)

NUM (numerals)

PRON (pronouns)

PRT (particles)

PUNCT (punctuation marks)

VERB (verbs)

X (anything else, such as abbreviations or
foreign words)

e0



Example (PennTreebank-style)

The/DT grand/JJ jury/NN
commented/VBD on/IN a/DT
number/NN of/IN other/JJ topics/NNS

4

There/EX was/VBD still/JJ
lemonade/NN in/IN the/DT bottle/NN /.



Goals for this class: to learn

> how to model POS-tagged data
> how to model text using word classes
> a general approach to sequence labelling problems



Outline

> Word classes

> Hidden Markov model

> Evaluation

> Sequence labelling

> Conditional random fields



POS-tagged data

We will prescribe a joint distribution
over the space of texts annotated with
their POS tags.

That s, we will be learning to assign
probability to sequence pairs of the
King (wlzla clzl)
where wi.; IS a word sequence and €y .
s the corresponding POS tag
sequence.

Example: (<a, nice, dog>, <DT, JJ, NN>)



Applications

> Text analysis: annotating text with POS tags (e.g., input to other tools)
> Language modelling: address some limitations of NGram LMs
> Also, the ideas we develop now will prove useful in many labelling tasks



Formalisation

W is a random word. An outcome w is o
symbol in a vocabulary WV of size V.
C'is a random POS tag. An outcome cis O
symbol in the tagset C of size K.

X = (Wi,...,Wrg)isarandom
sequence. An outcome wj.; IS a sequence
of [ words from W.

Y = (C4,...,CL)isarandom sequence.
An outcome c¢y.; is a sequence of [ tags from
C.



Statistical task

Design a mechanism to assign
probability Pxy (w1.;, ¢1.;) to any
outcome
(’wl:z, (31:[) cW* xC".

Estimate the parameters of this
mechanism from data (i.e., text
annotated with POS tags).



NLP tasks

Predict a POS tag sequence for a given text.

For example via mode-seeking search:

arg 1max PY|X (clzl|w1:5)
Cl:gECE

Assign probability to text that is not
annotated with POS tags vio
marginalisation:

K

K
Px (wlzl) = Z e Z PXY(wlzl: Cl:l)

ci=1 c;—=1



Challenge

Pxvy is a distribution over a countably
infinite space of sequence pairs.

There is no standard statistical distribution
over such a sample space. Hence, we need
to develop one.



Key idea

Re-express the probability of a
seguence pair using the probabilities of
the "steps’ needed to generate it.

Design steps such that they have a
simple, countably finite sample space.



Joint observations
the/DET book /NOUN is/VERB on /ADP the/DET table/NOUN ./PUNC
Generative story

We pad the tag sequence with a BOS symbol. We pad both sequences with a E0OS symbol.

HMM factorisation of the probability of a sequence pair in terms of transition and
emission probabilities.




Chain rule for the HVIM

Pxy (Wi, 1) =

z
H C|Cprev (€3 [Ci—1 ) Pw|c (w3 |C;)
=

transition emission

Hint. Pad the sequences with a special

BOS token

(or tag) and a special EOS token (or tag).

To learn a bit about graphical models, see our

Introduction to PGMs.




Generative story

1.Startwith X = (W = BOS), Y — (5 = BOS)

andset? = 1;

2. Condition on the previous class ¢;__1 and draw a class
¢; with probability Pgc .. (¢i|ci—1) extending Y with
it;

3. Condition on the current class ¢; and draw a word w;
with probability Py (w; |¢; ) extending X withit;

4.If w; is a special end-of-sequence symbol (EOS),
terminate, else increment 2 and repeat from (2).

This specifies a factorisation of Pxy in terms of
elementary factors of the kind Fg ¢ ., and Py c.



Tabular parameterisation

Transition distribution

C|Cyrey = 7 ~ Categorical(A"))

Emission distribution

: (c)
W|C = c ~ Categorical(, ;,)

Probability mass function (pmf):
p(mz,cu;@ A) =

H)\E* X 9“*)
S e e

transition emission



Tabular parameterisation

Probability mass function (pmf):

P(’wl:l y C1:13 91 }‘) —

transition emission

Example:

p((a, nice, dog), (DT, JJ, NN); 8, X) = AlE09) g{PT) 5 (DT) (37) 5 (1) egf? Apos Bio)

nice



Express the MLE for transition probability 7 — ¢
11 responses

proportion of second tag preceded argmax_lambda lambda’r
by first tag in training data

Number of tags c¢ following r divided
P(c{step}/c{step-1}) by the count of all r tags

transitions from c / count of ¢ Count(c,r)/count(c)

Bayes rule

p(r.c) / p(c)

count(r—c)/count(c)



Express the MLE for transition probability 7 — ¢
11 responses

P(r|c) Count rc/sum_jCount r;



Parameter Estimation: Transitions

For each possible previous tag (any r € C U {BOS}), we have
a transition cpd over K possible tags:

ClCoee = 1 Categorical()\ﬂ{)

Given a dataset of observed texts annotated with POS, the

(7)

maximum likelihood estimate of the conditional probability A,
of generating a tag cright after having generated a tag r is:

A\ _ countc . c(7,c)
NE—

Zﬁf:]. CDunthrevC (T? k)
countc, . c(r,c)

countc . (7)



Express the MLE for emission probability ¢ — w
8 responses

count(cw)/count(c) Count(c,w)/count(c)
Count( c, w) / count(c) count(w, c) / count(c)
count(c,w) /count(c) count(c,w)/count(c)

P(w]|c)

P( w|c) = count (c, w)/count(c)



Parameter Estimation: Emissions

Foreach possible tag ¢ € C (the EOS tagis assumed to be part
of the tagset), we have an emission cpd over V' tokens:

W|C =c~ Ca,tegﬂrical(ﬂgf%,)

Given a dataset of observed texts annotated with POS, the
(c)

maximum likelihood estimate of the conditional probability 6,
of generating word w from tag cis:

50 _ countow (¢, w)

w

le countcow (¢, o)
countow (¢, w)

counto (c)



Data Sparsity

It's still possible that this model suffers from data
sparsity (e.g., unseen word-tag pairs or unseen
tag-tag pairs), but much less so than an NGram
LM: contextual information is only available
through the POS tag of the previous position (K

possible outcomes, instead of i outcomes).



Limitations
16 responses

Samples will be nonsense that's
vaguely grammatical

POS tags contain no semantic
information

knowledge about previous words

wrong grammar

We will get gibberish sentences.

Attention is all you need. This model
has no attention

Grammatically correct gibberish

gobaldygoo

youll get stuff like "Colorless green
ideas sleep furiously”



Limitations
16 responses

No semantic context information (
only grammatical)

bobbledygook

Can you use longer Markov
seguences? eg.condition on the
previous three POSs

no way to see further in the past then
1 step

the book is on the table, the hable is
on the book

always same sentences?

Modern ARt



Questions about HMIMs?

4 questions
/ upvotes



Outline

> Word classes

> Hidden Markov model

> Evaluation

> Sequence labelling

> Conditional random fields



Tagging Performance

Predict a POS tag sequence for novel text. For
example via mode-seeking search:

1 = arg max PY|X(CI:Z"1U1:Z)
1’31:&'601’

*

Compare predicted ¢1.; to human-annotated Cl.;

step by step: assess the rate at which the ith
prediction matches the tth target (accuracy).



Most Probable Tag Sequence

We look for the posterior mode:

arg max Py x(c1.|wi)
EUEC

Definition of conditional probability:
Pxy (w1, c1:1)
— arg max

C1s gEC’E PX (wl:f)
The argmax is constant wrt Py (w1, ):

= arg ma}c Pxy (w1 .14 C1: z)
C1. EEC
HMM factorisation:
[

= arg max H Peic,.e, (Cilci-1) Pw o (wilc;)

c12€C 323

Categorical pmf:
[
— arg max )\( 1) eﬁﬁj)

l
c1:1€C i—1

Monotonicity of log and numerical convenience:

= arg max Zlog)\ i-1) 4 lﬂgﬁ(c“)

C1- fEC =1



Co

Example:
observation wj.3 o (EOS)

tagset {A, B}

¢ & o oo

Brute force: enumerate sequences, score, sort, pick best



K |
With K tags in the tagset, how many POS tag

sequences of length L are there?

15




& Gy Gy 10, [FL Aiotd o gl

A A A EoS |\ 535) X ﬁff‘l} X A(A} x 05 x A{A} x 04 x A':A} X Héic’:]
A A B EoS ,\(E“S} x O x Amj x O x )\{A} x 0) x }":EE X HEDSS:'
A B A EoS ,\‘5“5} x 0% x }.“‘“ x 0% x Af} x 00 x A8) x gEed)

R |

Dynamic programming for
the rescue

Exact enumeration is intractable, but, as it turns out, it's
unnecessary.

Because of the conditional independences in the HMM,
changing the POS tag of position 7 can only affect one
emission probability (C; — w;) and two transition
orobabilities (C;_1 — C; and C; — Cj.1). This allows
us to solve the problemﬁcremacally from left to right

intime O(L x K*).



Viterbi Algorithm

For a given text wq .,
a(1, 7) is the maximum probability of a sequence

endingin (C; = j, W; = w;):

N A if i = 1
ali,j) = max ot — 1,7’))\?) 95;;? ife 1
re

Then, a(l + 1, EoS) is the mode probability.

Store the arg max at each step to obtain the
POS tag sequence with maximum probability.

Watch the video | prepared for you.




LM Performance

Use the HMM to assign probability to observed
text wy

x (w1.) E E Pxvy (w1, 1)

c1€C c eC

z
~ Z T Z H PC\Cprev (Cz' |Ci—1)PW|c(1U1’ ‘Cz)

c1C c;€C 1=1

=D ZHA”“

c1 €C c;eC 1=

Use a heldout dataset and the marginal pmf to
assess the perplexity of the model.



Example:

observation w;.3 o (EOS)

tagset {A, B}

Cog G Ga s
Bos A A A EoS
Bas A A B HOS
BoS A B A EoS
BoS A B B EOS
Bos B A A EoS
BoS B A B EoS
Bas B B A BEOS
Bas B B B BoS

Brute force: enumerate sequences, score, sum. But, as we know, there are KAL

sequences!



Forward Algorithm

For a given text wy.;,
a(1, 7) is the total probability of all
sequences endingin (C; = 7, W; = w;):

Lol if { = 1
(60 =13 ali— 1,)A09 ifi > 1
reC

Then, a(l + 1, EOS) is the marginal
probability.

Watch the video | prepared for you.



Value Recursion

Let s(7, j, w; ) be the score associated with
setting C; = j for agiven text X = wj.; when

Ci—l — T,
s(BoS, 7, w;) ik =1
a(i,j) = @ a(t —1,7) @ s(r,j,w;) ifi > 1

reC

The generalised sum a @ b operationalises the
semantics of disjunctions (i.e., a or b).
The generalised product a @ b operationalises
the semantic s of conjunctions (ie., @ and b).

Watch the video | prepared for you.




VValue Recursion > Forward

> Forward:
y8(r 0, w; ) = )\gr) X 95’?
sa@db=a-+bd
saxb=a b

> Forward (log):

> 8(r, j,w;) = log /\E;T) + log 9%)
> a @ b = logsumexp(a, b) = log(exp(a) + exp(d))
>a®b=a-1b



VValue Recursion > Viterbi

> Viterbi:

s 8(r, gywi) = A x g7

> a @ b= max(a,b)
sa 0 b—=a xb

> Viterbi (log):
> 8(ci_1,¢,w;) = log A&fi‘l) + log 93,,3;)
> a @ b= max(a,b)
sa®b=a-+0b



Outline

> Word classes

> Hidden Markov model

> Evaluation

> Sequence Labelling

> Conditional random fields



Sequence Labelling Tasks

There are various sequence labelling tasks,
they are useful on their own and they often
have nothing to do with generating text.



IMAGE FROM JURAFSKY AND MARTIN CH 8

POS Tagging

We are given the text and we do not care to
assign probability to it.

! ¢

( Part of Speech Tagger
|

g
|

| | |
Janet will back the bill

Our goal is to develop a system that can
POS tag the input sequence.




FIGURE FROM JURAFSKY AND MARTIN CH 8

Nlamed-Entity
Recognition

Citing high fuel prices, [grg United Airlines] said [t p Friday] it
has increased fares by [\jongy $6] per round trip on flights to some

cities also served by lower-cost carriers. [ogrg American Airlines], a NER is a labelling task from a semantic

unit of [_ORG AMR Co?p.], 1mmed1:-.1.te1y matchled the move, spokesman perspective, where we recognise proper nouns
[per Tim Wagner] said. [grg United], a unit of [org UAL Corp.], _ |

said the increase took effect [Ty Thursday] and applies to most that refer to a certain type of entity.

routes where it competes against discount carriers, such as [; o Chicago]

to [ oc Dallas] and [ o Denver] to [; oc San Francisco]. _ | |
The text (in black) is given and we do not care to

assign probability to it. Our goal is to develop a
system that can detect and categorise mentions
to named entities (i.e., the blue spans)




Input
Jane
Villanueva
of

United
Airlines
Holding
discussed
the
Chicago

route

R |

Chunking as Labelling

We can see NER as sequence labelling by
labelling tokens as inside or outside a span
of text that refers to a named-entity.

(Other annotation schemes are possible,
see Section 8.3 of textbook)



Understanding how participants relate to
events—pbeing aple to answer the question
"Who did what to whom” (and perhaps also
‘when and where”)—is a central guestion of

natural language processing.

— Jurafsky & Martin,_Chapter 24




* XYZ corporation bought the stock.

e 1]

ey sold the stock to XYZ corporation.
e stock was bought by XYZ corporation.
e purchase of the stock by XYZ corporation

ji i
o Tl
Tl

e stock purchase by XYZ corporation...

EXAMPLES FROM JURAFSKY & MARTIN CHAPTER 24

List commonalities between
- these sentences...

Waiting for responses --.



XYZ corporation bought the stock.

They sold the stock to XYZ corporation.

The stock was bought by XYZ corporation.

The purchase of the stock by XYZ corporation...
The stock purchase by XYZ corporation...

EXAMPLES FROM JURAFSKY & MARTIN CHAPTER 24

Shallow Semantics

> there was a purchase event

> the participants were XYZ Corp and
some stock

> XYZ Corp was the buyer
- stock was the thing purchased



Thematic Role

Example

AGENT
EXPERIENCER
FORCE

THEME
RESULT
CONTENT
INSTRUMENT
BENEFICIARY
SOURCE
GOAL

The waiter spilled the soup.

John has a headache.

The wind blows debris from the mall into our yards.

Only after Benjamin Franklin broke the ice...

The city built a regulation-size baseball diamond...

Mona asked “You met Mary Ann at a supermarket?”

He poached catfish, stunning them with a shocking device...
Whenever Ann Callahan makes hotel reservations for her boss...

I flew 1n from Boston.
I drove to Portland.

13T WZ W] Some prototypical examples of various thematic roles.

Prototypical Semantic Roles



(24.3) John  broke the window.

AGENT THEME
(24.4) John  broke the window with a rock.
AGENT THEME INSTRUMENT
(24.5) The rock broke the window.
INSTRUMENT THEME
(24.6) The window broke.
THEME
(24.7) The window was broken by John.
THEME AGENT

EXAMPLE FROM JURAFSKY & MARTIN, CHAPTER 24

Sequence Role
Labelling

Assigning semantic roles to spansin
sentences.

These semantic roles express the
role that arguments of a predicate
take in the event.



(24.11) agree.01
Arg0: Agreer
Argl: Proposition
Arg2: Other entity agreeing

Ex1: [Argo The group] agreed [ prp1 it wouldn’t make an offer]. SI 2 L EXO I I I p I es

Ex2: [ ArgM-TMP Usually] [ Arg0 John] agrees | Arg2 with Mary]
Arg1 On everything].

(24.12) fall.01 The semantics of the roles depend on the

e e R verb and its sense as codified in databases
rg2: Extent, amount fallen

Arg3: start point like PropBank and FrameNet.
Arg4: end point, end state of argl
Exl: [Arg1 Sales] fell [Arg4 to $25 million] [Arg3 from $27 million].

Ex2:  [Arg1 The average junk bond] fell [5op by 4.2%].

FROM JURAFSKY & MARTIN, CHAPTER 4




|

word POS frame file roleset #1 (have.0l1l) #2 (like.02) #3 (lighten up.02) #4 (expose.0l) #5 (use.0l) #6 (call.03) #7 implement.01)
I PRP - - * * * * (ARGO*) * (ARGO*)
have VBP have have.0l (V*) * * * * * *
price NN - - * * * * * 5 *
targets NNS - - " * * * * * *
of IN - = * * * * * * "
where WREB - - o (ARGM-LOC*) * * * * *
I PRP - - * (ARGO*) (ARGO*) * * * *
would MD - — # (ARGM-MOD¥*) x x * * *
like VB liken like.02 " {V*) * * * * *
to TO E - * (ARG1* * * . * *
lighten VB lighten lighten up.02 : ® (V* * * * *
up RP - - * * * ) * * * *
exposure NN expose expose.(l B e (ARG1~* (V*) * * *
to IN - - * * * (ARG2 * * * "
ENE NNP - - * *) %) *) * . .
and i o - - * * * * * * "
will MD - ~ * * * *  (ARGM-MOD*) * *
use VB use use.01 " * * * (V*) * *
calls NNS call call.U3 2 " " " (ARG1*) (V*) *
to TO - - * * * * (ARG2 * * *
implement VB implement implement.0l " " » o " " (V*)
the DT o o " " ® " " " (ARGL*
stategy NN - - * X * & ) & =

- - * * * * * * *

Semantic roles as sequence labelling: each column (after roleset) is the target sequence
wrt a given predicate. Example from PropBank.



L1
e
o

=7 SRL using IOBES

2 have
3lprice
4 targets
5 of
6 where
711
8 would
9 like
10 to
11|1ighten
12 up

For each predicate (the example has 7), we
create an input-output pair.

The inputis a sequence of words wy.; and
the position ¢ of the verb predicate whose
semantic arguments we analyse.

13 exposure
14 to

15 ENE

16 and

17 will

18 use

19 calls 5-A1 The output ¢;.; is the IOBES-encoded

20 to B-AZ

21 implement I-A2 Sequence Of semda nt|C Grguments Of the

22 the I-A2

23 stategy E-A2 Verb pred|C0te wt :

24 O

| |6 o ) oo e L o ) o ) 5 et | W ) B o B | s 6 e 6 e ) i 0 e 0 N,

T
0o
| O
= |2




HMIM for Sequence Labelling

If we can express the task as annotating the
tokens in a sequence of size L, each with a
category (out of a finite set), then the HMM

IS readily applicable.

Good examples: POS tagging, NER.
Not so good example: in SRL, the number of
output tag-sequences depends on the
number of predicates in the input.

But is the HMM a good choice for those
good examples?



Limitations of the HMIM (in particular, given that
our application does not need to assign
probability to text)?

Waiting for responses -..



Key Technical Limitation

Because HMMs need to generate text, they
power sequence labellers that make fairly
limited use of linguistic context in wy ;.

Having C; interact with words other than
W, would make key quantities in the HMM
very hard to compute (e.g., marginal and
mode probabilities). It would also make the
tabular CPDs rather sparse.




Limitations from a Linguistic Perspective

Unseen words and phrases (e.g., proper
names and acronyms, inflected verbs,
phrasal verbs) are actually quite frequent.

In many cases, their likely interpretation (e.g.,
syntactic or semantic function) are
identifiable from fine-grained features:
capitalisation (in English), prefixes and
suffixes (e.g. "un-" or "-ed"), knowing the
words surrounding a certain position (e.g., o
window of 5 words), etc.

R |



First ldea: use feature-rich
models

Let's introduce a feature function ¢ (%, wy.; ) to represent the
context in which we predict the distribution of the ¢th tagin the

output tag-sequence.

The feature functionis a design choice, it should express what
is known about the zh position of the sequence.

Example: V BoW features for the left-neighbourhood of the 2th
position, same for the right-neighbourhood, and a V-
dimensional indicator for the central word (position 2).
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Second ldea: design one
classifier and use it many
times

Given the text wq.;, we represent the 1th position using
a D-dimensional feature vector (,1’)(?,:+ ’IU1:,§) and predict
the Categorical distribution of the 2th tag in the tag-
sequence with a log-linear model:

S = qu(iawl:i') + b

f(wy.,1;0) = softmax(s)
with@ = {b ¢ R* ;W ¢ R**P}



Independent Tagger

Model positions in the tag-sequence
independently of one another. This is basically
treating tagging as a chain of independent
applications of the same text classifier.

C;| X = wy,I =1 ~ Categorical(f(w;.,; 0))

For parameter estimation, watch the video on
logistic CPDs.




Parameter estimation

The log-linear model assigns probability
fr (w1, 7; 0) to classifying w; in wy.; as k.
\We can obtain a parameter estimate by
following the direction of steepest ascent
using the gradient:

Vg log fk (’wlzl . ’i; 9).

The different steps of a sequence are
treated as if they were independent training
examples.
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Example: POS
classifier

Given an input text (e.g., | saw a cute little
dog.) and a position (e.g., 4) we want to
analyse using POS, we predict a distribution
over the tagset (e.g., {ADJ, ADP, ADV, CONJ,
DET, NOUN, PRON, PRT, PUNCT, VERB,
OTHERY}).
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Example: NIE classifier

Given an input text (e.g., Jane Viallnueva of
United Airlines Holding discussed...) and o
position (e.g., 4) we want to analyse in terms
of NE, we predict a distribution over the

tagset (e.g. {O, ORG,

D

R

OC)).




Input
Jane
Villanueva
of

United
Airlines
Holding
discussed
the
Chicago

route

|OBES REPRESENTATION FOR NER DATA

\What could go wrong with
independent tagging?

Waiting for responses -..



2 |
Questions about sequence labelling tasks?

4 questions
/ upvotes



Outline

> Word classes

> Hidden Markov model

> BEvaluation

> Sequence Labelling

> Conditional random fields
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Another way to prescribe a
feature-rich model

Suppose we assign scores to complete tag-sequences.
Then we have the conditional probability

Py x (c1:1|w.) be proportional to

exp(score(cy., wi.g)).

The exp makes this function > 0, with 0 only possible
when the score is —o0 (reserved for invalid sequences).



How can we get a valid probability distribution
for Py x (c1.1|w1.) o< exp(score(cy., wr))

Waiting for responses -..
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Another way to prescribe a
feature-rich model

Let Z(wy.,) = Z exp(score(0y.;, wy.;)) be the
01.€C!

sum of exponentiated scores for all possible

sequences.

BXD(SCOIE(CLI s W1 ))
Z(wl:l)

Then, Pyp{ (Clza‘fr ‘wlzi) —

This works provided we can compute the normaliser.



\What could make Z exp(SCOI'e(Olzl, Wi ))

01:] ecl
tractable to compute?

Waiting for responses -..
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Score Decomposition

Step: tag the tth token in wy.; with ¢ when the
previous token was tagged with 7.

Assignh scores to steps and have the score of a
complete sequence be

)
score(cy.y, Wy ) = Z scorestep(r, ¢, 7, w1, )
i=1

This corresponds to a form of conditional
independence assumption in a undirected
graphical model.

R |



\Where do we get scores from?

Waiting for responses -..
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\We learn to score steps:

& SCOI‘GStEp(T‘, C, 1, wl:!) =w' ‘;‘{’(Ci—l: Ciy 2, wl:l) + b
> ris the tag at position? — 1
> cis the tag at position 2

> qb(?‘, c, % ‘LU1:£) is a D-dimensional feature representation
for the step

>0 = {w € R”,b € R} are trainable parameters



Linear-Chain Conditional Random Field

The pmf of the linear-chain CRF assigns
probability:

[ .
Zizl WTQE’(C?Z—M Ci, % wi) + b
Z(wl:l : 9)
to atag-sequence cj.; given a token-sequence
wi.;- T'he denominator

[
Z(’wlz,g;e) — Z exp( WTé(Oi_lei,ijwl:g) - b)
=

01:] ECI

p(cri|wiy; @) =

L

()

can be computed using the value recursion.



Parameter Estimation

Same as any other log-linear model: gradient-
based optimisation.

For the likelihood function we need to be able to
assess the probability mass of observed ¢4 ;
given observed wy.; as a function of model
parameters:

[
log p(cy.y|wyg; @) = (Z w' d(ci_1,¢i,0,wig) + b) — a(EOS, [+ 1)
i=1

For a(+) the value recursion using

S(T& C, 1, wl:l) — WT(;')(T’ C, 1 wl:l) + b,
@ = logsumexpand ® = +



Input
position word

1T
2 have
3 price
4 targets
3ot
b where
71
8 would
9 like
10 to
11 lighten
12 up
13 exposure
14 to
15 ENE
16 and
17 will
18 use
19 calls
20 to
21 implement
22 the
23 stategy
24 .

Output

|
=
o

S

20 0|0 |00 |0(0|0 |00 (0|0 |00

it
w &
e
e

S-Al
B-A’
I-A2
I-A2
E-AZ2

Input
position word

112
2 have
3 price
4 targets
5 of
b where
Fal:
8 would
9 like
100
11/ 11ghten
12 up
13 exposure
14 to
15 ENE
16 and
17 will
18 use
19 calls
20 to
21 implement
22 the
23 stategy
241,

Output

S—=Al

D2 0100 00O Q00|00 0I10]10 10 (0010

T
<

B
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I
el
H

o

How about Multiple
Output Sequences?

Recall that in SRL we have multiple output
sequences?

Extend the CRF with one additional input ¢
indicating which predicate we are tagging. Then
use the same CRF for each of the predicates.

Py xr(c11|wii, t) o

[
€Xp Z WTqﬁ)(ci—l: Ciy i}t'} wl:i’) S0
=1



Limitations and Improvements

> Designing good feature functions can be difficult

> See textbook for examples

5> Interesting feature spaces are often huge and super sparse

> It's often easier and more technically feasible to learn compact and expressive features (with NNs)
> eg., linear-chain CRFs whose local scores are predicted by powerful NNs

> Structural constraints must be expressed locally (by adjacent tags)

> Some advanced (e.g., autoregressive and energy-based) models can circumvent this



Questions about the CRF?

Waiting for responses --.



Summary

> We can generalise words into classes, alleviating data sparsity
> HMIM generates sequence pairs with strong Markov assumptions
> Value recursion enables efficient inference for HMMs

> HMMs can power POS, NER, but suffer from limited use of linguistic context
> Sequence labellers can be designed without generating text
> Feature-based models enable better use of linguistic context
> Tagging can be seen as a chain of simple classification steps
> CRFs allow for structure prediction with more realistic Markov assumptions



\What next?

- Required: watch the value recursion video
> ask me questions in class or on Piazza

- Next class: syntactic parsing
~> please check background material




