NLP12023/24

Language Modelling

Lecturer: Wilker Aziz
(week 1, lecture b)



\Where are we at?

> What makes NLP hard
> Text classification
- Language modelling

=l
L 1



Self-study: tabular CPDs




Ask me anything about tabular CPDs

2 questions
3 upvotes



Outline

> Language model

> NGram LM

> Tabular parameterisation
> Evaluation



What is a language model (LM)?
25 responses

A model that is able to produce language

Probability distribution over words

Models the conditional probability of the next token given
the previous ones

Formal description of language

A model of language, with all its norms, rules and intricacies

A model that is capable to represent a language

|

model that generate probabilities of a series of words

LM is a model that can generate a sequence of words as
output

Formal description of language



What is a language model (LM)?
25 responses

A model trained on a text dataset able to generate new text

A model that can understand/classify language

Chatgpt says. A language model ai understands

probabilistic description of language

a model that assigns probability to words or sentences

a model which is able to produce language?(are we
expected to know this already?)

ER AR

Probability distribution over tokens

A language model is a type of artificial intelligence system
that is designed to understand and generate human
language. Language models are trained on large datasets
of text.



What is a language model (LM)?
25 responses

grammatics

Are we supposed to already know what a language model
is?

Formal mathematical model of a language.

a model that turn language into a quantitative mode and
back into language

explicative and generative formalisation of natural
language

A model that simulates language

A model that is able to parse language in a structured way



Order these sentences from most to least
plausible

What a nice dog!

1st

2nd What a nice cat!

3rd A dog what nice!

4th What a dog nicel!




Natural language processingis
61 responses

attention is all you need

I fascinating

+  taking over homework

Ccd

agi relevant

mterestlng
5 D o E @ steihee surprlsmglydlfﬁcult
£ Er2erhard &'y rowe
. % S O = . ” solved
= - d ﬁ |t intelligence
== 0 Q= ~ | ICU too focused on
£ O 2 transformers
> O tricky ® ambiguit
Y 0  intimidating JUIEy

deep learning
something i dont know yet

-0



Those are some of the things an LM can do



Language Model

A language model is a probability
distribution over the set of all strings
in alanguage.

Being a probability distribution
means that 1) an LM can assign
probability to text, and 2) you can
generate text by drawing samples
from the LM.



Applications

> Order alternative sentences (e.g., in speech recognition)
> Generate text in context (e.g., autocomplete)
> Backbone of various NLP systems: translation, summarisation, chatbots



Goals for this class: to learn

> what LMs are

- how to prescribe LMs
- how to estimate LMs
~> how to evaluate LMs



A good LM is

a probability distribution whose samples
resemble observed text.

Examples: if the typical sentence has 30

words, sampling from a good LM wiill

reproduce that pattern;
sentence has SUBJ VER

if the typical

8 OBJ (in this

order), samples from a good LM will exhibit
that pattern too.



What a nice dog!
30 responses

1%

90%

0.00000000001

0.00000001

We don't know the dataset, so we can't estimate the
probability

100%

0.0004

00000000000001

it depends



What a nice dog!
30 responses

100 in this context

100%

100

le-4

100%

0.000000000000001

095



What a nice dog!
30 responses

We can't determine this given the information. We don't
know the vocab size.

Don't know the language?

depends on the embeddings

We don't know the query

P(what)P(a)p(nice)p(dog)

a measure?

0.69

no context

we do not know. not that small since what and a come more
often.



What a nice dog!
30 responses

P(what)P(a)P(nice)..

Dogs are pets, so many people have dogsthe choice of
"nice’ instead of "good” makes it unlikelyWe do not know the
context in which this sentence is saidGrammatically it's
correct making it likely

1/((1/26)M5)



Think about it...

A text may be more or less plausible, more or less
frequent, more or less expected depending on
where we see it (e.g., hews, fiction, classroom),

who produces it, who it's meant for, etc.

There's no uniqgue notion of THE probability of a
piece of text.

Fun fact. De Finetti's seminal Theory of
Probability starts with a provocative claim:
PROBABILITY DOES NOT EXIST. Not as an

inherent property of events, rather, probability
exists as a construct within models.




Text does not have probability as an
inherent property

As probabilities aren't observable, we
cannot really learn LMs by regressing from
text to target probabilities, instead we learn
to assign probability to observed text by
designing a statistical parametric model of
how texts come about, and optimise
parameters using observed data and a
statistical criterion.



\What is more probable? "A nice cat” or "A nice

dog'.

6 6
o)
Definitely Definitely They are Under
"Anice "Anice equally what
el dog’ probable model?
X X X v

R |



\What is more probable? "A nice dog” or "Dog a
nice".

6
" 0
Definitely Definitely They are Under
"Anice '‘Dog a equally what
dog’ nice" probable model?
X X X v

R |

X
e



Prescribing LIMs

Sample space. To prescribe a probability
distribution, we start by specifying the set of
outcomes that the LM can generate and
assign probability to.

Probability mass function (pmf). We then
prescribe a mechanism to assign probability
to each and every outcome in the sample
space.



Text as a Data Type

Textis a linguistic structure which we view
as a finite sequence.

We regard any one piece of text as a finite-
length sequence of symbols (or tokens),
each coming from the same countably

finite set of known symbols (i.e, the

vocabulary).

=xample: (what, a, nice, dog, !).

Digital text is a stream of characters, hence
we need a tokenisation algorithm.



Sample space

The sample space of a language model is
the set of all finite-length sequences made
of symbols from a finite vocabulary of
symbols W. We call this set WW*.

=xample: if VY is a good approximation to

the vocabulary of English words, then W?*

will include most valid pieces of

=nglish-

written text (e.g., "the cat is going around”). It
also includes many sequences that aren't
valid English (e.g., “cat the going around is").




Formalisation

W is a random word. An outcome w is o
symbol in a vocabulary WV of size V.

X = (W1,...,Wp)isarandom sequence
of L words. We can also denote it W7.7,. An
outcome (w1, . .., w;) is a sequence of [
symbols from WW.

A language model is a mechanism to assign
probability Px ({(wy,...,w;)) toany
outcome wi; € W™,



Challenge

Px is a distribution over a countably infinite
space of variable-length sequences.

There is no standard statistical distribution
over such a sample space. Hence, we need
to develop one.



Key ldea

Re-express the probability of a
seguence (an outcome from o
countably infinite space) using the
probabilities of the "steps’ needed to
generate it. Each "step” being an

outcome from a countably finite space.



Px({(He, went, to, the, store, EOS)) = Py, g (He|())
X Py, g (went|(He))
X Py g (to|(He, went))
X Py g (the|(He, went, to))
X Py g (store|(He, went, to, the))
X Py, g (EOS|(He, went, to, the, store))

Example. W is arandom word, H is a random history of words, EOS is a special word
marking the end of a piece of text.



Chainrule

We re-express the probability our LM assigns to
w1.; by applying chain rule:

[
Px (w11) = | | Pwia (wilw<)
1

Here H is a random history of previous tokens. An

outcome w.; = (ws,...,w;_ 1) isasequence
of 2 — 1 symbols from W.Wheni < 1, w_; is the
empty sequence.



\What chain rule achieves

outcomes: infinite

© PwiH)

conditions: finite
conditions: infinite

outcomes: finite



History-conditioned word distributions

For any given history h (e.g. "what a nice"),
we need to be able to assign probability
Py (w|h) to any symbol w in the
vocabulary.

Thatis, we need to assign probability to
Py g (doglh). Py g (thing|h).
Py g (what|h), etc, foreach and every
single one of the V' words we know.



Categorical distribution

O ~ Categorical(0.1,0.2,0.7)

Pronounced: O is distributed as a 3-way
Categorical random variable with
parameter vector (01, 0.2, 0.7), whose
coordinates prescribe the probabilities of
the outcomes.



Categorical distribution

We may store the Categorical parameter in
a variable, like 7r1.3 = (0.1, 0.2, 0.7).

Then we write: O ~ Categorical(7.3).

The pmf of this model is p(k; &) = 7y

(For outcomes that are symbols, like "dog"
we first create a one-to-one
correspondence between words and
numerical identifiers)



Categorical distribution

Sometimes, our parameter is specific to a context ¢,

and we store it in a variable like ﬂgc:))’ = (0.2,0.3,0.5).
In a programming language like python you can

(c)

represent 7, ., as something like:
pi = dict(); pi[c]=(0.2, 0.3 0.5)

Thenwe write: O|C' = ¢ ~ Categﬂrical('frf) ).
Pronounced: given C' = ¢, the distribution of Ois

()

Categorical with parameter 7, 5.

The pmf of this modelis p(k|c; ) = ?TE:).



Assigning Probability or Generating Outcomes?

Qur procedure to assign probability to an
outcome also prescribes a sampler (or simulator),
that is, an algorithm to generate outcomes from

the LM distribution Py .

This procedure is also known as a
generative story.

R |



Generative story
1. Start with an empty history H = (). Set: = 1.

2. Condition on the available history w_; and
draw a word w; with probability Py g (w; |w<;)
extending the history with it.

3.If w; is a special end-of-sequence symbol
(EOS), terminate, else increment 2 and repeat (2).

This specifies a factorisation of Py in terms of
elementary factors of the kind PW| T



Summary

> An LM is a distribution Py over text
> Rather than working with Px directly, we re-express it via chain rule

> For any given history h, an LM predicts a distribution PW‘ —p over the vocabulary
> The vocabulary is finite, so PW‘ _p is a tractable V -dimensional object.

> But there's no limit to the set of possible histories



Outline

> Language model

> NGram LM

> Tabular parameterisation
> Evaluation



How can we deal with or circumvent the need to deal with a growing history?
12 responses

Markov only track the last n words Markov models

increase the probability of EOS as the size context window NB assumption

of the history grows?

iid We need to identify how long the time
sliding window dependencies need to be, not all words in
the history will be equally useful.



How can we deal with or circumvent the need to deal with a growing history?
12 responses

local history Fixed size of tokens per sentence divide textin chunks



Unigram LIV

We could say words are independent of one
another.

Px ((He, went, to, the, store, EOS)) "
PW (He)

Though, is it readlistic?

e0



Which statement is true under a
unigram LIM?

P("a nice dog") =
P("a nice dog") > P(udog a nice")

P("dog a nice")

[=rol
g~



Bigram LI

Maybe we say a word is independent of every other
word except the previous one?

Px ({He, went, to, the, store, EOS)) =
PW|H(H6‘ (BOS))

X Py (went|(He))

X Py g (to|(went))

X Py (the|(to))

X Py g (store|(the))

X Py g (EOS|(store))




Under the bigram LM, "a nice dog" is more
probable than "dog a nice".

4

O

Definitely Definitely Their
True False probabilities
may differ



Trigram LIV

Maybe it should depend on the previous 2 words?

Px ((He, went, to, the, store, EOS)) =5
Py (He|(BOS, BOS))
X Py (went|(BOS, He))
X Py (to|(He, went))
X Py (the|(went, to))
X Py g (store|(to, the))
g7 (EOS|(the, store))

XPW



Vlarkov assumption

The key idea in the NGram LM is to make a
conditional independence assumption:

[

ind.
Px (w1) = H PW|H(wi [(Wi—n+1,5- -, Wi1))
=

a word is independent on all but the recent
history of n — 1 words. This is the so-called
Markov assumption of ordern — 1.



Outline

> Language model

> NGram LM

> Tabular parameterisation
> Evaluation



Tabular CPDs

Each history-conditioned word distribution
is Categorical:

W|H = h ~ Categorical(wg?&)

Where 71'5{1‘)/ is V-dimensional, 0 < 71'5:1) <1

v
for any k, and Z 71';;’“) — 1
k=1

We store the parameters 71'(1}?, foreach and

every h we know, in a table.



Probability mass function (pmf)

The NGram LM is built upon history-
conditioned word distributions of the form

W|H = h ~ Categorical(ﬂf&)
where a history has sizen — 1.

The pmf of the model is

p(wism) = | | Mo

where h@ — <'wi_n_|_1, o o0y 'wz-_1> s the
n — 1 words before w;.



Parameter Estimation

For each unique history h, we have a cpd:

. h
W|H = h ~ Categorlcal(ﬂg:gf)

Given a dataset of observed texts, the maximum

(h)

likelihood estimate of the conditional probability 7r,,” of
w given h is:

(h) count gw (h, w)
Ty =

Z:ZI count gy (h, 0)
count gw (h, w)

count g (h)

Hint. Conceptually we store all parameters in tables, in
practice, we use sparse data structures and store only
the non-zero parameters.



|

Unigram LIM: size of tabular representation of
P(W[H)




h (1) = i want to go to the shop
we want went go to the shop EOS

() 1 1 2 1 1 1

h z(2) = we went to the shop
we want went go to the shop EOS

() 1 1 1 1 1 1

h countyy (w) count g (h)
we want went go to the shop EOS

() 1 1 1 1 3 2 2 2 14

Unigrams from a toy dataset



|

Bigram LM.: size of tabular representation of
P(WI|H)




h

z'1) = i want to go to the shop
I we want went go to the shop

EOS

(BOS)
(i
(we)
(want)
{went)
(go)
(to)
(the)
(shop}

1
1

h

(BOS)

(i)
(we)
{want)
{went)
(go)
(to)
(the)
(shop)

z'?) = we went to the shop

i we want went go to the shop

1

EOQS

h

count g (h, w)
I we want went go to the shop

count g (h)
EOQS

(BOS)
(i)
(we)
(want)
(went)
(go)
(to)
(the)
(shop}

1 1

B kI BRI = = = = R

Bigrams from a toy dataset



|

NGram LM: size of tabular representation of
P(W[H)




Memorise phrases

The NGram LM makes up a sentence by
gluing phrases, which it memorises in its
tabular cpds along with their probabilities.

An increase in the order has an exponential
cost V" — Yyl



Parameter Estimation

Given a dataset of observed texts, the

maximum likelihood estimate of the

conditional probability W,Eff ) of w given h is:

)y countgw (b, w)
Nes —

county (h)

Can you foresee a problem with this?



Data sparsity

The longer the history, the less likely it is that we
have seenit.

Most of the possible history-word pairs will never
be seen.

Tricks: smoothing, interpolation, backoff, etc.
Optional: section 3.5 of textbook.




Smoothing

Reserve probability for unseen NGrams:

(h) countgw (h,w) + a(h)

e >_oew (countgw (h,0) + a(h))
count gw (h, w) + a(h)

Va(h) + county (h)
Often a(h) is a constant.

Example, a(h) = 1,county ((a, nice)) = 100,
rabbit € W, but count g ((a, nice), rabbit) = 0.
Then,

Tr((a,njice)) _ 0+ 1
rabbit V x 1+ 100

Tip. When implementing smoothed models, it's easier to
store counts (rather than parameters), because counts
are sparse (many 0s) but parameters aren't.



Unknown Words

Here the situation is a little different.
We want to deal with a symbol that's not at
all in the vocabulary.

|dea: augment the vocabulary with
placeholder symbol such as UNK, whenever
you encounter an unknown symbol in the
future (e.g., "hare") treat it as UNK.

In combination with smoothing, this should
help. See section 3.41 of textbook.



In a trigram LIVl estimated via VILE,

False

We have seen (cute, dog) 100 times, and (cute, dog, screams) O
times. The unsmoothed probability of W=screams given H=(cute,

dog) is O.

We have seen (cute, dog) 100 times, and (cute, dog, screams) O @

times. The add-1-smoothed probability of W=screams given H=(cute,
dog) is 1/100.

True

We have seen (weird, dog) O times. The unsmoothed probability of
W=running given H=(weird, dog) is O.

We have seen (weird, dog) O times. The add-1-smoothed probability
of W=running given H=(weird, dog) is 1/V.



Data Sparsity Strikes Back

In an unsmoothed model, if count g (h) is 0,
we do not really have an MLE for Py g—p.

In a smoothed model, we get a uniform
distribution. In some sense, uniform is better
than undefined, but both options are
unsatisfying.



Interpolation

Maybe we have never seen (ridiculously, kind,

cat) but we've seen (kind, cat), or at least (cat).

If we use these related observations, we might
define a 4-gram LM for which
Py g (jumps|(ridiculously, kind, cat) ) is

more useful than undefinedor1/V.



Interpolation

We let the probability of some W = w given some
H = (a, b, ¢) be a convex combination of the
probability different models assign to it.

Example: a unigram LM assigns prob p; forwin
isolation, a bigram LM assigns prob p» for w given ¢, d
trigram LM assigns prob ps for w given (b, ¢) and a 4-

gram LM assigns prob p4 for w given (a, b, ¢).

We then use: Py g (w|(a, b, c)) Z W Pk With

coefficiencs 0 < wi. < 1and Z Wi — 1,
k=1



Limitations

Different symbols (or sequences of symbols)
are treated as unrelated, when in reality

they often aren't: cats and dogs are animals,

dogs is the plural form of dog, a jump and a
leap are semantically similar, / gave you a
book and / gave a book to you are
syntactically different but mean the same.

Neural parameterisations of CPDs address
this limitation.



Limitations

Our Markov assumptions are motivated by
convenience alone, long range dependency
IS a very common thing in natural
languages.

With a neural parameterisation of a CPD,
we can design models that do not require
Markov assumptions. They're called
autoregressive models.



Outline

> Language model

> NGram LM

> Tabular parameterisation
> Evaluation



Intrinsic

We assess the surprisal (negative log probability)
that our model assigns to unseen texts, but we
typically re-express it in terms of perplexity per

token (a measure of average confusion).

Required: section 3.8 of textbook.




Extrinsic

Plug the LM in a task (e.g., autocomplete)
and measure the performance in that task.



Statistical

Compare how the statistics of generated
text distribute in relation to statistics of
observed text.

Examples:
Meister and Cotterell, 2021
and Giulianelli et al, 2023



Be Critical

Your statistical model is as good as your
statistical assumptions, your estimation
procedure, and the data you use to fit it.

Most assumptions are wrong or insufficient. Any
dataset (however large) is at best a snippet of
language production by some groups of
speakers: not good enough to represent a whole
world of speakers, not good enough to represent
any one specific group of speakers.

Models are not trained to comply with human
values, they are not trained to produce factually
correct text, they are trained such that their
samples look like they could have been found in
the training data.



\What did you learn today?

Waiting for responses -..



Summary

> LMs are distributions over sentences

> Chainrule is the key to an LM

> Markov assumption (cond. indep.) leads to a viable model

> Classic approach uses inefficient tabular cpds

> Modern approaches parameterise cpds efficiently using NNs



\What next?

> Check the links in the class (esp wrt evaluation)
> Next class: sequence labelling

> self-study: logistic CPD, complete example, code

0



