
Natural Language Processing 1

Natural Language Processing 1
Large Language Models (LLMs)

Katia Shutova

ILLC
University of Amsterdam

1 / 35

Natural Language Processing 1

From task-specific to general-purpose models

Outline.

From task-specific to general-purpose models

Generative language models

LLMs in research and practice

2 / 35

Natural Language Processing 1

From task-specific to general-purpose models

Large language models

Paradigm shift:

I instead of training
task-specific models

I train a general-purpose
neural network sentence
encoder

I which can be applied across
diverse NLP tasks.

A general-purpose sentence encoder

Input Text

Reusable Encoder

Task Model

Task Output

Representation
for Each Sentence

3 / 35

Natural Language Processing 1

From task-specific to general-purpose models

Why is this useful?

1. Improve performance
I produce rich semantic representations for downstream

NLP tasks

2. Improve data efficiency
I provide a model of sentence representation for language

understanding tasks which lack training data

4 / 35

Natural Language Processing 1

From task-specific to general-purpose models

What can we expect this model to capture?

I Lexical semantics and meaning disambiguation in context
I Word order
I Some syntactic structure
I Semantic composition
I Idiomatic/non-compositional phrase meanings
I Connotation and social meaning.

5 / 35

Natural Language Processing 1

From task-specific to general-purpose models

ELMo: Embeddings from Language Models
Peters et al. 2018. Deep contextualized word representations

I Pretrain a biLSTM
model in the language
modelling task

I Model context in both
directions, produce
contextualised word
representations

I Use them as input to a
task-specific model.

Deep Contextualized Word Representations
● There is no reason for not

using a deep neural net
architecture and take many
layers to create the (deep)
contextualized word
representation.

Image credit: Victor Zuanazzi

6 / 35

Natural Language Processing 1

From task-specific to general-purpose models

The ELMo model

Pretraining:

I The encoder is a 2 layer BiLSTM

I The model is trained with the language modelling objective

I jointly maximize log likelihood of the forward and backward
directions.

Application:

I ELMo word representations: weighted sum of hidden
representations at all layers

I Weights are learned in a given task.

7 / 35

Natural Language Processing 1

From task-specific to general-purpose models

The contributions of ELMo

I Contextualised word representations provide a level of
disambiguation

I Deep representations allow to capture linguistic information at
various levels (syntax – lower layers; semantics – higher layers)

I (Large) performance improvements in many NLP tasks

I Paradigm shift towards sentence encoder pretraining

I Started the rich history of naming LMs based on Sesame Street
characters.

8 / 35

Natural Language Processing 1

From task-specific to general-purpose models

The rise of the Transformer

Devlin et al. 2019. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

I Transformer architecture

I Bidirectional context representation

I Two pretraining tasks: masked
language modelling (MLM) and next
sentence prediction (NSP)

I Pretrain the encoder and then
fine-tune it for a specific task.

BERT (Ours)

Trm Trm Trm

Trm Trm Trm

...

...

Trm Trm Trm

Trm Trm Trm

...

...

OpenAI GPT

Lstm

ELMo

Lstm Lstm

Lstm Lstm Lstm

Lstm Lstm Lstm

Lstm Lstm Lstm

 T1 T2 TN...

...

...

...

...

 E1 E2 EN...

 T1 T2 TN...

 E1 E2 EN...

 T1 T2 TN...

 E1 E2 EN...

Figure 3: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-
left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly
conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and
OpenAI GPT are fine-tuning approaches, while ELMo is a feature-based approach.

to converge. In Section C.1 we demonstrate that
MLM does converge marginally slower than a left-
to-right model (which predicts every token), but
the empirical improvements of the MLM model
far outweigh the increased training cost.

Next Sentence Prediction The next sentence
prediction task can be illustrated in the following
examples.

Input = [CLS] the man went to [MASK] store [SEP]

he bought a gallon [MASK] milk [SEP]

Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label = NotNext

A.2 Pre-training Procedure

To generate each training input sequence, we sam-
ple two spans of text from the corpus, which we
refer to as “sentences” even though they are typ-
ically much longer than single sentences (but can
be shorter also). The first sentence receives the A
embedding and the second receives the B embed-
ding. 50% of the time B is the actual next sentence
that follows A and 50% of the time it is a random
sentence, which is done for the “next sentence pre-
diction” task. They are sampled such that the com-
bined length is  512 tokens. The LM masking is
applied after WordPiece tokenization with a uni-
form masking rate of 15%, and no special consid-
eration given to partial word pieces.

We train with batch size of 256 sequences (256
sequences * 512 tokens = 128,000 tokens/batch)
for 1,000,000 steps, which is approximately 40

epochs over the 3.3 billion word corpus. We
use Adam with learning rate of 1e-4, �1 = 0.9,
�2 = 0.999, L2 weight decay of 0.01, learning
rate warmup over the first 10,000 steps, and linear
decay of the learning rate. We use a dropout prob-
ability of 0.1 on all layers. We use a gelu acti-
vation (Hendrycks and Gimpel, 2016) rather than
the standard relu, following OpenAI GPT. The
training loss is the sum of the mean masked LM
likelihood and the mean next sentence prediction
likelihood.

Training of BERTBASE was performed on 4
Cloud TPUs in Pod configuration (16 TPU chips
total).13 Training of BERTLARGE was performed
on 16 Cloud TPUs (64 TPU chips total). Each pre-
training took 4 days to complete.

Longer sequences are disproportionately expen-
sive because attention is quadratic to the sequence
length. To speed up pretraing in our experiments,
we pre-train the model with sequence length of
128 for 90% of the steps. Then, we train the rest
10% of the steps of sequence of 512 to learn the
positional embeddings.

A.3 Fine-tuning Procedure

For fine-tuning, most model hyperparameters are
the same as in pre-training, with the exception of
the batch size, learning rate, and number of train-
ing epochs. The dropout probability was always
kept at 0.1. The optimal hyperparameter values
are task-specific, but we found the following range
of possible values to work well across all tasks:

• Batch size: 16, 32

13https://cloudplatform.googleblog.com/2018/06/Cloud-
TPU-now-offers-preemptible-pricing-and-global-
availability.html

9 / 35

Natural Language Processing 1

From task-specific to general-purpose models

BERT: Architecture

I Stacked Transformer blocks
(multi-head attention followed by
feed-forward neural network)

I BASE model: 12 Transformer layers,
12 attention heads (110M params)

I LARGE model: 24 Transformer
layers, 16 attention heads (340M
parameters)

BERT - Architecture

► Transformers - Encoder blocks only

► No weight sharing

► REMEMBER – attention mechanism!

► NOTE – residual connections

10 / 35

Natural Language Processing 1

From task-specific to general-purpose models

BERT: Input representations

I Introduce special [CLS] and [SEP] tokens

I The [CLS] token represents the whole input sequence

I The [SEP] token indicates a boundary between two segments

I Input representations are a sum of token embeddings +
position embeddings + segment embeddings.

[CLS] he likes play ##ing [SEP]my dog is cute [SEP]Input

E[CLS] Ehe Elikes Eplay E##ing E[SEP]Emy Edog Eis Ecute E[SEP]
Token
Embeddings

EA EB EB EB EB EBEA EA EA EA EA
Segment
Embeddings

E0 E6 E7 E8 E9 E10E1 E2 E3 E4 E5
Position
Embeddings

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.

The NSP task is closely related to representation-
learning objectives used in Jernite et al. (2017) and
Logeswaran and Lee (2018). However, in prior
work, only sentence embeddings are transferred to
down-stream tasks, where BERT transfers all pa-
rameters to initialize end-task model parameters.

Pre-training data The pre-training procedure
largely follows the existing literature on language
model pre-training. For the pre-training corpus we
use the BooksCorpus (800M words) (Zhu et al.,
2015) and English Wikipedia (2,500M words).
For Wikipedia we extract only the text passages
and ignore lists, tables, and headers. It is criti-
cal to use a document-level corpus rather than a
shuffled sentence-level corpus such as the Billion
Word Benchmark (Chelba et al., 2013) in order to
extract long contiguous sequences.

3.2 Fine-tuning BERT

Fine-tuning is straightforward since the self-
attention mechanism in the Transformer al-
lows BERT to model many downstream tasks—
whether they involve single text or text pairs—by
swapping out the appropriate inputs and outputs.
For applications involving text pairs, a common
pattern is to independently encode text pairs be-
fore applying bidirectional cross attention, such
as Parikh et al. (2016); Seo et al. (2017). BERT
instead uses the self-attention mechanism to unify
these two stages, as encoding a concatenated text
pair with self-attention effectively includes bidi-
rectional cross attention between two sentences.

For each task, we simply plug in the task-
specific inputs and outputs into BERT and fine-
tune all the parameters end-to-end. At the in-
put, sentence A and sentence B from pre-training
are analogous to (1) sentence pairs in paraphras-
ing, (2) hypothesis-premise pairs in entailment, (3)
question-passage pairs in question answering, and

(4) a degenerate text-? pair in text classification
or sequence tagging. At the output, the token rep-
resentations are fed into an output layer for token-
level tasks, such as sequence tagging or question
answering, and the [CLS] representation is fed
into an output layer for classification, such as en-
tailment or sentiment analysis.

Compared to pre-training, fine-tuning is rela-
tively inexpensive. All of the results in the pa-
per can be replicated in at most 1 hour on a sin-
gle Cloud TPU, or a few hours on a GPU, starting
from the exact same pre-trained model.7 We de-
scribe the task-specific details in the correspond-
ing subsections of Section 4. More details can be
found in Appendix A.5.

4 Experiments

In this section, we present BERT fine-tuning re-
sults on 11 NLP tasks.

4.1 GLUE
The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018a) is a col-
lection of diverse natural language understanding
tasks. Detailed descriptions of GLUE datasets are
included in Appendix B.1.

To fine-tune on GLUE, we represent the input
sequence (for single sentence or sentence pairs)
as described in Section 3, and use the final hid-
den vector C 2 RH corresponding to the first
input token ([CLS]) as the aggregate representa-
tion. The only new parameters introduced during
fine-tuning are classification layer weights W 2
RK⇥H , where K is the number of labels. We com-
pute a standard classification loss with C and W ,
i.e., log(softmax(CW T)).

7For example, the BERT SQuAD model can be trained in
around 30 minutes on a single Cloud TPU to achieve a Dev
F1 score of 91.0%.

8See (10) in https://gluebenchmark.com/faq.

11 / 35

Natural Language Processing 1

From task-specific to general-purpose models

BERT: Pretraining tasks

Masked language modelling
I standard conditional language

models only model context in one
direction at a time

I BERT performs bidirectional
encoding by masking 15% of the
input tokens

I Inspired by the cloze task

BERT BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair

SQuAD

Question Answer Pair

NERMNLI

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

12 / 35

Natural Language Processing 1

From task-specific to general-purpose models

BERT: Pretraining tasks

Next sentence prediction
I Randomly sample sentence pairs,

such that 50% of the time the
sentences follow each other.

I Predict whether the second
sentence follows the first or not.

I This models the relations between
sentences (useful for many tasks,
e.g. QA)

BERT BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair

SQuAD

Question Answer Pair

NERMNLI

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

13 / 35

Natural Language Processing 1

From task-specific to general-purpose models

BERT: pretraining

I Pre-training loss: the sum of the
mean MLM likelihood and the mean
NSP likelihood

I Data: BooksCorpus (800M words)
and English Wikipedia (2500M
words)

BERT BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair

SQuAD

Question Answer Pair

NERMNLI

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

14 / 35

Natural Language Processing 1

From task-specific to general-purpose models

BERT: fine-tuning

BERT BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair

SQuAD

Question Answer Pair

NERMNLI

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

15 / 35

Natural Language Processing 1

From task-specific to general-purpose models

The contributions of BERT

I Advanced the state-of-the-art in a range of NLP tasks

I Demonstrated the importance of bidirectional pretraining

I Reduced the need for task-specific architectures

I Most widely-used NLP model (84K+ citations)

I Traditional linguistic hierarchy emerges within layers of BERT
(Tenney et al. 2019)

I lower layers – syntax; higher layers – semantics and discourse.

Tenney et al. 2019. BERT Rediscovers the Classical NLP Pipeline

16 / 35

Natural Language Processing 1

Generative language models

Outline.

From task-specific to general-purpose models

Generative language models

LLMs in research and practice

17 / 35

Natural Language Processing 1

Generative language models

Generative language models: The GPT family

Radford et al. 2019. Language Models are Unsupervised Multitask
Learners

GPT, GPT2, GPT3

I Left-to-right language model

I Generative model, i.e. able to generate text (unlike BERT)

I Transformer architecture (GPT comparable in size to BERT
BASE)

I Interesting intuition: multitask learning from natural language
instructions.

18 / 35

Natural Language Processing 1

Generative language models

More than a language model?

I Many tasks are already described in the data in some way

I Can language models learn to perform tasks from natural
language instructions found in web text?

Language Models are Unsupervised Multitask Learners

to infer and perform many different tasks on examples with
this type of format.

Language modeling is also able to, in principle, learn the
tasks of McCann et al. (2018) without the need for explicit
supervision of which symbols are the outputs to be pre-
dicted. Since the supervised objective is the the same as the
unsupervised objective but only evaluated on a subset of the
sequence, the global minimum of the unsupervised objective
is also the global minimum of the supervised objective. In
this slightly toy setting, the concerns with density estimation
as a principled training objective discussed in (Sutskever
et al., 2015) are side stepped. The problem instead becomes
whether we are able to, in practice, optimize the unsuper-
vised objective to convergence. Preliminary experiments
confirmed that sufficiently large language models are able to
perform multitask learning in this toy-ish setup but learning
is much slower than in explicitly supervised approaches.

While it is a large step from the well-posed setup described
above to the messiness of “language in the wild”, Weston
(2016) argues, in the context of dialog, for the need to
develop systems capable of learning from natural language
directly and demonstrated a proof of concept – learning a
QA task without a reward signal by using forward prediction
of a teacher’s outputs. While dialog is an attractive approach,
we worry it is overly restrictive. The internet contains a vast
amount of information that is passively available without
the need for interactive communication. Our speculation is
that a language model with sufficient capacity will begin
to learn to infer and perform the tasks demonstrated in
natural language sequences in order to better predict them,
regardless of their method of procurement. If a language
model is able to do this it will be, in effect, performing
unsupervised multitask learning. We test whether this is the
case by analyzing the performance of language models in a
zero-shot setting on a wide variety of tasks.

2.1. Training Dataset

Most prior work trained language models on a single do-
main of text, such as news articles (Jozefowicz et al., 2016),
Wikipedia (Merity et al., 2016), or fiction books (Kiros
et al., 2015). Our approach motivates building as large and
diverse a dataset as possible in order to collect natural lan-
guage demonstrations of tasks in as varied of domains and
contexts as possible.

A promising source of diverse and nearly unlimited text is
web scrapes such as Common Crawl. While these archives
are many orders of magnitude larger than current language
modeling datasets, they have significant data quality issues.
Trinh & Le (2018) used Common Crawl in their work on
commonsense reasoning but noted a large amount of doc-
uments “whose content are mostly unintelligible”. We ob-
served similar data issues in our initial experiments with

”I’m not the cleverest man in the world, but like they say in
French: Je ne suis pas un imbecile [I’m not a fool].

In a now-deleted post from Aug. 16, Soheil Eid, Tory candidate
in the riding of Joliette, wrote in French: ”Mentez mentez,
il en restera toujours quelque chose,” which translates as,
”Lie lie and something will always remain.”

“I hate the word ‘perfume,”’ Burr says. ‘It’s somewhat better
in French: ‘parfum.’

If listened carefully at 29:55, a conversation can be heard
between two guys in French: “-Comment on fait pour aller
de l’autre coté? -Quel autre coté?”, which means “- How
do you get to the other side? - What side?”.

If this sounds like a bit of a stretch, consider this ques-
tion in French: As-tu aller au cinéma?, or Did you go to
the movies?, which literally translates as Have-you to go to
movies/theater?

“Brevet Sans Garantie Du Gouvernement”, translated to
English: “Patented without government warranty”.

Table 1. Examples of naturally occurring demonstrations of En-
glish to French and French to English translation found throughout
the WebText training set.

Common Crawl. Trinh & Le (2018)’s best results were
achieved using a small subsample of Common Crawl which
included only documents most similar to their target dataset,
the Winograd Schema Challenge. While this is a pragmatic
approach to improve performance on a specific task, we
want to avoid making assumptions about the tasks to be
performed ahead of time.

Instead, we created a new web scrape which emphasizes
document quality. To do this we only scraped web pages
which have been curated/filtered by humans. Manually
filtering a full web scrape would be exceptionally expensive
so as a starting point, we scraped all outbound links from
Reddit, a social media platform, which received at least 3
karma. This can be thought of as a heuristic indicator for
whether other users found the link interesting, educational,
or just funny.

The resulting dataset, WebText, contains the text subset
of these 45 million links. To extract the text from HTML
responses we use a combination of the Dragnet (Peters &
Lecocq, 2013) and Newspaper1 content extractors. All re-
sults presented in this paper use a preliminary version of
WebText which does not include links created after Dec
2017 and which after de-duplication and some heuristic
based cleaning contains slightly over 8 million documents
for a total of 40 GB of text. We removed all Wikipedia
documents from WebText since it is a common data source
for other datasets and could complicate analysis due to over-

1https://github.com/codelucas/newspaper

19 / 35

Natural Language Processing 1

Generative language models

InstructGPT and ChatGPT

InstructGPT

I trained to follow an instruction in a prompt and provide a
detailed response.

ChatGPT

I optimized for dialogue
I make GPT generations more "conversational": can provide

more natural answers, ask follow-up questions etc.

20 / 35

Natural Language Processing 1

Generative language models

An example from ChatGPT

21 / 35

Natural Language Processing 1

Generative language models

Reinforcement learning from human feedback

What makes a ”good” text?

This is task and context dependent:

I if writing a story we may want creativity,

I when providing information it has to be truthful.

I we want the model outputs to be safe, unbiased and polite

I this goes beyond the LM objective of predicting next words

How to evaluate and balance these factors?

RLHF: Humans provide feedback on model outputs, and the model is
then adjusted to better reflect human preferences.

22 / 35

Natural Language Processing 1

Generative language models

Reinforcement learning from human feedback

Key components:

1. Pretrained language model
2. gathering data and training a reward model
3. fine-tuning the LM with reinforcement learning.

23 / 35

Natural Language Processing 1

Generative language models

Training a reward model

I Collect a set of prompts

I Generate continuations for these prompts using multiple LMs

I Humans rank these continuations, obtaining a scalar score for
each

I This score numerically represents human preferences

I Train a reward model to predict this score.

24 / 35

Natural Language Processing 1

Generative language models

Training a reward model

Training a language model with reinforcement learning was, for a long time, something that

people would have thought as impossible both for engineering and algorithmic reasons. What

multiple organizations seem to have gotten to work is fine-tuning some or all of the parameters

of a copy of the initial LM with a policy-gradient RL algorithm, Proximal Policy Optimization

(PPO). Some parameters of the LM are frozen because fine-tuning an entire 10B or 100B+

parameter model is prohibitively expensive (for more, see Low-Rank Adaptation (LoRA) for

LMs or the Sparrow LM from DeepMind) -- depending on the scale of the model and

infrastructure being used. The exact dynamics of how many parameters to freeze, or not, is

considered an open research problem. PPO has been around for a relatively long time – there

are tons of guides on how it works. The relative maturity of this method made it a favorable

choice for scaling up to the new application of distributed training for RLHF. It turns out that

many of the core RL advancements to do RLHF have been figuring out how to update such a

large model with a familiar algorithm (more on that later).

Fine-tuning with RL
Image credit: Huggingface

25 / 35

Natural Language Processing 1

Generative language models

Fine-tuning with reinforcement learning

Fine-tune the LM to better match human preferences

At each iteration:

I Given the prompt x , the LM generates continuation y

I Concatenate x and y , and pass as input to the reward model

I Reward model outputs a reward score rθ
I Fine-tune the LM to maximize the reward score for the current

batch of data

I Regularisation to ensure the per token probability distributions
don’t change too much (from original LM)

26 / 35

Natural Language Processing 1

LLMs in research and practice

Outline.

From task-specific to general-purpose models

Generative language models

LLMs in research and practice

27 / 35

Natural Language Processing 1

LLMs in research and practice

Instruction-tuned LLMs and multi-task learning
Sanh et al., 2022. Multitask Prompted Training Enables Zero-Shot Task
Generalization. ICLR 2022.Published as a conference paper at ICLR 2022

Review: We came here on a Saturday night
and luckily it wasn't as packed as I

thought it would be [...] On a scale of 1
to 5, I would give this a

I know that the answer to “What team did
the Panthers defeat?” is in “The Panthers
finished the regular season [...]”. Can

you tell me what it is?

T0

Graffiti artist Banksy
is believed to be

behind [...]

4

Yes

Arizona Cardinals

Summarization

Question Answering

Sentiment Analysis

Suppose “The banker contacted the professors
and the athlete”. Can we infer that "The

banker contacted the professors"?

The picture appeared on the wall of a
Poundland store on Whymark Avenue [...] How
would you rephrase that in a few words?

Natural Language Inference

Multi-task training
Zero-shot generalization

Figure 1: Our model and prompt format. T0 is an encoder-decoder model that consumes textual
inputs and produces target responses. It is trained on a multitask mixture of NLP datasets parti-
tioned into different tasks. Each dataset is associated with multiple prompt templates that are used
to format example instances to input and target pairs. Italics indicate the inserted fields from the raw
example data. After training on a diverse mixture of tasks (top), our model is evaluated on zero-shot
generalization to tasks that are not seen during training (bottom).

summarization. An influential hypothesis is that large language models generalize to new tasks as a
result of an implicit process of multitask learning (Radford et al., 2019). As a byproduct of learning
to predict the next word, a language model is forced to learn from a mixture of implicit tasks included
in their pretraining corpus. For example, by training on generic text from a web forum, a model might
implicitly learn the format and structure of question answering. This gives large language models
the ability to generalize to held-out tasks presented with natural language prompts, going beyond
prior multitask studies on generalization to held-out datasets (Khashabi et al., 2020a; Ye et al.,
2021). However, this ability requires a sufficiently large model and is sensitive to the wording of its
prompts (Perez et al., 2021; Zhao et al., 2021; Reynolds and McDonell, 2021).

Further, it is an open question how implicit this multitask learning really is. Given the scale of recent
language models’ pretraining corpora, it is reasonable to expect that some common natural language
processing (NLP) tasks would appear in an explicit form in their pretraining corpora, thereby directly
training the models on those tasks. For example, there are many websites that simply contain lists
of trivia questions and answers,1 which are precisely supervised training data for the task of closed-
book question answering (Roberts et al., 2020). We hypothesize that such multitask supervision in
pretraining plays a large role in zero-shot generalization.

In this paper, we focus on explicitly training language models in a supervised and massively multi-
task fashion. Our approach uses a training mixture consisting of a large set of different tasks speci-
fied in natural language prompts. Our goal is to induce a model to better generalize to held-out tasks
without requiring massive scale, as well as being more robust to the wording choices of the prompts.
To convert a large set of natural language tasks into prompted form, we use a simple templating
language for structured datasets. We develop an interface for prompt collection from public contrib-
utors that facilitated the collection of a large multitask mixture with multiple prompts per dataset
(Bach et al., 2022). We then train a variant of the T5 encoder-decoder model (Raffel et al., 2020;
Lester et al., 2021) on a subset of the tasks (each with multiple datasets) and then evaluate tasks and
prompts that the model was not trained on.

Our experiments study two questions. First, does multitask prompted training improve generaliza-
tion to held-out tasks? Second, does training on a wider range of prompts improve robustness to
prompt wording? For the first question, we find that multitask training enables zero-shot task gen-

1For example, https://www.quizbreaker.com/trivia-questions, https://www.scarymommy.com/best-trivia-
questions-answers/, and https://parade.com/944584/parade/trivia-questions-for-kids/.

2

28 / 35

Natural Language Processing 1

LLMs in research and practice

Multilingual LLMs

Goal: a single model that captures universal language
structures and can reason across all known languages

I E.g. nearly all languages make a distinction between nouns and
verbs and distinguish function words from content words.

I find such commonalities between languages

I on the lexical, syntactic and semantic level

I and exploit them

I balance language-agnostic and language-specific information

29 / 35

Natural Language Processing 1

LLMs in research and practice

Multilingual LLMs: Intuition

Phrases with similar meaning should obtain similar representations,
irrespective of the language

INTRO: In practice..

Constraints:

● This should be done irrespective of the language

● And without affecting the monolingual semantic relations between the phrases within a language

Example: the word ‘table’ should appear close to its Italian translation ‘tavola’ without losing the
proximity to ‘desk’ which should in turn be close to the Italian translation ‘scrittoio’. (Beinborn et al., 2020)

Goal: phrases with similar meaning should obtain similar representations (distributional hypothesis)

30 / 35

Natural Language Processing 1

LLMs in research and practice

Multilingual LLMs: Models

Up to 110 languages encoded within one model

Architectures:

I 5 layer LSTM: LASER model

I Transformer (mid-size): Multilingual BERT, XLM, XLM-R

I Transformer (large): BLOOM, XGLM, mT5 etc.

Pretraining tasks:

I Monolingual: Masked language modelling or generative LM

I Cross-lingual: Sentence translation or translation language
modelling (TLM)

31 / 35

Natural Language Processing 1

LLMs in research and practice

Multilingual LLMs: Application

1. Pretrain a multilingual LLM

2. Fine-tune the LLM on one or more high-resource languages to
obtain a task model

3. Perform zero-shot or few-shot transfer to other (low-resource)
languages

How successful is such transfer?

High performance for typologically-close languages, much lower
performance for typologically-different and low-resource languages.

32 / 35

Natural Language Processing 1

LLMs in research and practice

Can LLMs solve NLP?

They are an exciting step forward, offering many opportunities

I They generate fluent text

I Practically useful in many contexts

I They provide a unified framework for solving many tasks

I They can learn in-context: few-shot learning from a task
instruction and a small number of demonstration examples

I They can explain their own decisions (sometimes)

But! See next slide...

33 / 35

Natural Language Processing 1

LLMs in research and practice

Can LLMs solve NLP?

But many challenges remain (and some new ones emerged)

I Can LLMs generalise systematically?

robin is a bird; robins are flowers

I Factual errors and inference errors

I Hallucinations: making up content

I Memorisation vs. generalisation?

I Data contamination: performance evaluations in many tasks are
misleading

I Many issues related to safety and bias

34 / 35

Natural Language Processing 1

LLMs in research and practice

Outstanding challenges and future directions

I Interpretability
I Better learning algorithms, e.g. continual learning
I Low-resource languages
I Few-shot learning and generalisation
I Common sense reasoning
I Ethics and alignment

We discuss these topics in an advanced NLP courses, such as
Advanced Topics on Computational Semantics (block 5)

35 / 35

	From task-specific to general-purpose models
	Generative language models
	LLMs in research and practice

