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Who Am I?

○ BSc Artificial Intelligence at Universiteit Utrecht (2013-2017)

○ Logic

○ (Computational) Linguistics

○ Theoretical Computer Science
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Who Am I?

○ BSc Artificial Intelligence at Universiteit Utrecht (2013-2017)

○ MSc Artificial Intelligence at the UvA (2017 - 2020)

○ Natural Language Processing

○ Machine/Deep Learning

○ Explainable AI
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Who Am I?

○ BSc Artificial Intelligence at Universiteit Utrecht (2013-2017)

○ MSc Artificial Intelligence at the UvA (2017 - 2020)

○ PhD candidate at the Institute for Logic Language, and Computation (ILLC) at the 
University of Amsterdam with Jelle Zuidema

○ Interested in:

○ Language models  (but who isn’t, nowadays...)

○ Interpretability 
○ (Psycho-)linguistics & NLP
○ Grammar / Hierarchical Structure
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○ Interpretability
● Why do we need interpretability?
● What is an explanation?
● Explanation faithfulness

○ Interpretability Methods
● Behavioural studies
● Probing
● Feature Attributions

Plan for today
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Let’s take a step back to 2001

Why do we need interpretability?
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Why do we need interpretability?

Breiman (2001) - Statistical Modeling: The Two Cultures
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Why do we need interpretability?

Breiman (2001) - Statistical Modeling: The Two Cultures

The Data Modelling culture:

Assumes an explicit and 
interpretable relationship 
between input x and output y
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The Algorithmic Modelling culture:

Why do we need interpretability?

Breiman (2001) - Statistical Modeling: The Two Cultures
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Why do we need interpretability?
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The desiderata of algorithmic models:

1. Fairness
○ What biases does it contain? Does it discriminate against particular groups?

Why do we need interpretability?

12 Lipton (2018) - The Mythos of Model Interpretability
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Why do we need interpretability?

?
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Why do we need interpretability?

?
Personal reason: “scientific curiosity”, how is it so good?
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Why do we need interpretability?

Post-hoc 
Explanation
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Henk is a 36 year 
old male lawyer 
from Amsterdam

How do we explain a model?



€5000 
credit
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from Utrecht

How do we explain a model?



€1000 
credit

27

Suzan is a 32 year 
old female doctor 
from Utrecht

How do we explain a model?



€1000 
credit

28

Suzan is a 32 year 
old female doctor 
from Utrecht

How do we explain a model?

?
Why does Suzan get less than 
Henk? Because of her age? 
Gender? Occupation? 
Location? 



€1000 
credit
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Suzan is a 32 year 
old female doctor 
from Utrecht

?
female   : 0.90
32       : 0.05
doctor   : 0.03
Utrecht  : 0.02

How do we explain a model?
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How do we explain a model?

○ We often explain events by pointing out the most important factors 

○ This is often done in contrast to a neutral baseline

Yin & Neubig (2022) - Interpreting Language Models with Contrastive Explanations



Explanation Faithfulness

How do we ensure that a model explanation actually represents a model’s 
reasoning?
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Explanation Faithfulness

How do we ensure that a model explanation actually represents a model’s 
reasoning?

Plausibility does not imply faithfulness!

Models can be right for the wrong 
reasons!

But how do we ever know our 
explanation is truly faithful to the 
model?
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Explanation Faithfulness
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€1000 
credit

Suzan is a 32 year 
old female doctor 
from Utrecht

?
female   : 0.02
32       : 0.93
doctor   : 0.03
Utrecht  : 0.02



Levels of explanation granularity:

1. Behavioural
○ Model remains a black-box
○ Predictions of model are the main object of interest

Explanation Methods
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Levels of explanation granularity:

1. Behavioural
○ Model remains a black-box
○ Predictions of model are the main object of interest

2. Attributional
○ Which input features were most important for a 

prediction?

3. Probing
○ What abstract features are encoded by the model?
○ Performed layer-wise

4. Mechanistic
○ Can we identify specific circuits responsible for a 

particular behaviour?

Explanation Methods
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How can we understand a model better, without ‘opening the black box’?

▫ Using carefully crafted minimal pairs we can investigate a model’s 
performance on a specific phenomenon.

Behavioural Interpretability
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How can we understand a model better, without ‘opening the black box’?

▫ Using carefully crafted minimal pairs we can investigate a model’s 
performance on a specific phenomenon.

▫ This type of experiment only requires access to the output 
probabilities of the model.

Behavioural Interpretability

P(approve) P(approves)

LM

>

The athletes above Barbara ...
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▫ The Benchmark of Linguistic Minimal Pairs for English

▫ Tests the capacity of language models for a wide range of linguistic 
phenomena

▫ Allows us to test and compare language model performance regardless 
of size

▫ Comparison done based on sentence probability:

P(grammatical sentence) > P(ungrammatical sentence)

BLiMP

40 Warstadt et al. (2020) - BLiMP: The Benchmark of Linguistic Minimal Pairs for English
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Behavioural Tests for Uncovering Biases

48 Van der Wal, Jumelet, Schulz & Zuidema (2021) - The Birth of Bias

We can use behavioural tests to 
investigate how a model acquires 
behaviour during training.

Back in 2021 we ran this experiment:

▫ LSTM LM trained on 100M 
Wikipedia tokens

▫ Evaluated on BLiMP during 
training

▫ In particular on anaphora 
agreement:
E.g. Katherine can’t help herself / *himself



Behavioural Tests for Uncovering Biases

49 Van der Wal, Jumelet, Schulz & Zuidema (2021) - The Birth of Bias

Male biasWe can use behavioural tests to 
investigate how a model acquires 
behaviour during training.

Back in 2021 we ran this experiment:

▫ LSTM LM trained on 100M 
Wikipedia tokens

▫ Evaluated on BLiMP during 
training

▫ In particular on anaphora 
agreement:
E.g. Katherine can’t help herself / *himself



Behavioural tests show us a model’s 
response to a particular input

▫ We now know roughly what a model 
can do.

▫ Why a model gave a particular 
response is not clear though!

Limitations of Behavioural Tests
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Behavioural tests show us a model’s 
response to a particular input

▫ We now know roughly what a model 
can do.

▫ Why a model gave a particular 
response is not clear though!

▫ Complex phenomena require more 
complex explanations

▫ E.g. coreference resolution:

Limitations of Behavioural Tests

Zhao et al. (2018) - Gender Bias in Coreference Resolution: Evaluation and Debiasing Methods51



▫ Feature attribution methods explain 
model predictions in terms of the strongest 
contributing features.

▫ By normalizing such scores we get an 
insight into the relative importance of each 
feature.

▫ Shows us the rationale of a model behind a 
prediction → useful for uncovering biases!

Feature Attribution Methods

P(approve) = 0.15

0.01𝜙

The above Barbaraathletes

0.25𝜙 0.01𝜙 -0.12𝜙
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Pronoun Resolution

53

The girl knows the boy, because she had spoken to him earlier.

The girl knows the boy, because he lives next-door to her.

Jumelet et al. (2019) - Analysing Neural Language Models: Contextual 
Decomposition Reveals Default Reasoning in Number and Gender 
Assignment



Pronoun Resolution

P(she)

P(he)

The girl knows the boy, because ...Pronoun resolution:
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Pronoun Resolution

The girl knows the boy, because he/she
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Pronoun Resolution

The girl knows the boy, because he/she
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Pronoun Resolution

The girl knows the boy, because he/she

57

Female preference

C(she)C(he) -

-

+ Male preference



Pronoun Resolution

The girl knows the boy, because he/she

58

Female preference

C(she)C(he) -

-0.12

-0.04

-

+ Male preference



Average contributions

Female 
subject

Male 
object

The girl knows the boy, because he/she C(she)C(he) -

Female preference-

+ Male preference
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The girl knows the boy, because he/she



Average contributions

C(she)C(he) -

Female preference-

+ Male preference
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The girl knows the boy, because he/she



Default Reasoning?

C(she)C(he) -

Female preference-

+ Male preference

63

The girl knows the boy, because he/she

Intercepts & initial states 
biased by default 

towards Male preference

Female preference 
requires explicit evidence



How do we compute the relative importance of 
a feature?

▫ Often this is done by perturbing parts of 
the input, and measuring the change in 
model output.

Feature Attribution Methods

P(approve) = 0.15

0.01𝜙

The above Barbaraathletes

0.25𝜙 0.01𝜙 -0.12𝜙
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How do we compute the relative importance of 
a feature?

▫ Often this is done by perturbing parts of 
the input, and measuring the change in 
model output.

▫ How should we perturb?

▫ How can we represent the missingness of a 
feature?

▫ How should we measure the change?

Feature Attribution Methods

P(approve) = 0.15

0.01𝜙

The above Barbaraathletes

0.25𝜙 0.01𝜙 -0.12𝜙
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Attribution Dimensions

1. Feature Removal

How do we deal with removed features?

2. Feature Influence

How do we quantify the impact of a feature?



1 Static Baseline

Feature Removal
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1 Static Baseline

Feature Removal

Value function for 
partial input
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1 Static Baseline

Feature Removal

Value function for 
partial input

Model being explained
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1 Static Baseline

Feature Removal
Features still present

Removed featuresValue function for 
partial input

Model being explained
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1 Static Baseline

x = “This movie is not bad”

x’ = “<pad> <pad> <pad> <pad> <pad>”

S = {1, 2, 3, 5}
xS∪x’\s = “This movie is <pad> bad”

Feature Removal
Features still present

Removed featuresValue function for 
partial input

Model being explained
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2 Interventional background distribution

Feature Removal

Expectation over removed features
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2 Interventional background distribution

x = “This movie is not bad”

S = {1, 2, 3, 5}
xS∪x’\s = “This movie is the   bad”

    is
walk
...

Feature Removal

Expectation over removed features
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3 Observational background distribution

Feature Removal

Expectation over removed features

Conditioned on present features
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3 Observational background distribution

x = “This movie is not bad”

S = {1, 2, 3, 5}
xS∪x’\s = “This movie is very       bad”

    quite
pretty
...

Feature Removal

Expectation over removed features

Conditioned on present features
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Feature Influence

1 Ablation

x = “This movie is not bad”

x’ = <pad>

φnot = f(“This movie is not bad”) - f(“This movie is <pad> bad”)

Contribution of feature i
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Feature Influence

2 Shapley Value

Completeness axiom:

77



Shapley Values

https://christophm.github.io/interpretable-ml-book/shapley.html
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305,000
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Shapley Values
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Feature Influence

2 Shapley Value

Completeness axiom:
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Feature Influence

3 Gradients

Plain Gradients:
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p( y | x)

x1

x2

Highlighting via Input Gradients

● Estimate importance of a feature using derivative of output w.r.t that feature
● i.e., with a “tiny change” to the feature, what happens to the prediction?

x

▽ p(y|x)

[Simonyan et al. 2014]

● We then visualize the importance values of each feature in a heatmap

Slide credit: Ana Marasovic

https://arxiv.org/abs/1312.6034


85[Adebayo et al., 2018]

Example of highlighting: Image classification

Slide credit: Ana Marasovic

https://arxiv.org/abs/1810.03292


For NLP, derivative of output w.r.t a feature
=

derivative of output w.r.t an input token

What to use as the output?
● Top prediction probability
● Top prediction logits
● Loss (with the top prediction as the 

ground-truth class)

Gradient-based Highlightings for NLP

Token is actually an embedding. How to turn 
gradient w.r.t embedding into a scalar score?
● Sum it?
● Take an Lp norm?
● Dot product with embedding itself?

Do we normalize values across sentence?

Eqn from [Han et al. 2020]L1-normalized across all tokens

direction lead to 
a decrease in 
the loss

Slide credit: Ana Marasovic
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For NLP, derivative of output w.r.t a feature
=

derivative of output w.r.t an input token

Gradient-based Highlightings for NLP

Eqn from [Han et al. 2020]L1-normalized across all tokens

direction lead to 
a decrease in 
the loss

Slide credit: Ana Marasovic
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Problems with Using Gradient for Highlighting

● Too “local” and thus sensitive to slight perturbations

p( y | x)

x1

x

x2

Slide credit: Ana Marasovic
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● too “local” and thus sensitive to slight perturbations
● “saturated outputs” lead to unintuitive gradients

Problems with Using Gradient for Highlighting

[Shrikumar et al. 2017]

1

x1 + x2
0

y

y = x1 + x2    when (x1 + x2) < 1
          1         when (x1 + x2) >= 1

1 2

x1=1, x2=1

Neither is important?

Slide credit: Ana Marasovic
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● too “local” and thus sensitive to slight perturbations
● “saturated outputs” lead to unintuitive gradients
● discontinuous gradients (e.g., thresholding) are problematic

Problems with Using Gradient for Highlighting

x = (10-𝞮, 10+𝞮)

[Shrikumar et al. 2017]
Slide credit: Ana Marasovic
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Extensions of Vanilla Gradient

● too “local” and thus sensitive to slight perturbations
● “saturated outputs” lead to unintuitive gradients
● discontinuous gradients (e.g., thresholding) are problematic

How to mitigate these issues? Don’t rely on a single gradient calculation:
● SmoothGrad
● Integrated Gradients

Other approaches, e.g., LRP, DeepLIFT, GradCAM. Not covered here.

Slide credit: Ana Marasovic
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Extensions of Vanilla Gradient

x

p( y | x)

x1

x2

SmoothGrad: add gaussian noise to input and average the gradient

    [Smilkov et al. 2017]
Slide credit: Ana Marasovic
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Extensions of Vanilla Gradient

x

p( y | x)

x1

x2

Integrated Gradients: average gradients along path from zero to input

    [Sundararajan et al. 2017]
Slide credit: Ana Marasovic
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Summary of Gradient-based Highlighting

Positives:
● Fast to compute: single (or a few) calls to backward()
● Visually appealing: spectrum of importance values

Negatives:
● Needs white-box (gradient) access to the model
● Gradients can be unintuitive with saturated or thresholded values
● Difficult to apply to non-classification tasks
● Highlighting cannot do anything if a model uses knowledge (such as 

commonse) that is not explicitly mentioned in the input 
● Ignore the interactions between words/pixels (e.g., “not good”)

Slide credit: Ana Marasovic
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● Highlighting cannot do anything if a model uses knowledge (such as 

commonse) that is not explicitly mentioned in the input 
● Ignore the interactions between words/pixels (e.g., “not good”)
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Feature attribution methods showed us which input features were 
important for a prediction.

✗ They do not show where in the model predictions are formed

✗ They give no insight into higher-level concepts such as 
‘gender’, ‘number’, or ‘part-of-speech’ class.

Instead, we can turn to probing, in which we train classifiers on top 
of model representations!

Probing



Probing

97

What information is encoded in here?

97

The behind John walkboys

h h h h h



Probing

98

Linguistic 
information

Diagnostic 
Classifier

The behind John walkboys

h h h h h



Probing

99

NERPOS-tags etc.

99

The behind John walkboys

h h h h h



Representations

● Representations are just a point in a vector space

● But, it is likely that the representation of “cat” is somewhat similar to “dog”

hcat ≈ hdog

● More generally, the representation of nouns are likely to be similar, and distinct 
from verbs, determiners, adverbs, etc. 

hNOUN ≈ hVERB
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What does probed info imply?

101

ClassifierNoun Phrases

Verb Phrases

←   Wh + b



Why linear?

102



Probing

103

NERPOS-tags etc.

103

The behind John walkboys

h h h h h

BERT Rediscovers the Classical NLP Pipeline
Tenney et al. (2019)



○ The huge size of current NLP models has made us lose transparency

○ Interpretability is vital for gaining trust in black-box models

○ Interpretability is also vital for understanding the linguistic capacities of NLP 
models

○ We can explain a model at increasing levels of granularity
● Behavioural tests
● Feature attributions
● Probing
● (Not covered today) Mechanistic Interpretability

➢ Check out Interpretability & Explainability in AI, Block 6!

○ Thanks for listening!

Recap

10
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