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University of Amsterdam with Jelle Zuidema
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Language models

Interpretability
(Psycho-)linguistics & NLP
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o Interpretability
e Why do we need interpretability?
e What is an explanation?
e Explanation faithfulness

o Interpretability Methods
e Behavioural studies
e Probing
e Feature Attributions




Why do we need interpretability?
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Let’s take a step back to 2001

Statistical Science
2001, Vol. 16, No. 3, 199-231

Statistical Modeling: The Two Cultures

Leo Breiman

Abstract. There are two cultures in the use of statistical modeling to
reach conclusions from data. One assumes that the data are generated
by a given stochastic data model. The other uses algorithmic models and
treats the data mechanism as unknown. The statistical community has
been committed to the almost exclusive use of data models. This commit-
ment has led to irrelevant theory, questionable conclusions, and has kept
statisticians from working on a large range of interesting current prob-
lems. Algorithmic modeling, both in theory and practice, has developed
rapidly in fields outside statistics. It can be used both on large complex
data sets and as a more accurate and informative alternative to data
modeling on smaller data sets. If our goal as a field is to use data to
solve problems, then we need to move away from exclusive dependence
on data models and adopt a more diverse set of tools.
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Professor of Statistics, UC Berkeley
Verified email at stat.berkeley.edu - Homepage
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Why do we need interpretability?

Statistics starts with data. Think of the data as
being generated by a black box in which a vector of
input variables x (independent variables) go in one
side, and on the other side the response variables y
come out. Inside the black box, nature functions to
associate the predictor variables with the response
variables, so the picture is like this:

y €4— nature — X

There are two goals in analyzing the data:

Prediction. To be able to predict what the responses
are going to be to future input variables;
Information. To extract some information about
how nature is associating the response variables
to the input variables.

m Breiman (2001) - Statistical Modeling: The Two Cultures




Why do we need interpretability?

The Data Modelling culture:

y €— nature

+— X

J

Assumes an explicit and

linear regression
Y4—

Cox model

interpretable relationship

logistic regression [« X between input x and output y

Model validation. Yes—no using goodness-of-fit

tests and residual examination.

Estimated culture population. 98% of all statisti-

cians.

Breiman (2001) - Statistical Modeling: The Two Cultures
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The Algorithmic Modelling culture:

The analysis in this culture considers the inside of
the box complex and unknown. Their approach is to
find a function f(x)—an algorithm that operates on
x to predict the responses y. Their black box looks

like this:

y +——— unknown [—— X

\' decision trees J

neural nets

Model validation. Measured by predictive accuracy.
Estimated culture population. 2% of statisticians,

many in other fields.

Breiman (2001) - Statistical Modeling: The Two Cultures
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Why do we need interpretability?
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The desiderata of algorithmic models:

1. Fairness
o What biases does it contain? Does it discriminate against particular groups?

m Lipton (2018) - The Mythos of Model Interpretability
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The desiderata of algorithmic models:

1. Fairness
o What biases does it contain? Does it discriminate against particular groups?

2. Trustworthiness
o Models that are deployed carry a degree of responsibility, can we trust them?

m Lipton (2018) - The Mythos of Model Interpretability
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The desiderata of algorithmic models:

1. Fairness
o What biases does it contain? Does it discriminate against particular groups?

2. Trustworthiness
o Models that are deployed carry a degree of responsibility, can we trust them?

3. Robustness
o Does our model generalise robustly to unseen data?

m Lipton (2018) - The Mythos of Model Interpretability
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The desiderata of algorithmic models:

1. Fairness
o What biases does it contain? Does it discriminate against particular groups?

2. Trustworthiness
o Models that are deployed carry a degree of responsibility, can we trust them?

3. Robustness
o Does our model generalise robustly to unseen data?

4. Faithfulness
o How faithful are model explanations to its actual reasoning?

m Lipton (2018) - The Mythos of Model Interpretability
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Nauwelijks zicht op ‘zwarte zoemende dozen'
van overheid: 'Algoritmeregister wassen neus'

Hatixhe Raba
redacteur Binnenland

Het algoritmeregister, dat de overheid transparanter moet maken, wordt een half
jaar na de lancering nauwelijks ingevuld. En de informatie die er wel in staat, is

niet erg toegankelijk.

In het register maken overheidsinstellingen, bijvoorbeeld gemeentes en
ministeries, openbaar hoe ze tot (semi-)geautc de besluiten komen. Het
algoritmegebruik door de overheid ligt onder een vergrootglas door de
toeslagenaffaire, waarin dubbele nationaliteit werd meegewogen in een
algoritme voor risicoanalyse van toeslagaanvragen.

Bii de lancerina in december 2022 stonden er 109 algoritmes op de website. Die
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Apple's 'sexist' credit card
investigated by US regulator

® 11 November 2019

!
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A US financial regulator has opened an investigation into
claims Apple's credit card offered different credit limits for
men and women.

It follows complaints - including from Apple's co-founder Steve
Wozniak - that algorithms used to set limits might be inherently
biased against women.

New York's Department of Financial Services (DFS) has
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The desiderata of algori
9 Facebook apology as Al labels

black men 'primates’

1. Fairness
o What biases does it | " | particular groups?

2. Trustworthiness

o Models that are depi can we trust them?

3. Robustness
o Does our model gen

4. Faithfulness
o How faithful are moa 77

Facebook users who watched a newspaper video featuring
black men were asked if they wanted to "keep seeing videos
about primates" by an artificial-intelligence recommendation
system.

GETTY IMAGES

Facebook told BBC News it "was clearly an unacceptable error”, o0
. 18 I disabled the system and launched an investigation. The MythS Of Moole/ /nfe/'pl’efablllfy
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The desiderata of algoritt—

: Twitter finds racial bias in
1. Fairness image-cropping Al
o What biases does It €¢ ©20vay 2021 articular groups?

. <
2. Trustworthiness =
o Models that are deplo) Y ' on we trust them?
4. Faithfulness |
o How faithful are model g |
Preferences for white people over black people and women over men

3. Robustness
o Does our model gener.

Twitter's automatic cropping of images had underlying issues
that favoured white individuals over black people, and women

m over men, the company said. he Mythos of Model Interpretability
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Why do we need interpretability?
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Why do we need interpretability?

— . — (o7
?

Personal reason: “scientific curiosity”, how is it so good?




Can we ever truly understand a large-scale Al model's internal reasoning?

ChatGPT

Understanding the internal reasoning of a large-scale Al model, such as GPT-3.5, can
be a challenging task. While we can gain insights into the functioning of Al models
through various interpretability techniques, achieving a complete and comprehensive

understanding of their internal reasoning remains a significant challenge.

Large-scale Al models, like GPT-3.5, operate using complex architectures with millions
or even billions of parameters. These models are trained on vast amounts of data,
which allows them to learn patterns and make predictions. However, the internal
workings of these models are highly intricate and often referred to as "black boxes"

because it can be difficult to trace how a specific input leads to a particular output.

Several techniques have been developed to interpret and explain the decisions made
by Al models. These include attention visualization, feature importance analysis, and
saliency mapping, among others. These methods attempt to highlight the areas of
input data that the model focuses on or deems important for making predictions.
While these techniques can provide some insights, they may not capture the full extent

of the model's reasoning.
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Why do we need interpretability?
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Henk is a 36 year
old male lawyer
from Amsterdam

[—

B
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How do we explain a model?

Henk is a 36 year
old male lawyer | > €5000
from Amsterdam credit

L—
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Suzan is a 32 year
old female doctor
from Utrecht

[—
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How do we explain a model?

Suzan is a 32 year
old female doctor | > €1000
from Utrecht credit

[—

B
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l;:J How do we explain a model?

Suzan is a 32 year
old female doctor |
from Utrecht

[—

S B

Why does Suzan get less than
Henk? Because of her age?
Gender? Occupation?
Location?

> €1000
credit
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: 0.90
: 0.05
: 0.03

c

trecht oY

Suzan is a year
old | > €1009
from credit
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How do we explain a model?

o We often explain events by pointing out the most important factors

o This is often done in contrast to a neutral baseline

Input: Can you stop the dog from

Output: barking

1. Why did the model predict “barking”?
Can you stop the dog [

2. Why did the model predict “barking” instead of ‘‘crying”?
Can you stop the dog from

3. Why did the model predict “barking” instead of ‘“‘walking”’?
Can youl stop i€ dog from

Yin & Neubig (2022) - Interpreting Language Models with Contrastive Explanations



Explanation Faithfulness
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How do we ensure that a model explanation actually represents a model’s
reasoning?




Explanation Faithfulness
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How do we ensure that a model explanation actually represents a model’s
reasoning?

Plausibility does not imply faithfulness!

Models can be right for the wrong
reasons!

But how do we ever know our
explanation is truly faithful to the
model?




Explanation Faithfulness

Suzan is a year

LR femalefjdoctor]
from

[

c

. 0.02
: 9.93
: 0.03

trecht oY

%

€1000
credit
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Explanation Methods

Levels of explanation granularity:

Behavioural
o Model remains a black-box
o Predictions of model are the main object of interest

1.

Output
Probabilities

Linear

| Add & Norm ]

Feed
Forward

Add & Norm

LG Multi-Head
Feed Attention
Forward Nx
N | Add & Norm
Add & Norm esked
Multi-Head Multi-Head
Attention Attention
t t
N J (. _J)
Positional Positional
Encodi '9 G' R
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.
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Levels of explanation granularity:

1. Behavioural

o Model remains a black-box
o Predictions of model are the main object of interest

2. Attributional

o Which input features were most important for a
prediction?
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Levels of explanation granularity:

1. Behavioural

o Model remains a black-box
o Predictions of model are the main object of interest

2. Attributional

o Which input features were most important for a
prediction?
3. Probing

o  What abstract features are encoded by the model?
o Performed layer-wise

Output
Probabilities

| Add & Norm ]
Feed

Forward

Add & Norm

LG Multi-Head
Feed Attention

Forward Nx
N | Add & Norm
X .-

Add & Norm esked

Multi-Head Multi-Head
Attention Attention

t t

\_ J (. _J)
Positional & @ Positional
Encoding Encoding

Input Output

Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.
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Explanation Methods

Levels of explanation granularity:

1. Behavioural

o

(@]

Model remains a black-box
Predictions of model are the main object of interest

2. Attributional

(©]

Which input features were most important for a
prediction?

3. Probing

o

(©]

What abstract features are encoded by the model?
Performed layer-wise

4. Mechanistic

(©]

Can we identify specific circuits responsible for a
particular behaviour?

Qutput
Probabilities

Input
Embedding

)

Output
Embedding

Inputs

I

Outputs
(shifted right)

Add & Norm
Feed
Forward
Add & Norm
SRl e heaTs Multi-Head
Feed Attention
Forward Nx
N | Add & Norm
X . -
Add & Norm esked
Multi-Head Multi-Head
Attention Attention
N J . —
Positional & e Positional
Encoding Encoding

Figure 1: The Transformer - model architecture.
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How can we understand a model better, without ‘opening the black box’?

= Using carefully crafted minimal pairs we can investigate a model’s
performance on a specific phenomenon.




X] | Behavioural Interpretability

How can we understand a model better, without ‘opening the black box’?

= Using carefully crafted minimal pairs we can investigate a model’s
performance on a specific phenomenon.

= This type of experiment only requires access to the output
probabilities of the model.

P ) | & [ P(approves)
ﬁ
LM

ﬁ

The above Barbara ..




BLIMP
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= Tests the capacity of language models for a wide range of linquistic
phenomena

= The Benchmark of Linguistic Minimal Pairs for English

= Allows us to test and compare language model performance regardless
of size

= Comparison done based on sentence probability:

P(grammatical sentence) > P(ungrammatical sentence)

. 40 I Warstadt et al. (2020) - BLIMP: The Benchmark of Linguistic Minimal Pairs for English




BLIMP
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Phenomenon N  Acceptable Example Unacceptable Example

ANAPHOR AGR. 2 Many girls insulted themselves. Many girls insulted herself.

m Warstadt et al. (2020) - BLIMP: The Benchmark of Linguistic Minimal Pairs for English
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Phenomenon N  Acceptable Example Unacceptable Example

ANAPHOR AGR. 2 Many girls insulted themselves. Many girls insulted herself.

ARG. STRUCTURE 9  Rose wasn’t disturbing Mark. Rose wasn’t boasting Mark.
BINDING 7  Carlos said that Lori helped him. Carlos said that Lori helped himself.

. 40 I Warstadt et al. (2020) - BLIMP: The Benchmark of Linguistic Minimal Pairs for English
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BLIMP

Phenomenon

Acceptable Example

Unacceptable Example

ANAPHOR AGR.
ARG. STRUCTURE
BINDING
CONTROL/RAISING
DET.-NOUN AGR.

Lo |Z

Many girls insulted themselves.
Rose wasn’t disturbing Mark.
Carlos said that Lori helped him.

There was bound to be a fish escaping.

Rachelle had bought that chair.

Warstadt et al. (2020) - BLIMP: The Benchmark of Linguistic Minimal Pairs for English

Many girls insulted herself.

Rose wasn’t boasting Mark.

Carlos said that Lori helped himself.
There was unable to be a fish escaping.
Rachelle had bought that chairs.
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BLIMP

Phenomenon

Acceptable Example

Unacceptable Example

ANAPHOR AGR.
ARG. STRUCTURE
BINDING
CONTROL/RAISING
DET.-NOUN AGR.
ELLIPSIS

D o0 L 9O | Z

FILLER-GAP 7
IRREGULAR FORMS 2
ISLAND EFFECTS 8
NPI LICENSING 7
QUANTIFIERS 4
SUBJECT-VERB AGR. 6

Many girls insulted themselves.

Rose wasn’t disturbing Mark.

Carlos said that Lori helped him.

There was bound to be a fish escaping.

Rachelle had bought that chair.

Anne’s doctor cleans one important
book and Stacey cleans a few.

Brett knew what many waiters find.

Aaron broke the unicycle.

Which bikes is John fixing?

The truck has clearly tipped over.

No boy knew fewer than six guys.

These casseroles disgust Kayla.

Many girls insulted herself.

Rose wasn’t boasting Mark.

Carlos said that Lori helped himself.

There was unable to be a fish escaping.

Rachelle had bought that chairs.

Anne’s doctor cleans one book and
Stacey cleans a few important.

Brett knew that many waiters find.

Aaron broken the unicycle.

Which is John fixing bikes?

The truck has ever tipped over.

No boy knew at most six guys.

These casseroles disgusts Kayla.

Table 1: Minimal pairs from each of the twelve linguistic phenomenon categories covered by BLiMP. Differences
are underlined. N is the number of 1,000-example minimal pair paradigms within each broad category.

Warstadt et al. (2020) - BLIMP: The Benchmark of Linguistic Minimal Pairs for English




x(X x

BLIMP
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Table 3: Percentage accuracy of four baseline models and raw human performance on BLiMP using a forced-
choice task. A random guessing baseline would achieve an accuracy of 50%.

Warstadt et al. (2020) - BLIMP: The Benchmark of Linguistic Minimal Pairs for English
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S-gram [IKES ‘ 0.39 ‘ 0.58 | 0.59 1

LSTM ORI XY 1 0.59

TXL 048 | 0.68 1 0.9
GPT-2 |[NURES 1 0.68 | 0.63
human 1 0.54 | 048 ‘ 0.49
human GPT-2 TXL LSTM 5-gram

Figure 1: Heatmap showing the correlation between
models’ accuracies in each of the 67 paradigms.
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Figure 2: Models’ performance on BLiMP as a func-
tion of sentence length, perplexity, log probability of
the acceptable sentence, and model confidence (calcu-
lated as |log P(S1) — log P(S2)]).
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x(X x

5-gram 0.39 ‘ 0.58 | 0.59
LSTM 0.63 0.9

TXL 0.68 1 0.9
GPT-2 1 0.68 = 0.63

human 0.54 | 048 ‘ 0.49
human GPT-2 TXL LSTM 5-gram

Figure 1: Heatmap showing the correlation between
models’ accuracies in each of the 67 paradigms.
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Figure 2: Models’ performance on BLiMP as a func-
tion of sentence length, perplexity, log probability of
the acceptable sentence, and model confidence (calcu-
lated as |log P(S1) — log P(S2)]).
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Figure 5: Transformer-XL (top) and LSTM LM (bot-
tom) performance as a function of training size and
phenomena in BLiMP. The gray line shows the aver-
age across all phenomena.
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We can use behavioural tests to
investigate how a model acquires
behaviour during training.

Back in 2021 we ran this experiment:

= LSTM LM trained on 100M
Wikipedia tokens

= Evaluated on BLiMP during
training

= |n particular on anaphora

agreement:
E.g. Katherine can’t help / *himself
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X] | Behavioural Tests for Uncovering Biases

We can use behavioural tests to
investigate how a model acquires
behaviour during training.

Back in 2021 we ran this experiment:

= LSTM LM trained on 100M
Wikipedia tokens

= Evaluated on BLiMP during
training

= |n particular on anaphora

agreement:
E.g. Katherine can’t help herself / *himself

Male bids

10

o© o o
I ) [o3]
1 1 1

Task accuracy

o
N
I

0.0-

0

anaphor_gender_agreement

I | | | ] | |
5000 10000 15000 20000 25000 30000 35000
# of batches

- herself
- - himself
— tself
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Limitations of Behavioural Tests

Behavioural tests show us a model’s
response to a particular input

= We now know roughly what a model
can do.

= Why a model gave a particular
response is not clear though!




Limitations of Behavioural Tests

Behavioural tests show us a model’s
response to a particular input

= We now know roughly what a model
can do.

= Why a model gave a particular
response is not clear though!

= Complex phenomena require more
complex explanations

= E.g. coreference resolution:

Type 1

The physician|hired;the secretary:because/he]was overwhelmed with clients.
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= Feature attribution methods explain
model predictions in terms of the strongest
contributing features.

[ P( ) =0.15 ]
= By normalizing such scores we get an i
insight into the relative importance of each PN
feature. it i i T
The above Barbara

= Shows us the rationale of a model behind a ; ; ; ;
prediction — useful for uncovering biases! ~ (@00) (®)o2s| (#)oot] (2)012)




Pronoun Resolution

The girl knows the pboy, because she had spoken to him earlier.

The girl knows the pboy, because he lives next-door to her.

53



Pronoun Resolution

Pronoun resolution:

The girl Rnows the

)

because ...

P(she)

54



Pronoun Resolution

The girl knows the boy, because he/she

~— —
w &

INIT
The
girl 0.03 0.15
knows

the

Decomposed token

boy

because

55



Pronoun Resolution

The girl knows the boy, because he/she

A A
&//

Decomposed token

56



Pronoun Resolution

The girl kRnows the boy, because he/she C(he) | = | C(she)

- Female preference

+ | Male preference

Decomposed token

57



Pronoun Resolution

The girl kRnows the boy, because he/she C(he) | = | C(she)

m - Female preference

+ | Male preference

Decomposed token

0.04

58



Average contributions

The girl knows the

J

because

/she

(

) \

]

|
Female

subject

|
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Average contributions

The girl knows the boy, because he/she C(he) | = | C(she)

FM

- Female preference

+ | Male preference

60



Average contributions

The girl kRnows the boy, because he/she C(he) | = | C(she)

FM

- Female preference
0.01

+ | Male preference

obju
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Average contributions

The girl kRnows the boy, because he/she C(he) | = | C(she)

- Female preference
0.01

+ | Male preference

62



Default Reasoning?

The girl kRnows the boy, because he/she C(he) | = | C(she)

Female preference
requires explicit evidence

Intercepts & initial states
biased by default
towards Male preference - Female preference

+ | Male preference

63



X] | Feature Attribution Methods

How do we compute the relative importance of

a feature?
= Often this is done by perturbing parts of [p(aﬂamve):o.w]
the input, and measuring the change in i

model output. e T N T
it it it it

The athletes above Barbara

@] @B @ov] Gl




X] | Feature Attribution Methods

How do we compute the relative importance of
a feature?

= Often this is done by perturbing parts of [p( ):0.15]
the input, and measuring the change in i
model output. T N

N —

The above Barbara

= How should we perturb?

= How can we represent the missingness of a @ 50001| @ 50_25| @ 50'01| @) _50_12|
feature?

= How should we measure the change?




Attri )
ttribution Dimensio
ns

1.
Feature Removal

How d
o we '
deal with removed feat
ures?

2.
Feature Influence

How do
we '
quantify the impact of a f
eature?

emoVing:
el ExplanEbes

Exp\aining by
A Unified Framework for
jan C- ert
paul G n Sch l f(ompufer Seience & Engmeermg
University f W ashingto™
Seattle, W/ 08195, {

e il Lm‘dberg



Feature Removal

1 Static Baseline

v(xg) = f(xg U X'\s)
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Feature Removal

1 Static Baseline

v(xs) = f(xs Ux{g)

Value function for
partial input
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Feature Removal

Model being explained

1 Static Baseline
v(xg) = f(xg U x’\ )

Value function for
partial input




Feature Removal

1

Static Baseline

Model being explained

Features still present

v(xg) = f(xg U X’\s)

Value function for
partial input

Removed features
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Feature Removal

1

Static Baseline

Model being explained

Features still present

v(xg) = f(xg U X,\s)

Value function for
partial input

Removed features

= “This movie is not bad”

“<pad> <pad> <pad> <pad> <pad>"

{1, 2, 3, 5}

= “This movie is <pad> bad”
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Feature Removal

2 Interventional background distribution

v(xg) =Ey

\S

[f(XS U X’\s)]

Expectation over removed features
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Feature Removal

2

Interventional background distribution v(xs) = By [f (x5 U X'\s>]

Expectation over removed features

X = “This movie is not bad”

S ={1,2,3,%

xgUx'\ = “This movie is| the ibad”
s
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Feature Removal

3 Observational background distribution

Conditioned on present features

v(xg) = IEX/\S [f(xs U X'\S) | XS]

Expectation over removed features
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Feature Removal

3 Observational background distribution

Conditioned on present features

v(xg) = IEX/\S [f(xs U X'\S) | XS]

Expectation over removed features

S ={1, 2, 3, 5}

X = “This movie is not bad”

xgUX'\; = “This movie is ! very ' bad”

. quite
pretty |

_____________
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Feature Influence

1

Ablation Contribution of feature 1
di = v(x) —v(xy)
X = “This movie is not bad”
X’ =<pad>

q)not

= f(“This movie is not bad”) - f(“This movie is <pad> bad”)
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Feature Influence

2 Shapley Value

%Sﬁ%li(t)igtﬂs marginal contribution
, ) of 72 to Sgahtlon .
di= Y p(S)- (v(xsui) — v(xg))
SCx\{i}
|SIH(x] —1—]S])!
S) —
p( ) |X’!

rele_lt_ive number of
coalitions of size | S|

Completeness axiom:

f(z) ZZ@'

a4



Shapley Values

- %

V

50 m?
2nd floor

>
e == €300,000

X



Shapley Values
F 9
V4
F 9
V4

>
% == €300,000

50 m? ><
2nd floor

e m=p 305,000

50 m?
2nd floor



Shapley Values

- %

\/ 50 m?
1st floor

4

50 m?
1st floor

>
% ==)p €310,000
>
% ==p €320,000



Shapley Values

/~~/\\j
| o |
\/ 2nd floor
- 50m 50
\;_4 \Z_A 2nd floor
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\/ 2nd floor
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2nd floor
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A
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Feature Influence

2 Shapley Value

%Sﬁ%li(t)igtﬂs marginal contribution
, ) of 72 to Sgahtlon .
di= Y p(S)- (v(xsui) — v(xg))
SCx\{i}
|SIH(x] —1—]S])!
S) —
p( ) |X’!

rele_lt_ive number of
coalitions of size | S|

Completeness axiom:

f(z) ZZ@'
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Feature Influence

3 Gradients

Plain Gradients: ¢; =

f(x)
(932@'
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Highlighting via Input Gradients

e Estimate importance of a feature using derivative of output w.r.t that feature
e i.e., with a “tiny change” to the feature, what happens to the prediction?

p(y|x)

X2

X\

:Xl

e We then visualize the importance values of each feature in a heatmap

[Simonvan et al. 2014]



https://arxiv.org/abs/1312.6034

Example of highlighting: Image classification

[Adebayo et al.,

Integrated Gradient

Original i Guided Guided Integrated Gradients G
Image Gradient SmoothGrad BackProp GradCAM Gradients SmoothGrad Input

Edge
Detector

R ;;, F Fr f 3
> 4 > >, ; - .
Junco " g - - k7 i s
Bird T Wi o b

}(

R
o
p

r‘-

&>
b

.
:

%

& B B E o &

&

g

.

Wheaten
Terrier

’;; #.? : vg F'fzy- E:.%?' ;’%;! i‘% )@_ ;

2018]
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https://arxiv.org/abs/1810.03292

Gradient-based Highlightings for NLP

For NLP, derivative of output w.r.t a feature

derivative of output w.r.t an input token

— .

What to use as the output? Token is actually an embedding. How to turn
e Top prediction probability gradient w.rt embedding into a scalar score?
e Top prediction logits e Sum it?

e |Loss (with the top prediction as the e Take an Lp norm?
ground-truth class) e Dot product with embedding itself?

Do we normalize values across sentence?

direction lead to EWe(t) L:g . e(t)

a decrease in
the loss

86
L1-normalized across all tokens Egn from [Han et al. 2020]



https://arxiv.org/abs/2005.06676

Gradient-based Highlightings for NLP

For NLP, derivative of output w.r.t a feature

derivative of output w.r.t an input token

A sometimes tedious film.
l Classifier

Prediction: positive sentiment
J Saliency maps

A sometimes tedious film
+0.07 +0.20 -0.45 -0.03

Salient tokens in the input

direction lead to
a decrease in
the loss

—NewLy - e(t)

L1-normalized across all tokens

87
Egn from [Han et al. 2020]



https://arxiv.org/abs/2005.06676

Problems with Using Gradient for Highlighting

Too “local” and thus sensitive to slight perturbations

p(ylx)
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Problems with Using Gradient for Highlighting

e “saturated outputs” lead to unintuitive gradients

y=x,tX, when (x,+x,) <1

1 when (x.+x,) >=1
Y
1 i
i x1=1, x2=1
: Neither is important?
|
|
0 |
+
1 2 Xt X,

. 89
[Shrikumar et al. 2017]



https://arxiv.org/abs/1704.02685

Problems with Using Gradient for Highlighting

e discontinuous gradients (e.g., thresholding) are problematic

x = (10-g, 10+g)

=
c
= y = max(0, x — 10) % 1
4]
a0

. 90
[Shrikumar et al. 2017]



https://arxiv.org/abs/1704.02685

Extensions of Vanilla Gradient

e too “local” and thus sensitive to slight perturbations
e ‘“saturated outputs” lead to unintuitive gradients
e discontinuous gradients (e.g., thresholding) are problematic

How to mitigate these issues? Don’t rely on a single gradient calculation:

e SmoothGrad
e Integrated Gradients

Other approaches, e.g., LRP, DeeplLIFT, GradCAM. Not covered here.
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https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130140
https://arxiv.org/abs/1704.02685
https://arxiv.org/abs/1610.02391

Extensions of Vanilla Gradient

SmoothGrad: add gaussian noise to input and average the gradient

p(y!x)

X\

2
[Smilkov et al. 2017?

Slide credit: Ana Marasovic


https://arxiv.org/abs/1706.03825

Extensions of Vanilla Gradient

Integrated Gradients: average gradients along path from zero to input

p(y|x)

> X

9
[Sundararaian etal. 2017?

Slide credit: Ana Marasovic


https://arxiv.org/abs/1703.01365

Summary of Gradient-based Highlighting

Positives:

Fast to compute: single (or a few) calls to backward()
Visually appealing: spectrum of importance values

Negatives:

Needs white-box (gradient) access to the model

Gradients can be unintuitive with saturated or thresholded values
Difficult to apply to non-classification tasks

Highlighting cannot do anything if a model uses knowledge (such as
commonse) that is not explicitly mentioned in the input

Ignore the interactions between words/pixels (e.g., “not good”)
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Summary of Gradient-based Highlighting

Interactions learned by a pre-trained
transformer architecture

this, this, this,

Fap= . 4
this movie not bad 0
. this, movie, movie, movie, 0.2 §
MOVIE€ ~ movie was not bad “c B
A
_ this, movie, was, was, ~0.0 (m
Was-~ was  was not  bad =2 9
_ this, movie, was, not, | =X
MOt~ 1ot not  not bad =0.2:c

bad this, movie, was, ' not,
a bad bad bad | bad
| | | | |
"o
&

1
|
<
IS

2
N
O

N

5 & S
& & ¢

e Ignore the interactions between words/pixels (e.g., “not good”)



X] | Probing

Feature attribution methods showed us which input features were
important for a prediction.

X They do not show where in the model predictions are formed

X They give no insight into higher-level concepts such as
‘gender’, ‘number’, or ‘part-of-speech’ class.

Instead, we can turn to probing, in which we train classifiers on top
of model representations!




Probing

What information is encoded in here? ]

97



Probing

Linguistic
information

?

Diagnostic
Classifier

98



etc.

NER
?

POS-tags
?

Probing
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Representations

e Representations are just a point in a vector space

e But,itis likely that the representation of “cat” is somewhat similar to “dog”

= h

cat dog

e More generally, the representation of nouns are likely to be similar, and distinct
from verbs, determiners, adverbs, etc.

h

NOUN # hVERB
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What does probed info imply?

Noun Phrases . Classifier ¢ Wh + b
e © &
" B &
® o ©
: Verb Ph
’ . er rases
&
>
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Why linear?
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K(a) = 1.60 K(s) = 0.19

w
(@] +
= o
Probin SR - -
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? 5 *_—
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Relations
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Figure 2: Layer-wise metrics on BERT-large. Solid

(blue) are mixing weights sg) (§3.1): outlined (purple)
. . . . . ¢ (© .

BERT Rediscovers the Classical NLP Pipeline srdifiensunial sooecy O (332, soxnialized fox Pack

task. Horizontal axis is encoder layer.

Tenney et al. (2019) T ————— 103



Recap

o The huge size of current NLP models has made us lose transparency
o Interpretability is vital for gaining trust in black-box models

o Interpretability is also vital for understanding the linguistic capacities of NLP
models

o We can explain a model at increasing levels of granularity
Behavioural tests

Feature attributions

Probing

Mechanistic Interpretability
> Check out Interpretability & Explainability in Al, Block 6!

o  Thanks for listening!
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