Christof Monz

Informatics Institute
University of Amsterdam

Natural Language Processing 1

Machine Translation



This Class

» Machine translation

Christof Monz NLP1: Machine Translation 1
5



This Class

» Machine translation
» Sequence-to-sequence models

Christof Monz NLP1: Machine Translation 1
5



This Class

» Machine translation
» Sequence-to-sequence models
» Neural machine translation

Christof Monz NLP1: Machine Translation 1
5



This Class

» Machine translation
» Sequence-to-sequence models

» Neural machine translation
e encoder-decoder architecture

Christof Monz NLP1: Machine Translation 1
5



This Class

» Machine translation
» Sequence-to-sequence models

» Neural machine translation

e encoder-decoder architecture
e attention mechanism

Christof Monz NLP1: Machine Translation 1
5



This Class

» Machine translation
» Sequence-to-sequence models

» Neural machine translation

e encoder-decoder architecture
e attention mechanism
o self-attention (Google's Transformer)
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Machine Translation

°c0

Translate Tumoffinstant translation | Q)

Google

German English Spanish ~German -detected - %  German English Spanish - m

Kanzlerin Angela Merkel (CDU) hat die erste Entscheidung *  Chancellor Angela Merkel (CDU) has regretted the first

der Koalition zur Zukunft von Verfassungsschutzprasident coalition decision on the future of the President of the German
Hans-Georg Maaflen bedauert. Sie kiindigte an, dass sich Constitutional Protection, Hans-Georg Maafen. She
das Regi ) der "N¢ digkeit der vollen announced that the government coalition was aware of the
Konzentration auf die Sacharbeit” bewusst sei. "need for full focus on the material work".
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Kanzlerin Angela Merkel (CDU) hat die erste Entscheidung %
der Koalition zur Zukunft von Verfassungsschutzprasident
Hans-Georg Maaflen bedauert. Sie kiindigte an, dass sich

das Regi ] “N digkeit der vollen

der "N
Konzentration auf die Sacharbeit” bewusst sei.

<) 267/5000

Christof Monz

°c0

Tumoffinstant translation | Q)

Chancellor Angela Merkel (CDU) has regretted the first
coaliion decision on the future of the President of the German
Constitutional Protection, Hans-Georg Maafen. She
announced that the government coalition was aware of the
"need for full focus on the material work".
0o <
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» Active research of Al since its beginnings
» Machine translation (MT) is a nice example of the different paradigm shifts
in Al
e 1950s-1990s: rule-based, symbolic approaches
e 1990s-2016: statistical, data-driven approaches
e 2014—now: neural, deep learning, data-driven approaches
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MT: German to English (high resource)

German source sentence

Die Leitung der fir die US-Regierungsgebéude zustandigen Behdrde weigert sich laut einem
Medienbericht, einen Brief zu unterschreiben, mit dem das Biden-Ubergangsteam Zugang zu US-
Behérden erhalten und formal diese Woche die Arbeit aufnehmen kann.
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Medienbericht, einen Brief zu unterschreiben, mit dem das Biden-Ubergangsteam Zugang zu US-
Behérden erhalten und formal diese Woche die Arbeit aufnehmen kann.

English machine translation anno 2014 (using statistical machine translation)

The line of the authority responsible for the US Government buildings refuses according to a
medium report signing a letter with which the Biden Ubergangsteam entrance to US authorities to
receive and formally this week the work take up can.

English machine translation in 2020 (using neural machine translation)

According to a media report, the management of the agency responsible for US government
buildings is refusing to sign a letter that will allow the Biden transition team to gain access to US
authorities and formally start work this week.
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MT: Kurdish to English (low resource)
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Hinek werzisvanén fraqi yén ku li ser desté komén tundrew astender bline serketin di werzisvaniyé
de pék anin bi réya besdarikirina di gehremaniyén werzigvani yén astenderan de.
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MT: Kurdish to English (low resource)

Kurdish source sentence

Hinek werzigvanén iraqi yén ku li ser desté komén tundrew astender biine serketin di werzigvaniyé
de pék anin bi réya besdarikirina di gehremaniyén werzigvani yén astenderan de.

English machine translation in 2020 (using neural machine translation)
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MT: Kurdish to English (low resource)

Kurdish source sentence

Hinek werzigvanén iraqi yén ku li ser desté komén tundrew astender biine serketin di werzigvaniyé
de pék anin bi réya besdarikirina di gehremaniyén werzigvani yén astenderan de.

English machine translation in 2020 (using neural machine translation)

Some Iragi athletes who have been successful at the hands of extremist groups have achieved
success in sports by participating in the sports championships of the demonstrators.

Human translation (reference or ground truth)

Some Iraqis who suffered debilitating injuries at the hands of extremist groups have gone on to
achieve victory in the athletic field through their participation in paralympic sports.
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Machine Translation

» Automatically translate: source language — target language

Arabic — English French — Spanish
Armenian — Czech Armenian — Danish

Uzbek — Albanian  Uzbek — Hindi
Vietnamese — Azeri Vietnamese — Greek
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Ambharic — Vietnamese
Armenian — Turkish

Uzbek — U.kranian
Vietnamese — Turkish
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Universal Translation
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Japan to tighten checks for African
swine fever

(iuspan ) Ciieain a wettars) Tuesday, Nov. 26,2009

The Japanese government plans to give more powers to quarantine officers at
airports, as part of its efforts to prevent African swine fever from entering the
country.

Outbreaks of the fatal and highly contagious disease have been reported in China,
South Korea and other parts of Asia, but no cases have been confirmed in Japan so
far.

The agriculture ministry is working on legal amendments to block the entry of the
African swine fever virus.

It plans to allow quarantine officers at airports to ask travelers if they have any meat
oroducts. Thev would also be able to insoect luagage without the owner's consent.
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Eapan to tighten checks for African
wine fever

Tuesday, Nov. 26, 20:09

The Japanese government plans to give more powers to quarantine officers at
airports, as part of its efforts to prevent African swine fever from entering the |-
country.

Outbreaks of the fatal and highly contagious disease have been reported in China,
South Korea and other parts of Asia, but no cases have been confirmed in Japan s
far.

The agriculture ministry is working on legal amendments to block the entry of the
African swine fever virus.
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It plans to allow quarantine officers at airports to ask travelers if they have any mea‘
products, Thev would also be able to inspect luggage without the owner's consent.
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Parallel Corpus

ZME 2 WHE A S5 £5 | Li Peng Meets With Former Singapore Pres-
& ident Ong Teng Cheong
HORL - Frhnd - Y5 | Malaysia, Singapore, Sarawak, Sabah and
Y RIS R 2H A B FR {B B | Brunei once formed a federation, but it also

BAHET . fell apart in the end.

FnIEHE TS G IHEAT | Singapore is at the head of the list, while

BE - Burma ranks last.

HTNENIAEE T8 3E — 1% | Singapore is also devoting itself to building

WIS ERER - a "intelligence island” embraced by a fiber-
optical net.
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optical net.
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e a (complex) output into which the input representation needs to be decoded
» Many tasks fall under the general encoder-decoder architecture
» Image captioning
e input: image (encode using CNNs)
e output: sentence (decode using an RNN/CNN language model)
» Speech recognition

e input: audio signal over time (encode using CNN-++RNN)
e output: sentence (decode using an RNN/CNN language model)
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Encoder-Decoder Architecure

» Sentence Summarization

e input: sentence (encode using RNN/CNN)
e output: shorter sentence (decode using an RNN/CNN language model)

» Machine translation
e input: foreign sentence (encode using RNN/CNN)
e output: sentence translation (decode using an RNN/CNN language model)
» When input and outputs are sequences of words/audio we talk about
sequence-to-sequence (seq2seq) models

Christof Monz NLP1: Machine Translation o0 ]
%z



Sequence-to-Sequence Models

» Sequence-to-sequence modeling
e differs from sequence labeling by

Christof Monz NLP1: Machine Translation 11
%z



Sequence-to-Sequence Models

» Sequence-to-sequence modeling
e differs from sequence labeling by
— not assuming an isomorphic relationship between x; and y;

Christof Monz NLP1: Machine Translation 11
%z



Sequence-to-Sequence Models

» Sequence-to-sequence modeling
e differs from sequence labeling by

— not assuming an isomorphic relationship between x; and y;
— by not assuming that |X| = |Y|, i.e., they can differ in lenght

Christof Monz NLP1: Machine Translation 11
%z



Sequence-to-Sequence Models

» Sequence-to-sequence modeling
e differs from sequence labeling by

— not assuming an isomorphic relationship between x; and y;
— by not assuming that |X| = |Y|, i.e., they can differ in lenght

e aims to model the complex mapping between X and Y

Christof Monz NLP1: Machine Translation 11
%z



Sequence-to-Sequence Models

» Sequence-to-sequence modeling
e differs from sequence labeling by

— not assuming an isomorphic relationship between x; and y;
— by not assuming that |X| = |Y|, i.e., they can differ in lenght

e aims to model the complex mapping between X and Y

» As sequences are typically modeled using a language model,
sequence-to-sequence modeling can be cast a conditional language modeling
taSk: p()’t|Y<t7X),

Christof Monz NLP1: Machine Translation 11
%z



Sequence-to-Sequence Models

» Sequence-to-sequence modeling
e differs from sequence labeling by

— not assuming an isomorphic relationship between x; and y;
— by not assuming that |X| = |Y|, i.e., they can differ in lenght

e aims to model the complex mapping between X and Y

» As sequences are typically modeled using a language model,
sequence-to-sequence modeling can be cast a conditional language modeling
taSk: p()’t|Y<t7X),

where X is the output of the encoder (i.e., a representation of the input)

Christof Monz NLP1: Machine Translation 11
%z



Sequence-to-Sequence Models

» Sequence-to-sequence modeling
e differs from sequence labeling by

— not assuming an isomorphic relationship between x; and y;
— by not assuming that |X| = |Y|, i.e., they can differ in lenght

e aims to model the complex mapping between X and Y

» As sequences are typically modeled using a language model,
sequence-to-sequence modeling can be cast a conditional language modeling
taSk: p()’tlY<t,X),

where X is the output of the encoder (i.e., a representation of the input)
and Y., is a representation of the output of the decoder before time ¢ (the prefix)
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Neural Machine Translation

> Sutskever et al. (2014) cast machine translation as a sequence-to-sequence
modeling problem where

e the encoder is an LSTM
o the decoder is an LSTM

w X Y

(9102) "Ie 12 ydoz :mpas> aew)

A B C <eos> W X Y z

» How are the encoder and decoder connected?
e important question!

o Sutskever et al. (2014) simply initialize the decoder LSTM with the last state of the
encoder LSTM
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Neural Machine Translation

N [y I By B |

SRReRENE

encoder (left): represents z as a whole

decoder (right): reads in x token by token and learns to predict y
encoder connects to decoder by setting hg“ =hy*
encoder-decoder information bottleneck
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Information Distribution

» The hidden layers, including the final hidden layer are of fixed, limited
capacity

» The final hidden layer cannot represent the full information of a long input
sentence

» For classification, the sentence representation learns which tokens are
important to predict a certain class
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Attention Mechanism

» Bahdanau et al. (2015) introduced the attention mechanism to machine
translation
e also used in image captioning
e very much related to neural memory networks
» Basic idea:
e don't try to learn one global representation for the source sentence (encoder)
e rather learn context-sensitive token representations
e when generating a target word, dynamically combine the most relevant source
representations
» Similar to word alignment, where alignments indicate source-target token
translation correspondences
e attention results in soft (numerical) alignments
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Attention Mechanism

> How to define sim(Wik', W,q)?

> Inner product: sim(Wik’, W,q) = (Wk')TW,q

> Feed-forward network: sim(Wik', W,q) = w] tanh(W;k’ + W,q +by)
sim(Wik', W,q) results in arbitrary activations

_ exp(sim(WiK!,Wyq))
Pi Y7 exp(sim(Wik/, Wyq))
p is also referred to as attention distribution

v

» Keys and values can be identical: k' = v
> Wy, Wi can be identity matrices 1, I if
o my = my and similarity is defined as inner product
» The attention mechanism and thereby the computation of ¢ is fully
differentiable!
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e what are the keys? Representations of all source tokens: ki = h{ne

e what are the values? Typically: v/ =k

e what is ¢? The representation of the source focusing on the tokens that are most
relevant for generating the next word j+ 1
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Christof Monz NLP1: Machine Translation 19 ]
%z



Attention in NMT

» Attention leads to significant improvements in translation quality
e in particular for longer source sentences

Christof Monz NLP1: Machine Translation 19 ]
%z



Attention in NMT

» Attention leads to significant improvements in translation quality

e in particular for longer source sentences
e it can model complex translation mappings (due to soft alignments)

Christof Monz NLP1: Machine Translation 19 ]
%z



Attention in NMT

» Attention leads to significant improvements in translation quality

e in particular for longer source sentences
e it can model complex translation mappings (due to soft alignments)

» Added benefits:

e attention can be visualized allowing for some inspection of the model
e useful for error analysis
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NMT Attention Examples
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> Attention can model multi-word translations
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Credit Assignment Problem

» Language is full of long-distance phenomena
e morphological agreement
e topicality
e general grammaticality/fluency
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» RNNs model dependencies along a (long) recurrent path
> Even if the gradient play nice (i.e., don't vanish nor explode) this does not
necessarily mean that they model interactions correctly — credit assignment
problem
should h,; | really depend on xq or x; or both or neither?
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Self-Attention

> Self-attention computes attention between elements of the same sequence

e can replace RNNs as sequence model
e shortens paths of credit assignment
e at the core of Google's Transformer NMT system (Vaswani et al., 2017)
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Self-Attention

> Self-attention computes attention between elements of the same sequence

e can replace RNNs as sequence model
e shortens paths of credit assignment
e at the core of Google's Transformer NMT system (Vaswani et al., 2017)
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> self-attention is bidirectional (like a biRNN), but no recurrent connections
between time steps
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» The feed-forward layer is applied point-wise, i.e., at each time step ¢ along a
sequence (weights are shared)
> Feed-forward layer at layer n:
o takes as input the context vector ¢, of layer n at time ¢
o is defined as ffwd(c,,) = W,d ® (ReLU(V, ¢, +a,)) + by,
where d is a (inverted) dropout mask
» Residual connections are used for context and feed-forward sub layers
o f,; =LayerNorm(d © ffwd(c, ) + ¢, )
o ¢, =LayerNorm(d® ¢, ;) +£,-1 )
if n=1, f,_1, refers to the word embedding at time ¢
> At a given time step ¢ and layer n: ¢,; depends on f,_; ; which in turn
depends on ¢,_1,, which depends ...
e in neural memory network parlance: multiple-hop attention

» What does LayerNorm do?
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» Neural machine translation (NMT) alleviates many of the problems that
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e long-distance reorderings between source and target
e complex many-to-many translation mappings
o long-distance dependencies on the target side
> At this moment Transformer models constitute the state-of-the-art in MT
e translations of almost human quality for several language pairs, e.g., French-English,
Spanish-English, but also German-English
» However, there are a number of open problems

e deep learning models are data-hungry and perform less well on language pairs with
limited resources (e.g., Vietnamese-English, Uzbek-English, Hausa-English, ...)

e language pairs involving morphologically rich languages, such as Finish, Turkish,
Arabic (as source and/or target)
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» Machine translation
» Sequence-to-sequence models

» Neural machine translation

e encoder-decoder architecture
e attention mechanism
o self-attention (Google's Transformer)

Christof Monz NLP1: Machine Translation 28 N
%z



