Lecture 6: Compositional semantics and sentence representations

Rochelle Choenni
NLP1 2022 November 17, 2022

Credits: Sandro Pezelle, Ekaterina Shutova,
J. Bastings, Mario Giulianelli

Outline

- Compositional semantics
- Compositional distributional semantics
- Compositional semantics with neural networks

Compositional semantics

\rightarrow Principle of Compositionality: meaning of each whole phrase derivable from meaning of its parts.
\rightarrow Sentence structure conveys some meaning
\rightarrow Deep grammars: model semantics alongside syntax, one semantic composition rule per syntax rule

Compositional semantics alongside syntax

Non-trivial issues with semantic composition

- Similar syntactic structures may have different meanings
\Rightarrow it barks
- it rains; it snows (pleonastic pronoun)
- Different syntactic structures may have the same meaning (e.g., passive constructions)
- Kim ate the apple.
- The apple was eaten by Kim.
- Not all phrases are interpreted compositionally (e.g., idioms)
\Rightarrow red tape
\Rightarrow kick the bucket
but they can be interpreted compositionally too, so we can not simply block them.

Non-trivial issues with semantic composition

- Additional meaning can arise through composition (e.g., logical metonymy)
- fast programmer
\Rightarrow fast plane
- enjoy a book
- enjoy a cup of tea
- Meaning transfers and additional connotations can arise through composition (e.g., metaphor)
\Rightarrow I can't buy this story.
\Rightarrow This sum will buy you a ride on the train.
- Recursive composition

Issues with semantic composition

"Of course I care about how you imagined I thought you perceived I wanted you to feel."

Modelling compositional semantics

1. Compositional distributional semantics

O composition is modelled in a vector space
O unsupervised
O general purpose representations
2. Compositional semantics with neural networks

O supervised or self-supervised
O (typically) task-specific representations

Outline

- Compositional semantics
- Compositional distributional semantics
- Compositional semantics with neural networks

Compositional distributional semantics

Can distributional semantics can be extended to account for the meaning of phrases and sentences?

- Given a finite vocabulary, natural languages licence an infinite amount of sentences.
- So it is impossible to learn vector representations for all sentences.
\Rightarrow But we can still use distributional word representations and learn to perform semantic composition in distributional space.

Vector mixture models

Mitchell and Lapata, 2010. Composition in Distributional Models of Semantics Models
\rightarrow Additive
\rightarrow Multiplicative

Simple, but surprisingly effective!

Additive and multiplicative models

		additive		multiplicative			
	dog	cat	old	old + dog	old + cat	old \odot dog	old \odot cat
runs	1	4	0	1	4	0	0
barks	5	0	7	12	7	35	0

- Correlate with human similarity judgments about adjective-noun, noun-noun, verb-noun and noun-verb pairs
- The additive and the multiplicative model are symmetric (commutative): they do not take word order or syntax into account.
- John hit the ball = The ball hit John
- More suitable for modelling content words, would not apply well to function words (e.g. conjunctions, prepositions etc.):
- some dogs, lice and dogs, lice on dogs

Lexical function models

Distinguish between:

- words whose meaning is directly determined by their distributional profile, e.g. nouns
- words that act as functions transforming the distributional profile of other words, e.g., adjectives, adverbs

Lexical function models

Baroni and Zamparelli. (2010). Nouns are vectors, adjectives are matrices: Representing adjective-noun constructions in semantic space. In Proceedings of EMNLP.

Adjectives modelled as lexical functions that are applied to nouns: old dog=old(dog)
\rightarrow Adjectives are parameter matrices ($\mathbf{A}_{\text {old }}, \mathbf{A}_{\text {furry }}$, etc.)
$\rightarrow \quad$ Nouns are vectors (house, dog, etc.)
\rightarrow Composition is a linear transformation: old dog $=\mathbf{A}_{\text {old }} \times$ dog.

OLD	runs	barks			dog		£	OLD (dog)
runs	0.5	0	\times	runs	1	$=$	runs	$\begin{aligned} & (0.5 \times 1)+(0 \times 5) \\ & =0.5 \end{aligned}$
barks	0.3	1		barks	5		barks	$\begin{aligned} & (0.3 \times 1)+(5 \times 1) \\ & =5.3 \end{aligned}$

Learning adjective matrices

For each adjective, learn a parameter matrix that allows to predict adjective-noun phrase vectors.

	X	Y
Training set	house dog car cat toy	old house old dog old car old cat
	\ldots	old toy
Test set	elephant mercedes	old elephant old mercedes

Learning adjective matrices

1. Obtain a distributional vector \mathbf{n}_{j} for each noun n_{j} in the lexicon.
2. Collect adjective noun pairs $\left(a_{i}, n_{j}\right)$ from the corpus.
3. Obtain a distributional vector $\mathbf{p}_{i j}$ of each pair $\left(a_{i}, n_{j}\right)$ from the same corpus using a conventional DSM.
4. The set of tuples $\left\{\left(\mathbf{n}_{j}, \mathbf{p}_{i j}\right)\right\}_{j}$ represents a dataset $\mathcal{D}\left(\boldsymbol{a}_{i}\right)$ for the adjective a_{i}.
5. Learn matrix \mathbf{A}_{i} from $\mathcal{D}\left(a_{i}\right)$ using linear regression.

Minimize the squared error loss:

$$
L\left(\mathbf{A}_{i}\right)=\sum_{j \in \mathcal{D}\left(a_{i}\right)}\left\|\mathbf{p}_{i j}-\mathbf{A}_{i} \mathbf{n}_{j}\right\|^{2}
$$

Outline

- Compositional semantics
- Compositional distributional semantics
- Compositional semantics with neural networks

1. How do we learn a
(task-specific) representation of a sentence with a neural network?
2. How do we make a prediction for a given task from that

We will see the task, dataset and models of Practical 2! representation?

Task

Task: Sentiment classification of movie reviews

0 . very negative

1. negative
2. neutral

You'll probably love it. \rightarrow
3. positive
4. very positive

Task-specific: The learned representation has to be "specialized" on sentiment!

Words (and sentences) into vectors

When we talk about representations

Sentence representation: A (very) simplified picture

cDSMs (sum)

you
will
probably
love
it

you will probably love it

NNs

you
wil
probably
love
it

you wn probably love $_{\text {it }}$

Dataset

Dataset: Stanford Sentiment Treebank (SST)

~12K data-points including:

1. one-sentence review + "global" sentiment score
2. tree structure (syntax)
3. more detailed sentiment scores (node-level)

Binary parse tree: One example

Models

Models

1. Bag of Words (BOW)
2. Continuous Bag of Words (CBOW)
3. Deep Continuous Bag of Words (Deep CBOW)
4. Deep CBOW + pre-trained word embeddings
5. LSTM
6. Tree LSTM
7. one-sentence review + "global" sentiment score
8. tree structure (syntax)
9. node-level sentiment scores

1. Bag of Words (BOW)

What is a Bag of Words?

- Additive model: does not take word order or syntax into account
- Task-specific word representations with fixed dimensionality $(d=5)$
- Dimensions of vector space are explicit, interpretable

Bag of Words

Sum word embeddings, add bias

Bag of Words

```
this [0.0, 0.1, 0.1, 0.1, 0.0]
movie [0.0, 0.1, 0.1, 0.2, 0.1]
is [0.0, 0.1, 0.0, 0.0, 0.0]
stupid [0.9, 0.5, 0.1, 0.0, 0.0]
bias [0.0, 0.0, 0.0, 0.0, 0.0]
sum [0.9, 0.8, 0.3, 0.3, 0.1]
    argmax: 0 (very negative)
```

I hate that I love this movie $=\|$ love that I hate this movie

Turning words into numbers

We want to feed words to a neural network
How to turn words into numbers?

One-hot vectors select word embeddings

2. Continuous Bag of Words (CBOW)

CBOW

- Additive model: does not take word order or syntax into account
- Task-specific word representations of arbitrary dimensionality
- Dimensions of vector space are not interpretable
- Prediction can be traced back to the sentence vector dimensions

Continuous Bag of Words (CBOW)

Sum word embeddings, project to 5D using W, add bias: $W\left(\sum \mathbf{x}_{t}\right)+\mathbf{b}$

Recall: Matrix Multiplication

Rows multiply with columns

1	2	3	\times	1	2	$=$	$1 \times 1+2 \times 1+3 \times 1$	$1 \times 2+2 \times 2+3 \times 2$
4	5	6		1	2		$4 \times 1+5 \times 1+6 \times 1$	$4 \times 2+5 \times 2+6 \times 2$
2×3				1	2		2×2	

What about this?

What about this?

Variable sentence vector size, dependent on sentence length

- Not very sensible conceptually
- sentences in a different vector space than words
- one vector space for each sentence length in the dataset
- Difficult in practice
- what size should the transformation matrix be?
- vector size can grow very large

3. Deep CBOW

Deep CBOW

- Additive model: does not take word order or syntax into account
- Task-specific word representations of arbitrary dimensionality
- Dimensions of vector space are not interpretable
- More layers and non-linear transformations: prediction cannot be easily traced back

Deep CBOW

$$
W^{\prime \prime} \tanh \left(W^{\prime} \tanh \left(W\left(\sum \mathbf{x}_{t}\right)+b\right)+b^{\prime}\right)+b^{\prime \prime}
$$

What about this?

Is more complexity always better?

Question

We can learn more complex features, but the only error signal that we receive comes from sentiment prediction.

How can we further help the model?

4. Deep CBOW + Pretrained embeddings

Deep CBOW with pretrained embeddings

$$
W^{\prime \prime} \tanh \left(W^{\prime} \tanh \left(W\left(\sum \mathbf{x}_{t}\right)+b\right)+b^{\prime}\right)+b^{\prime \prime}
$$

Deep CBOW + pre-trained embeddings

- Additive model: does not take word order or syntax into account
- Dimensions of vector space are not interpretable
- Multiple layers and non-linear transformations: prediction cannot be easily traced back
- Pre-trained general-purpose word representations (e.g., Skip-gram, GloVe)
\Rightarrow keep frozen: not updated during training
\Rightarrow fine-tune: updated with task-specific learning signal (specialised)

Recap: Training a neural network

We train our network with Stochastic Gradient Descent (SGD):

1. Sample a training example
2. Forward pass
a. Compute network activations, output vector
3. Compute loss
a. Compare output vector with true label using a loss function (Cross Entropy)
4. Backward pass (backpropagation)
a. Compute gradient of loss w.r.t. (learnable) parameters (= weights + bias)
5. Take a small step in the opposite direction of the gradient

Cross Entropy Loss

Given:

$$
\begin{aligned}
& \hat{\mathbf{y}}=[0.0589,0.0720,0.0720,0.7177,0.0795] \text { output vector (after softmax) from forward pass } \\
& \mathbf{y}=[00,00,0,01,0] \text { target / label }\left(y_{3}=1\right)
\end{aligned}
$$

When our output is categorical (i.e., a number of classes), we can use a Cross Entropy loss:
$C E(\mathbf{y}, \hat{\mathbf{y}})=-\sum \mathrm{y}_{\mathrm{i}} \log \hat{y}_{i}$

$$
\operatorname{SparseCE}(y=3, \hat{y})=-\log \hat{y}_{y}
$$

torch.nn.CrossEntropyLoss works like this and does the softmax on o for you!

$$
\begin{aligned}
0= & {[-0.1,0.1,0.1,2.4,0.2] } \\
& \operatorname{softmax}\left(o_{i}\right)=\exp \left(o_{i}\right) / \Sigma_{j} \exp \left(o_{j}\right)
\end{aligned}
$$

```
But we do need a softmax
combined to CE to compute
model loss (argmax is NOT
differentiable)
```

This makes o sum to 1.0 :
$\operatorname{softmax}(\mathbf{o})=[0.0589,0.0720,0.0720,0.7177,0.0795]$

Recurrent Neural Networks

Introduction: Recurrent Neural Network (RNN)

- RNNs widely used for handling sequences!
- RNNs ~ multiple copies of same network, each passing a message to a successor
- Take an input vector x and output an output vector h
- Crucially, h influenced by entire history of inputs fed in in the past
- Internal state h gets updated at every time step \rightarrow in the simplest case, this state consists of a single hidden vector h

Introduction: Recurrent Neural Network (RNN)

RNNs model sequential data - one input $\mathbf{x}_{\mathbf{t}}$ per time step t

Example:
the cat
sat
$\mathbf{x}_{\mathbf{1}}$
$\mathbf{x}_{\mathbf{2}}$

Let's compute the RNN state after reading in this sentence.

$$
\begin{aligned}
& \text { Remember: } \\
& \mathbf{h}_{\mathrm{t}}=\mathrm{f}\left(\mathbf{x}_{\mathrm{t}^{\prime}} \mathbf{h}_{\mathrm{t}-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{h}_{1}=f\left(\mathbf{x}_{1}, h_{\theta}\right) \\
& \mathbf{h}_{2}=f\left(\mathbf{x}_{2}, f\left(\mathbf{x}_{1}, h_{\theta}\right)\right) \\
& \mathbf{h}_{3}=f\left(\mathbf{x}_{3}, f\left(\mathbf{x}_{2}, f\left(\mathbf{x}_{1}, h_{0}\right)\right)\right) \\
& \cdots \\
& \mathbf{h}_{6}=f\left(\mathbf{x}_{6}, f\left(\mathbf{x}_{5}, f\left(\mathbf{x}_{4},\right.\right.\right. \\
& \ldots)))
\end{aligned}
$$

$$
\begin{aligned}
& \text { the } \rightarrow h_{1}=f\left(x_{1}, h_{0}\right) \\
& \text { cat } \rightarrow h_{2}=f\left(x_{2}, h_{1}\right) \\
& \text { sat } \rightarrow h_{3}=f\left(x_{3}, h_{2}\right) \\
& \text { ‥ } \\
& \text { mat } \rightarrow h_{6}=f\left(x_{6}, h_{5}\right)
\end{aligned}
$$

Introduction: Recurrent Neural Network (RNN)

The transition function f consists of an affine transformation followed by a non-linear activation

Introduction: Unfolding the RNN

Introduction: Making a prediction

Training:

apply softmax,
compute cross entropy loss, backpropagate

Introduction: The vanishing gradient problem

Simple RNNs are hard to train because of the vanishing gradient problem.
During backpropagation, gradients can quickly become small,
as they repeatedly go through multiplications $(R) \&$ non-linear functions (e.g. sigmoid or tanh)

Introduction: The vanishing gradient problem

\mathbf{R} is shared across every timestep!
Imagine that R contains an entry value $r_{1}=0.5$
The first input gets multiplied by $0.5^{\text {num. unrolls }} \mathrm{N}$

$$
\begin{gathered}
0.5^{5} \sim 0.03 \\
0.5^{10} \sim 9 \mathrm{e}-4 \\
0.5^{15} \sim 3 \mathrm{e}-5 \\
0.5^{20} \sim 9 \mathrm{e}-7
\end{gathered}
$$

What about this?

Similar problem called exploding gradients!

5. Long Short-Term Memory network (LSTM)

Long Short-Term Memory (LSTM)

LSTMs are a special kind of RNN that can deal with long-term dependencies in the data by alleviating the vanishing gradient problem in RNNs
" I lived in France for a while when I was a kid so I can speak fluent..." -> French

1. Maintain a separate memory cell state c_{t} from what is outputted (long term memory)
2. Use gates to control the flow of information:
a. Forget gate gets rid of irrelevant information
b. Input gate to store new relevant information from the current input
c. Selectively update the cell state
d. Output gate returns a filtered version of the cell state
3. Backpropagation through time with partially uninterrupted gradient flow

LSTMs

RNN:

$$
\begin{aligned}
\mathbf{h}_{\mathrm{t}} & =\mathrm{f}\left(\mathbf{x}_{\mathrm{t}^{\prime}} \mathbf{h}_{\mathrm{t}-1}\right) \\
& =\sigma\left(\mathrm{W} \mathbf{x}_{\mathrm{t}}+\mathrm{R} \mathbf{h}_{\mathrm{t}-1}+\mathrm{b}\right)
\end{aligned}
$$

LSTM:

$$
\begin{aligned}
\mathrm{h}_{\mathrm{t}^{\prime}} \mathrm{c}_{\mathrm{t}} & =\mathrm{f}\left(\mathbf{x}_{\mathrm{t}^{\prime}} \mathrm{h}_{\mathrm{t}-1}, \mathrm{c}_{\mathrm{t}-1}\right) \\
& =\operatorname{lstm}\left(\mathbf{x}_{\mathrm{t}^{\prime}}, \mathrm{h}_{\mathrm{t}-1}, \mathrm{c}_{\mathrm{t}-1}\right)
\end{aligned}
$$

LSTM cell

LSTM: Cell state

Runs straight down the entire chain, with only some minor linear interactions. LSTM can remove or add information to the cell state, carefully regulated by structures called gates.

LSTM: Forget gate

Decide what information to throw away from the cell state.

LSTM: Candidate cell

Extracts new candidate values, $\mathbf{g}_{\mathrm{t}^{\prime}}$, from the previous hidden state and the current input that could be added to the cell state.

LSTM: Input gate

Decide what new information to store in the cell state.

LSTM

Update the cell state: 1. forget things we decided to forget earlier, 2. add the new candidate values scaled by how much we decided to update each state value

LSTM: Output gate

1. Decide what parts of the cell state we're going to output, 2 . the cell state is put through tanh and multiplied by the output of the output gate, so that we only output the parts we decided to.

Long Short-Term Memory (LSTM)

hidden state

$$
\begin{array}{ll}
\mathbf{h}_{\mathrm{t}^{\prime}} \mathbf{c}_{\mathrm{t}}=\operatorname{lstm}\left(\mathbf{x}_{\mathrm{t}}, \mathbf{h}_{\mathrm{t}-1}, \mathbf{c}_{\mathrm{t}-1}\right) \\
\text { input gate } & \mathbf{i}_{\mathrm{t}}=\sigma\left(\mathrm{W}_{\mathrm{i}} \mathbf{x}_{\mathrm{t}}+\mathrm{R}_{\mathrm{i}} \mathbf{h}_{\mathrm{t}-1}+\mathbf{b}_{\mathrm{i}}\right) \\
\text { forget gate } & \mathrm{f}_{\mathrm{t}}=\sigma\left(\mathrm{W}_{\mathrm{f}} \mathbf{x}_{\mathrm{t}}+\mathrm{R}_{\mathrm{f}} \mathbf{h}_{\mathrm{t}-1}+\mathbf{b}_{\mathrm{f}}\right) \\
\text { candidate } & \mathrm{g}_{\mathrm{t}}=\tanh \left(\mathrm{W}_{\mathrm{g}} \mathbf{x}_{\mathrm{t}}+\mathrm{R}_{\mathrm{g}} \mathbf{h}_{\mathrm{t}-1}+\mathbf{b}_{\mathrm{g}}\right) \\
\text { output gate } & o_{\mathrm{t}}=\sigma\left(\mathrm{W}_{\mathrm{o}} \mathbf{x}_{\mathrm{t}}+\mathrm{R}_{\mathrm{o}} \mathbf{h}_{\mathrm{t}-1}+\mathbf{b}_{\mathrm{o}}\right) \\
\text { cell state } & \mathbf{c}_{\mathrm{t}}=\mathrm{f}_{\mathrm{t}} \odot \mathbf{c}_{\mathrm{t}-1}+\mathbf{i}_{\mathrm{t}} \odot \mathrm{~g}_{\mathrm{t}} \\
\text { hidden state } & \mathbf{h}_{\mathrm{t}}=o_{\mathrm{t}} \odot \tanh \left(\mathbf{c}_{\mathrm{t}}\right)
\end{array}
$$

LSTMs: Applications \& Success in NLP

- Language modeling (Mikolov et al., 2010; Sundermeyer et al., 2012)
- Parsing (Vinyals et al., 2015; Kiperwasser and Goldberg, 2016; Dyer et al., 2016)
- Machine translation (Bahdanau et al., 2015)
- Image captioning (Bernardi et al., 2016)
- Visual question answering (Antol et al., 2015)
- ... and many other tasks!

6. Tree LSTM

Sentence representations with NNs

- Bag of Words models
\Rightarrow sentence representations are order-independent function of the word representations
- Sequence models
\Rightarrow sentence representations are an order-sensitive function of a sequence of word representations (surface form)
- Tree-structured models
\Rightarrow sentence representations are a function of the word representations, sensitive to the syntactic structure of the sentence

Second approach: Sentence + Sentiment + Syntax

1. one-sentence review + "global" sentiment score
2. tree structure (syntax)
3. node-level sentiment scores

Exploiting tree structure

Instead of treating our input as a sequence, we can take an alternative approach: assume a tree structure and use the principle of compositionality.

The meaning (vector) of a sentence is determined by:

1. the meanings of its words and
2. the rules that combine them

Why would it be useful?

Helpful in disambiguation: similar "surface" / different structure

Constituency Parse

Can we obtain a sentence vector using the tree structure given by a parse?

Tree Recursive NN

Practical II data set: Stanford Sentiment Treebank (SST)

Tree LSTMs: Generalize LSTM to tree structure

Use the idea of LSTM (gates, memory cell) but allow for multiple inputs (node children)

Proposed by 3 groups in the same summer:

- Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks. ACL 2015.
- Child-Sum Tree LSTM
- N-ary Tree LSTM
- \quad Phong Le and Willem Zuidema.

Compositional distributional semantics with long short term memory. *SEM 2015.

- Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo.

Long short-term memory over recursive structures. ICML 2015.

Tree LSTMs

1. Child-Sum Tree LSTM

sums over all children of a node; can be used for any N of children

1. N -ary Tree LSTM
different parameters for each child; better granularity (interactions between children)
but maximum N of children per node has to be fixed

Child-Sum Tree LSTM

Children outputs and memory cells are summed

1. NO children order
2. works with variable number of children (sum!)
3. shares gates weights between children

Child-Sum Tree LSTM

N-ary Tree LSTM

Separate parameter matrices for each child k

1. each node must have at most N (e.g., binary) ordered children
2. fine-grained control on how information propagates
3. forget gate can be parametrized (N matrices, one per k) so that siblings affect each other

N-ary Tree LSTM

N-ary Tree LSTM

$$
\begin{aligned}
i_{j} & =\sigma\left(W^{(i)} x_{j}+\sum_{\ell=1}^{N} U_{\ell}^{(i)} h_{j \ell}+b^{(i)}\right), \\
f_{j k} & =\sigma\left(W^{(f)} x_{j}+\sum_{\ell=1}^{N} U_{k \ell}^{(f)} h_{j \ell}+b^{(f)}\right), \\
o_{j} & =\sigma\left(W^{(o)} x_{j}+\sum_{\ell=1}^{N} U_{\ell}^{(o)} h_{j \ell}+b^{(o)}\right), \\
u_{j} & =\tanh \left(W^{(u)} x_{j}+\sum_{\ell=1}^{N} U_{\ell}^{(u)} h_{j \ell}+b^{(u)}\right), \\
c_{j} & =i_{j} \odot u_{j}+\sum_{\ell=1}^{N} f_{j \ell} \odot c_{j \ell}, \\
h_{j} & =o_{j} \odot \tanh \left(c_{j}\right),
\end{aligned}
$$

LSTMs vs Tree-LSTMs

Standard LSTMs be considered as (a special case of) Tree-LSTMs

Tree-LSTM variants

- Child-Sum Tree-LSTM

\Rightarrow sum over the hidden representations of all children of a node (no children order)

- can be used for a variable number of children
- shares parameters between children
- suitable for dependency trees
- N-ary Tree-LSTM
- discriminates between children node positions (weighted sum)
\Rightarrow fixed maximum branching factor: can be used with N children at most
- different parameters for each child
- suitable for constituency trees

Transition Sequence Representation

Building a tree with a transition sequence

We can describe a binary tree using a shift-reduce transition sequence

```
(I ( loved ( this movie ) ) )
S S S S S R R R
```

We start with a buffer (queue) and an empty stack:

```
stack = []
buffer = queue([I, loved, this, movie])
```

Iterate through the transition sequence:
if SHIFT (S): take first word (leftmost) of the buffer, push it to the stack
if REDUCE (R): pop top 2 words from stack + reduce them into a new node (w/ tree LSTM)

Transition sequence example

stack
buffer \square
loved
this

Transition sequence example

| (I (loved (this movie))) | |
| :---: | :--- | :--- | :--- |
| S S | S S R R R |

 I
 stack

Transition sequence example

| (I (loved (this movie))) | |
| :---: | :--- | :--- | :--- |
| S S | S S R R R |

stack

Transition sequence example

```
(I ( loved ( this movie ) ) )
    S S S S R R R
```


stack

Transition sequence example

stack

buffer

Transition sequence example

this movie
loved
I

buffer

Transition sequence example

stack
buffer

Transition sequence example

this is your root node
for classification
for classification

I loved this movie
stack

buffer

Mini-batch SGD

Transition sequence example (mini-batched)

stack

Transition sequence example (mini-batched)

```
(I ( loved ( this movie ) ) )
    S S S S R R R S S S S RRR
```

this	boring
loved	was
l	It
stack	
	buffer
	PAD

stack

Transition sequence example (mini-batched)

```
(I ( loved ( this movie ) ) )
S S S S R R R
```

movie	
this	
loved	was boring
I	It

stack

(It (was boring))
S S S
R R

Transition sequence example (mini-batched)

(I (loved (this movie)))
S S S S R R R

| (It (was boring)) | | |
| :---: | :--- | :--- | :--- |
| S | S S | R R |

stack

Transition sequence example (mini-batched)

```
(I ( loved ( this movie ) ) )
S S S S R R R
```

```
(It ( was boring ) )
    S S S
    R R
```

loved this movie
I
It was boring
stack

Transition sequence example (mini-batched)

```
(I ( loved ( this movie ) ) )
S S S S R R R
```

(It (was boring))
S S S R R

I loved this movie
It was boring
stack

Optional approach: Sentence + Sentiment + Syntax + Node-level sentiment

1. one-sentence review + "global" sentiment score
2. tree structure (syntax)
3. node-level sentiment scores

Summary

Recap

- Bag of Words models: BOW, CBOW, Deep CBOW
- Can encode a sentence of arbitrary length, but loses word order
- Sequence models: RNN and LSTM
- Sensitive to word order
- RNN has vanishing gradient problem, LSTM deals with this
- LSTM has input, forget, and output gates that control information flow
- Tree-based models: Child-Sum \& N -ary Tree LSTM
- Generalize LSTM to tree structures
- Exploit compositionality, but require a parse tree

Extra

Input

In a TreeLSTM over a constituency tree (ours!), the leaf nodes take the corresponding word vectors as input

Recap: Activation functions

Introduction: Intuition to solving the vanishing gradient

Let's use an extra vector, cell state c

Child-Sum Tree LSTM

$$
\begin{aligned}
\tilde{h}_{j} & =\sum_{k \in C(j)} h_{k}, \\
i_{j} & =\sigma\left(W^{(i)} x_{j}+U^{(i)} \tilde{h}_{j}+b^{(i)}\right), \\
f_{j k} & =\sigma\left(W^{(f)} x_{j}+U^{(f)} h_{k}+b^{(f)}\right), \\
o_{j} & =\sigma\left(W^{(o)} x_{j}+U^{(o)} \tilde{h}_{j}+b^{(o)}\right), \\
u_{j} & =\tanh \left(W^{(u)} x_{j}+U^{(u)} \tilde{h}_{j}+b^{(u)}\right) \\
c_{j} & =i_{j} \odot u_{j}+\sum_{k \in C(j)} f_{j k} \odot c_{k}, \\
h_{j} & =o_{j} \odot \tanh \left(c_{j}\right),
\end{aligned}
$$

A naive recursive NN

Combine every two children (left and right) into a parent node \mathbf{p} :

$$
\mathbf{p}=\tanh \left(\mathrm{W}_{\text {left }} \mathbf{x}_{\text {left }}+\mathrm{W}_{\text {right }} \mathbf{x}_{\text {right }}+\mathbf{b}\right)
$$

a bit simplistic and does not work well for

SGD vs GD

SGD:

```
```

for epoch in 1..E

```
```

for epoch in 1..E
for each training example
for each training example
compute loss (forward pass)
compute loss (forward pass)
compute gradient of loss (backward)
compute gradient of loss (backward)
update parameters
update parameters
end for
end for
end for

```
```

end for

```
```


Gradient Descent (GD):

```
for epoch in 1..E
    for each training example
        compute loss (forward pass)
        compute gradient of loss (backward)
        accumulate gradient
    end for
    update parameters
end for
```

```
- slow, but more stable (not overly
```

- slow, but more stable (not overly
influenced by most recent training
influenced by most recent training
example)
example)
can get stuck in local optimum

```
can get stuck in local optimum
```

