Natural Language Processing 1 Lecture 4: Lexical and distributional semantics

Katia Shutova

ILLC University of Amsterdam

< 日 > < 同 > < 回 > < 回 > < □ > <

1/66

Natural Language Processing 1

Dependency parsing (finishing off)

Outline.

Dependency parsing (finishing off)

Introduction to lexical semantics

Distributional semantics

Dependency structure

A dependency structure consists of dependency relations, which are binary and asymmetric.

John hit the ball

A relation consists of

- a head (H) hit
- a dependent (D) John
- a label identifying the relation between H and D Subject

Dependency structure

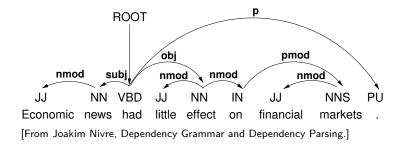
A dependency structure consists of dependency relations, which are binary and asymmetric.

John hit the ball

A relation consists of

- a head (H) hit
- a dependent (D) ball
- a label identifying the relation between H and D Object

Example dependency structure



Dependency parsing

Output a list of dependencies between words in the sentence.

John hit the ball.

(SUBJ head=hit dep=John) (OBJ head=hit dep=ball) (DET head=ball dep=the)

Why is it useful?

 dependencies provide an interface to semantics "Who did what to whom"

The cost of parsing errors...

Incorrect dependencies

- (SUBJ head=hit dep=ball)
- (OBJ head=hit dep=John)
- (DET head=ball dep=the)

Natural Language Processing 1

Introduction to lexical semantics

Outline.

Dependency parsing (finishing off)

Introduction to lexical semantics

Distributional semantics

Semantics

Compositional semantics:

- studies how meanings of phrases are constructed out of the meaning of individual words
- principle of compositionality: meaning of each whole phrase derivable from meaning of its parts
- sentence structure conveys some meaning: obtained by syntactic representation

Lexical semantics:

 studies how the meanings of individual words can be represented and induced

What is lexical meaning?

- recent results in psychology and cognitive neuroscience give us some clues
- but we don't have the whole picture yet
- different representations proposed, e.g.
 - formal semantic representations based on logic,
 - or taxonomies relating words to each other,
 - or distributional representations in statistical NLP
- but none of the representations gives us a complete account of lexical meaning

How to approach lexical meaning?

- Formal semantics: set-theoretic approach e.g., cat': the set of all cats; bird': the set of all birds.
- meaning postulates, e.g.

 $\forall x [bachelor'(x) \rightarrow man'(x) \land unmarried'(x)]$

- Limitations, e.g. is the Pope a bachelor?
- Defining concepts through enumeration of all of their features in practice is highly problematic
- ► How would you define e.g. *chair, tomato, thought, democracy*? impossible for most concepts
- Prototype theory offers an alternative to set-theoretic approaches

How to approach lexical meaning?

- Formal semantics: set-theoretic approach e.g., cat': the set of all cats; bird': the set of all birds.
- meaning postulates, e.g.

 $\forall x [bachelor'(x) \rightarrow man'(x) \land unmarried'(x)]$

- Limitations, e.g. is the Pope a bachelor?
- Defining concepts through enumeration of all of their features in practice is highly problematic
- How would you define e.g. chair, tomato, thought, democracy? – impossible for most concepts
- Prototype theory offers an alternative to set-theoretic approaches

Prototype theory

- introduced the notion of graded semantic categories
- no clear boundaries
- no requirement that a property or set of properties be shared by all members
- certain members of a category are more central or prototypical (i.e. instantiate the prototype)

furniture: chair is more prototypical than stool

Eleanor Rosch 1975. *Cognitive Representation of Semantic Categories* (J Experimental Psychology)

Prototype theory (continued)

- Categories form around prototypes; new members added on basis of resemblance to prototype
- Features/attributes generally graded
- Category membership a matter of degree
- Categories do not have clear boundaries

Semantic relations

Hyponymy: IS-A

dog is a hyponym of *animal animal* is a hypernym of *dog*

- hyponymy relationships form a taxonomy
- works best for concrete nouns

Other semantic relations

Meronomy: PART-OF e.g., *arm* is a meronym of *body*, *steering wheel* is a meronym of *car*

Synonymy e.g., aubergine/eggplant.

Antonymy e.g., big/little

Also:

Near-synonymy/similarity e.g., exciting/thrilling e.g., slim/slender/thin/skinny

WordNet

- large scale, open source resource for English
- hand-constructed
- wordnets being built for other languages
- organized into synsets: synonym sets (near-synonyms)
- synsets connected by semantic relations
- S: (v) interpret, construe, see (make sense of; assign a meaning to) - "How do you interpret his behavior?"
- S: (v) understand, read, interpret, translate (make sense of a language) "She understands French"; "Can you read Greek?"

Polysemy and word senses

The children **ran** to the store If you see this man, **run**! Service **runs** all the way to Cranbury She is **running** a relief operation in Sudan the story or argument **runs** as follows Does this old car still **run** well? Interest rates **run** from 5 to 10 percent Who's **running** for treasurer this year? They **ran** the tapes over and over again These dresses **run** small

Polysemy

- homonymy: unrelated word senses. bank (raised land) vs bank (financial institution)
- bank (financial institution) vs bank (in a casino): related but distinct senses.
- regular polysemy and sense extension
 - metaphorical senses, e.g. *swallow* [food], *swallow* [information], *swallow* [anger]
 - metonymy, e.g. he played Bach; he drank his glass.
 - zero-derivation, e.g. tango (N) vs tango (V)
- vagueness: nurse, lecturer, driver
- cultural stereotypes: nurse, lecturer, driver

No clearcut distinctions.

Word sense disambiguation

- Needed for many applications
- relies on context, e.g. striped bass (the fish) vs bass guitar.

Methods:

- supervised learning:
 - Assume a predefined set of word senses, e.g. WordNet
 - Need a large sense-tagged training corpus (difficult to construct)
- semi-supervised learning
 - bootstrap from a few examples
- unsupervised sense induction
 - e.g. cluster contexts in which a word occurs

Natural Language Processing 1

Distributional semantics

Outline.

Dependency parsing (finishing off)

Introduction to lexical semantics

Distributional semantics

Distributional hypothesis

You shall know a word by the company it keeps (Firth) The meaning of a word is defined by the way it is used (Wittgenstein).

Distributional hypothesis

You shall know a word by the company it keeps (Firth) The meaning of a word is defined by the way it is used (Wittgenstein).

Distributional hypothesis

You shall know a word by the company it keeps (Firth) The meaning of a word is defined by the way it is used (Wittgenstein).

Distributional hypothesis

You shall know a word by the company it keeps (Firth) The meaning of a word is defined by the way it is used (Wittgenstein).

Distributional hypothesis

You shall know a word by the company it keeps (Firth) The meaning of a word is defined by the way it is used (Wittgenstein).

Natural Language Processing 1

Distributional semantics

Scrumpy

Distributional hypothesis

This leads to the distributional hypothesis about word meaning:

- the context surrounding a given word provides information about its meaning;
- words are similar if they share similar linguistic contexts;
- semantic similarity \approx distributional similarity.

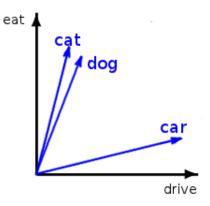
The general intuition

- Distributions are vectors in a multidimensional semantic space.
- The semantic space has dimensions which correspond to possible contexts features.
- For our purposes, a distribution can be seen as a point in that space (the vector being defined with respect to the origin of that space).
- scrumpy [...pub 0.8, drink 0.7, strong 0.4, joke 0.2, mansion 0.02, zebra 0.1...]

Natural Language Processing 1

Distributional semantics

Vectors



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Feature matrix

	feature1	feature ₂	 feature _n
word ₁	<i>f</i> _{1,1}	<i>f</i> _{2,1}	<i>f</i> _{<i>n</i>,1}
$word_2$	f _{1,2}	f _{2,2}	f _{n,2}
 word _m	f _{1,m}	f _{2,m}	f _{n,m}

The notion of context

1 Word windows (unfiltered): *n* words on either side of the lexical item.

Example: n=2 (5 words window):

| The prime **minister** acknowledged the | question.

minister [the 2, prime 1, acknowledged 1, question 0]

Context

Word windows (filtered): n words on either side removing some words (e.g. function words, some very frequent content words). Stop-list or by POS-tag.
 Example: n=2 (5 words window), stop-list:

| The prime **minister** acknowledged the | question.

minister [prime 1, acknowledged 1, question 0]

Context

3 Lexeme window (filtered or unfiltered); as above but using stems.

Example: n=2 (5 words window), stop-list:

| The prime **minister** acknowledged the | question.

minister [prime 1, acknowledge 1, question 0]

Context

4 Dependencies (directed links between heads and dependents). Context for a lexical item is the dependency structure it belongs to (various definitions).
 Example:

The prime **minister** acknowledged the question.

minister [prime_a 1, acknowledge_v 1]

minister [prime_a_mod 1, acknowledge_v_subj 1]

minister [prime_a 1, acknowledge_v+question_n 1]

Parsed vs unparsed data: examples

word (unparsed)

meaning_n derive_v dictionary_n pronounce_v phrase_n latin_j ipa_n verb_n mean_v hebrew_n usage_n literally_r

word (parsed)

or_c+phrase_n and_c+phrase_n syllable_n+of_p play_n+on_p etymology_n+of_p portmanteau_n+of_p and_c+deed_n meaning_n+of_p from_p+language_n pron_rel_+utter_v for_p+word_n in_p+sentence_n

Context weighting

Binary model: if context c co-occurs with word w, value of vector w for dimension c is 1, 0 otherwise.

... [a long long long **example** for a distributional semantics] model... (n=4)

... {a 1} {dog 0} {long 1} {sell 0} {semantics 1}...

Basic frequency model: the value of vector w for dimension c is the number of times that c co-occurs with w.

... [a long long long **example** for a distributional semantics] model... (n=4)

... {a 2} {dog 0} {long 3} {sell 0} {semantics 1}...

Characteristic model

- Weights given to the vector components express how characteristic a given context is for word w.
- Pointwise Mutual Information (PMI)

$$PMI(w,c) = \log \frac{P(w,c)}{P(w)P(c)} = \log \frac{P(w)P(c|w)}{P(w)P(c)} = \log \frac{P(c|w)}{P(c)}$$
$$P(c) = \frac{f(c)}{\sum_{k} f(c_{k})}, \quad P(c|w) = \frac{f(w,c)}{f(w)},$$
$$PMI(w,c) = \log \frac{f(w,c)\sum_{k} f(c_{k})}{f(w)f(c)}$$

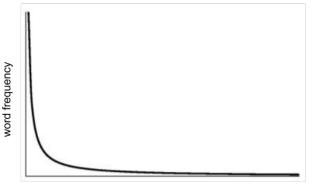
f(w, c): frequency of word w in context cf(w): frequency of word w in all contexts f(c): frequency of context c

・ロト ・ 同ト ・ ヨト ・ ヨト

What semantic space?

- Entire vocabulary.
 - + All information included even rare contexts
 - Inefficient (100,000s dimensions). Noisy (e.g. 002.png/thumb/right/200px/graph_n). Sparse
- ► Top *n* words with highest frequencies.
 - + More efficient (2000-10000 dimensions). Only 'real' words included.
 - Any miss out on infrequent but relevant contexts.

Word frequency: Zipfian distribution



number of words

What semantic space?

- Entire vocabulary.
 - + All information included even rare contexts
 - Inefficient (100,000s dimensions). Noisy (e.g. 002.png/thumb/right/200px/graph_n). Sparse.
- ► Top *n* words with highest frequencies.
 - + More efficient (2000-10000 dimensions). Only 'real' words included.
 - Any miss out on infrequent but relevant contexts.

What semantic space?

- Singular Value Decomposition (SVD): the number of dimensions is reduced by exploiting redundancies in the data.
 - + Very efficient (200-500 dimensions). Captures generalisations in the data.
 - SVD matrices are not interpretable.
- Non-negative matrix factorization (NMF)
 - Similar to SVD in spirit, but performs factorization differently

Our reference text

Douglas Adams, Mostly harmless

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

 Example: Produce distributions using a word window, PMI-based model

The semantic space

Douglas Adams, Mostly harmless

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

- Assume only keep open-class words.
- Dimensions:

difference	impossible	thing	
get	major	turns	
go	possibly	usually	
goes	repair	wrong	

Frequency counts...

Douglas Adams, Mostly harmless

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

Counts:

difference
get 1
go 3
goes 1

1

impossible 1 major 1 possibly 2 repair 1 thing 3 turns 1 usually 1 wrong 4

Conversion into 5-word windows...

Douglas Adams, Mostly harmless

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

- ▶ Ø Ø **the** major difference
- ▶ Ø the major difference between
- the major difference between a
- major difference between a thing

Distribution for wrong

Douglas Adams, Mostly harmless

The major difference between a thing that [might go wrong and a] thing that cannot [possibly go wrong is that] when a thing that cannot [possibly go [wrong goes wrong] it usually] turns out to be impossible to get at or repair.

Distribution (frequencies):

difference 0	
get 0	
go 3	
goes 2	

impossible 0 major 0 possibly 2 repair 0 thing 0 turns 0 usually 1 wrong 2

Distribution for wrong

Douglas Adams, Mostly harmless

The major difference between a thing that [might go wrong and a] thing that cannot [possibly go wrong is that] when a thing that cannot [possibly go [wrong goes wrong] it usually] turns out to be impossible to get at or repair.

Distribution (PPMIs):

difference 0 get 0 go 0.70 goes 1 impossible 0 major 0 possibly 0.70 repair 0 thing 0 turns 0 usually 0.70 wrong 0.40

Experimental corpus

- Dump of entire English Wikipedia, parsed with the English Resource Grammar producing dependencies.
- Dependency contexts include:
 - For nouns: verbs (+ any other argument of the verb), modifying adjectives, prepositions (+ any other argument of the preposition).

cat: chase_v+mouse_n, black_a, of_p+neighbour_n

- For verbs: arguments (NPs and PPs), adverbial modifiers. eat: cat_n+mouse_n, in_p+kitchen_n, fast_a
- For adjectives: modified nouns; prepositions (+ any other argument of the preposition) angry: cat_n, at_p+dog_n

System description

- Semantic space: top 100,000 contexts.
- Weighting: pointwise mutual information (PMI).

An example noun

Ianguage:

0.54::other+than p+English n 0.53::English n+as p 0.52::English n+be v 0.49::english a 0.48::and c+literature n 0.48::people n+speak v 0.47::French n+be v 0.46::Spanish n+be v 0.46::and c+dialects n 0.45::grammar n+of p 0.45::foreign a 0.45::germanic a 0.44::German n+be v

0.44::of p+instruction n 0.44::speaker n+of p 0.42::pron rel +speak v 0.42::colon v+English n 0.42::be v+English n 0.42::language n+be v 0.42::and c+culture n 0.41::arabic a 0.41::dialects n+of p 0.40::percent_n+speak_v 0.39::spanish a 0.39::welsh a 0.39::tonal a

< 日 > < 同 > < 回 > < 回 > < □ > <

An example adjective

- academic:
- 0.52::Decathlon n 0.51::excellence n 0.45::dishonesty n 0.45::rigor n 0.43::achievement n 0.42::discipline n 0.40::vice president n+for p 0.39::institution n 0.39::credentials n 0.38::journal n 0.37::journal n+be_v 0.37::vocational a 0.37::student n+achieve v 0.36::athletic a

0.36::reputation n+for p 0.35::regalia n 0.35::program n 0.35::freedom n 0.35::student n+with p 0.35::curriculum n 0.34::standard n 0.34::at p+institution n 0.34::career n 0.34::Career n 0.33::dress n 0.33::scholarship n 0.33::prepare v+student n 0.33::qualification n

3

Data sparsity

Distribution for *unicycle*, as obtained from Wikipedia.

0.45::motorized_a 0.40::pron_rel_+ride_v 0.24::for_p+entertainment_n 0.24::half_n+be_v 0.24::unwieldy_a 0.23::earn_v+point_n 0.22::pron_rel_+crash_v 0.19::man_n+on_p 0.19::on_p+stage_n 0.19::position_n+on_p 0.17::slip_v 0.16::and_c+1_n 0.16::autonomous_a 0.16::balance_v 0.13::tall_a 0.12::fast_a 0.11::red_a 0.07::come_v 0.06::high a

Polysemy

Distribution for *pot*, as obtained from Wikipedia.

0.57::melt_v 0.44::pron_rel_+smoke_v 0.43::of_p+gold_n 0.41::porous_a 0.40::of_p+tea_n 0.39::player_n+win_v 0.39::money_n+in_p 0.38::of_p+coffee_n 0.33::mount_n+in_p 0.33::ceramic_a 0.33::hot_a 0.32::boil_v 0.31::bowl_n+and_c 0.31::ingredient_n+in_p 0.30::plant_n+in_p 0.30::simmer_v 0.29::pot_n+and_c 0.28::bottom_n+of_p 0.28::of_p+flower_n 0.28::of_p+water_n 0.28::food_n+in_p

- Some researchers incorporate word sense disambiguation techniques.
- But most assume a single space for each word: can perhaps think of subspaces corresponding to senses.
- Graded rather than absolute notion of polysemy.

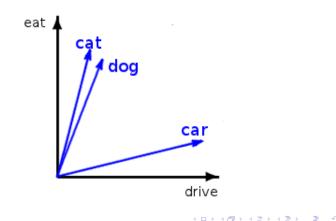
Idiomatic expressions

Distribution for *time*, as obtained from Wikipedia.

0.46::of_p+death_n 0.45::same_a 0.45::1_n+at_p(temp) 0.45::Nick_n+of_p 0.42::spare_a 0.42::playoffs_n+for_p 0.42::of_p+retirement_n 0.41::of_p+release_n 0.40::pron_rel_+spend_v 0.39::sand_n+of_p 0.39::pron_rel_+waste_v 0.38::place_n+around_p 0.38::of_p+arrival_n 0.38::of_p+completion_n 0.37::after_p+time_n 0.37::of_p+arrest_n 0.37::country_n+at_p 0.37::space_n+and_c 0.37::space_n+and_c 0.37::in_p+career_n 0.37::world_n+at_p

Calculating similarity in a distributional space

Distributions are vectors, so distance can be calculated.



Measuring similarity

Cosine:

$$\cos(\theta) = \frac{\sum v \mathbf{1}_k * v \mathbf{2}_k}{\sqrt{\sum v \mathbf{1}_k^2} * \sqrt{\sum v \mathbf{2}_k^2}}$$
(1)

- The cosine measure calculates the angle between two vectors and is therefore length-independent. This is important, as frequent words have longer vectors than less frequent ones.
- Other measures include Euclidean distance etc.

The scale of similarity: some examples

house – building 0.43 gem – jewel 0.31 capitalism – communism 0.29 motorcycle - bike 0.29 test – exam 0.27 school – student 0.25 singer - academic 0.17 horse – farm 0.13 man -accident 0.09 tree – auction 0.02 cat –county 0.007

Words most similar to cat

as chosen from the 5000 most frequent nouns in Wikipedia.

1 cat	0.29 human	0.25 woman	0.22 monster	
0.45 dog	0.29 goat	0.25 fish	0.22 people	
•	0		• •	
0.36 animal	0.28 snake	0.24 squirrel	0.22 tiger	
0.34 rat	0.28 bear	0.24 dragon	0.22 mammal	
0.33 rabbit	0.28 man	0.24 frog	0.21 bat	
0.33 pig	0.28 cow	0.23 baby	0.21 duck	
0.31 monkey	0.26 fox	0.23 child	0.21 cattle	
0.31 bird	0.26 girl	0.23 lion	0.21 dinosaur	
0.30 horse	0.26 sheep	0.23 person	0.21 character	
0.29 mouse	0.26 boy	0.23 pet	0.21 kid	
0.29 wolf	0.26 elephant	0.23 lizard	0.21 turtle	
0.29 creature	0.25 deer	0.23 chicken	0.20 robot	
< □ > < 四 > < 速 > < 速 > < 速 > < 速				

But what is similarity?

- In distributional semantics, very broad notion: synonyms, near-synonyms, hyponyms, taxonomical siblings, antonyms, etc.
- Correlates with a psychological reality.
- Test via correlation with human judgments on a test set:

56/66

- Miller & Charles (1991)
- WordSim
- MEN
- SimLex

Miller & Charles 1991

- 3.92 automobile-car
 3.84 journey-voyage
 3.84 gem-jewel
 3.76 boy-lad
 3.7 coast-shore
 3.61 asylum-madhouse
 3.5 magician-wizard
 3.42 midday-noon
 3.11 furnace-stove
 3.08 food-fruit
- 3.05 bird-cock
- 2.97 bird-crane
- 2.95 implement-tool
- 2.82 brother-monk
- 1.68 crane-implement
- 1.66 brother-lad
- 1.16 car-journey
- 1.1 monk-oracle
- 0.89 food-rooster
- 0.87 coast-hill

- 0.84 forest-graveyard
- 0.55 monk-slave
- 0.42 lad-wizard
- 0.42 coast-forest
- 0.13 cord-smile
- 0.11 glass-magician
- 0.08 rooster-voyage
- 0.08 noon-string

Distributional systems, reported correlations 0.8 or more.

TOEFL synonym test

Test of English as a Foreign Language: task is to find the best match to a word:

Prompt: levied

Choices: (a) imposed

- (b) believed
- (c) requested
- (d) correlated

Solution: (a) imposed

- Non-native English speakers applying to college in US reported to average 65%
- Best corpus-based results are 100%

Distributional methods are a usage representation

- Distributions are a good conceptual representation if you believe that 'the meaning of a word is given by its usage'.
- Corpus-dependent, culture-dependent, register-dependent.
 Example: similarity between *policeman* and *cop*: 0.23

Distribution for policeman

policeman

0.59::ball n+poss rel 0.48::and c+civilian n 0.42::soldier n+and c 0.41::and c+soldier n 0.38::secret a 0.37::people n+include v 0.37::corrupt a 0.36::uniformed a 0.35::uniform_n+poss_rel 0.35::civilian n+and c 0.31::iragi a 0.31::lot n+poss rel 0.31::chechen a 0.30::laugh v 0.29::and c+criminal n

0.28::incompetent a 0.28::pron rel +shoot v 0.28::hat n+poss rel 0.28::terrorist n+and c 0.27::and c+crowd n 0.27::military_a 0.27::helmet_n+poss_rel 0.27::father n+be v 0.26::on p+duty n 0.25::salary n+poss rel 0.25::on p+horseback n 0.25::armed a 0.24::and c+nurse n 0.24::job n+as p 0.24::open v+fire n

Distribution for *cop*

сор

0.45::crooked a 0.45::corrupt a 0.44::maniac a 0.38::dirty a 0.37::honest a 0.36::uniformed a 0.35::tough a 0.33::pron_rel_+call_v 0.32::funky a 0.32::bad a 0.29::veteran a 0.29::and c+robot n 0.28::and c+criminal n 0.28::bogus a 0.28::talk v+to p+pron rel 0.27::investigate v+murder n 0.26::on p+force n 0.25::parody_n+of_p 0.25::Mason n+and c 0.25::pron rel +kill v 0.25::racist a 0.24::addicted a 0.23::gritty a 0.23::and c+interference n 0.23::arrive v 0.23::and c+detective n 0.22::look v+way n 0.22::dead a 0.22::pron rel +stab v 0.21::pron rel +evade v

The similarity of synonyms

- Similarity between *egglant/aubergine*: 0.11 Relatively low cosine. Partly due to frequency (222 for *eggplant*, 56 for *aubergine*).
- Similarity between policeman/cop: 0.23
- Similarity between city/town: 0.73

In general, true synonymy does not correspond to higher similarity scores than near-synonymy.

Similarity of antonyms

Similarities between:

- cold/hot 0.29
- dead/alive 0.24
- Iarge/small 0.68
- colonel/general 0.33

63/66

Identifying antonyms

- Antonyms have high distributional similarity: hard to distinguish from near-synonyms purely by distributions.
- Identification by heuristics applied to pairs of highly similar distributions.
- For instance, antonyms are frequently coordinated while synonyms are not:
 - a selection of cold and hot drinks
 - wanted dead or alive

Distributions and knowledge

What kind of information do distributions encode?

- lexical knowledge
- world knowledge
- boundary between the two is blurry
- no perceptual knowledge

Distributions are partial lexical semantic representations, but useful and theoretically interesting.

Acknowledgement

Some slides were adapted from Ann Copestake

・ロ・・(型・・ヨ・・ヨ・・ロ・・ロ・・(ロ・・ロ・・)
・のへの・
66/66