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Recent advances in NLP

Large language models

Paradigm shift:

I instead of training
task-specific models

I train a general-purpose
neural network sentence
encoder

I which can be applied across
diverse NLP tasks.

A general-purpose sentence encoder

Input Text

Reusable Encoder

Task Model

Task Output

Representation 
for Each Sentence
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Why is this useful?

1. Improve performance
I produce rich semantic representations for downstream

NLP tasks

2. Improve data efficiency
I provide a model of sentence representation for language

understanding tasks which lack training data
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What can we expect this model to capture?

I Lexical semantics and meaning disambiguation in context
I Word order
I Some syntactic structure
I Semantic composition
I Idiomatic/non-compositional phrase meanings
I Connotation and social meaning.
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ELMo: Embeddings from Language Models
Peters et al. 2018. Deep contextualized word representations

I Pretrain a biLSTM
model in the language
modelling task

I Model context in both
directions, produce
contextualised word
representations

I Use them as input to a
task-specific model.

Deep Contextualized Word Representations
● There is no reason for not 

using a deep neural net 
architecture and take many 
layers to create the (deep) 
contextualized word 
representation.

Image credit: Victor Zuanazzi
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The ELMo model

Pretraining:

I The encoder is a 2 layer BiLSTM

I The model is trained with the language modelling objective

I jointly maximize log likelihood of the forward and backward
directions.

Application:

I ELMo word representations: weighted sum of hidden
representations at all layers

I Weights are learned in a given task.
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The contributions of ELMo

I Contextualised word representations provide a level of
disambiguation

I Deep representations allow to capture linguistic information at
various levels (syntax – lower layers; semantics – higher layers)

I (Large) performance improvements in many NLP tasks

I Paradigm shift towards sentence encoder pretraining

I Started the rich history of naming LMs based on Sesame Street
characters.
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The rise of the Transformer

Devlin et al. 2019. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

I Transformer architecture

I Bidirectional context representation

I Two pretraining tasks: masked
language modelling (MLM) and next
sentence prediction (NSP)

I Pretrain the encoder and then
fine-tune it for a specific task.
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Figure 3: Differences in pre-training model architectures. BERT uses a bidirectional Transformer. OpenAI GPT
uses a left-to-right Transformer. ELMo uses the concatenation of independently trained left-to-right and right-to-
left LSTMs to generate features for downstream tasks. Among the three, only BERT representations are jointly
conditioned on both left and right context in all layers. In addition to the architecture differences, BERT and
OpenAI GPT are fine-tuning approaches, while ELMo is a feature-based approach.

to converge. In Section C.1 we demonstrate that
MLM does converge marginally slower than a left-
to-right model (which predicts every token), but
the empirical improvements of the MLM model
far outweigh the increased training cost.

Next Sentence Prediction The next sentence
prediction task can be illustrated in the following
examples.

Input = [CLS] the man went to [MASK] store [SEP]

he bought a gallon [MASK] milk [SEP]

Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP]

penguin [MASK] are flight ##less birds [SEP]

Label = NotNext

A.2 Pre-training Procedure

To generate each training input sequence, we sam-
ple two spans of text from the corpus, which we
refer to as “sentences” even though they are typ-
ically much longer than single sentences (but can
be shorter also). The first sentence receives the A
embedding and the second receives the B embed-
ding. 50% of the time B is the actual next sentence
that follows A and 50% of the time it is a random
sentence, which is done for the “next sentence pre-
diction” task. They are sampled such that the com-
bined length is  512 tokens. The LM masking is
applied after WordPiece tokenization with a uni-
form masking rate of 15%, and no special consid-
eration given to partial word pieces.

We train with batch size of 256 sequences (256
sequences * 512 tokens = 128,000 tokens/batch)
for 1,000,000 steps, which is approximately 40

epochs over the 3.3 billion word corpus. We
use Adam with learning rate of 1e-4, �1 = 0.9,
�2 = 0.999, L2 weight decay of 0.01, learning
rate warmup over the first 10,000 steps, and linear
decay of the learning rate. We use a dropout prob-
ability of 0.1 on all layers. We use a gelu acti-
vation (Hendrycks and Gimpel, 2016) rather than
the standard relu, following OpenAI GPT. The
training loss is the sum of the mean masked LM
likelihood and the mean next sentence prediction
likelihood.

Training of BERTBASE was performed on 4
Cloud TPUs in Pod configuration (16 TPU chips
total).13 Training of BERTLARGE was performed
on 16 Cloud TPUs (64 TPU chips total). Each pre-
training took 4 days to complete.

Longer sequences are disproportionately expen-
sive because attention is quadratic to the sequence
length. To speed up pretraing in our experiments,
we pre-train the model with sequence length of
128 for 90% of the steps. Then, we train the rest
10% of the steps of sequence of 512 to learn the
positional embeddings.

A.3 Fine-tuning Procedure

For fine-tuning, most model hyperparameters are
the same as in pre-training, with the exception of
the batch size, learning rate, and number of train-
ing epochs. The dropout probability was always
kept at 0.1. The optimal hyperparameter values
are task-specific, but we found the following range
of possible values to work well across all tasks:

• Batch size: 16, 32

13https://cloudplatform.googleblog.com/2018/06/Cloud-
TPU-now-offers-preemptible-pricing-and-global-
availability.html
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BERT: Architecture

I Stacked Transformer blocks
(multi-head attention followed by
feed-forward neural network)

I BASE model: 12 Transformer layers,
8 attention heads (110M params)

I LARGE model: 24 Transformer
layers, 12 attention heads (340M
parameters)

BERT - Architecture

► Transformers - Encoder blocks only

► No weight sharing

► REMEMBER – attention mechanism!

► NOTE – residual connections
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BERT: Input representations

I Introduce special [CLS] and [SEP] tokens

I The [CLS] token represents the whole input sequence

I The [SEP] token indicates a boundary between two segments

I Input representations are a sum of token embeddings +
position embeddings + segment embeddings.

[CLS] he likes play ##ing [SEP]my dog is cute [SEP]Input

E[CLS] Ehe Elikes Eplay E##ing E[SEP]Emy Edog Eis Ecute E[SEP]
Token
Embeddings

EA EB EB EB EB EBEA EA EA EA EA
Segment
Embeddings

E0 E6 E7 E8 E9 E10E1 E2 E3 E4 E5
Position
Embeddings

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.

The NSP task is closely related to representation-
learning objectives used in Jernite et al. (2017) and
Logeswaran and Lee (2018). However, in prior
work, only sentence embeddings are transferred to
down-stream tasks, where BERT transfers all pa-
rameters to initialize end-task model parameters.

Pre-training data The pre-training procedure
largely follows the existing literature on language
model pre-training. For the pre-training corpus we
use the BooksCorpus (800M words) (Zhu et al.,
2015) and English Wikipedia (2,500M words).
For Wikipedia we extract only the text passages
and ignore lists, tables, and headers. It is criti-
cal to use a document-level corpus rather than a
shuffled sentence-level corpus such as the Billion
Word Benchmark (Chelba et al., 2013) in order to
extract long contiguous sequences.

3.2 Fine-tuning BERT

Fine-tuning is straightforward since the self-
attention mechanism in the Transformer al-
lows BERT to model many downstream tasks—
whether they involve single text or text pairs—by
swapping out the appropriate inputs and outputs.
For applications involving text pairs, a common
pattern is to independently encode text pairs be-
fore applying bidirectional cross attention, such
as Parikh et al. (2016); Seo et al. (2017). BERT
instead uses the self-attention mechanism to unify
these two stages, as encoding a concatenated text
pair with self-attention effectively includes bidi-
rectional cross attention between two sentences.

For each task, we simply plug in the task-
specific inputs and outputs into BERT and fine-
tune all the parameters end-to-end. At the in-
put, sentence A and sentence B from pre-training
are analogous to (1) sentence pairs in paraphras-
ing, (2) hypothesis-premise pairs in entailment, (3)
question-passage pairs in question answering, and

(4) a degenerate text-? pair in text classification
or sequence tagging. At the output, the token rep-
resentations are fed into an output layer for token-
level tasks, such as sequence tagging or question
answering, and the [CLS] representation is fed
into an output layer for classification, such as en-
tailment or sentiment analysis.

Compared to pre-training, fine-tuning is rela-
tively inexpensive. All of the results in the pa-
per can be replicated in at most 1 hour on a sin-
gle Cloud TPU, or a few hours on a GPU, starting
from the exact same pre-trained model.7 We de-
scribe the task-specific details in the correspond-
ing subsections of Section 4. More details can be
found in Appendix A.5.

4 Experiments

In this section, we present BERT fine-tuning re-
sults on 11 NLP tasks.

4.1 GLUE
The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018a) is a col-
lection of diverse natural language understanding
tasks. Detailed descriptions of GLUE datasets are
included in Appendix B.1.

To fine-tune on GLUE, we represent the input
sequence (for single sentence or sentence pairs)
as described in Section 3, and use the final hid-
den vector C 2 RH corresponding to the first
input token ([CLS]) as the aggregate representa-
tion. The only new parameters introduced during
fine-tuning are classification layer weights W 2
RK⇥H , where K is the number of labels. We com-
pute a standard classification loss with C and W ,
i.e., log(softmax(CW T )).

7For example, the BERT SQuAD model can be trained in
around 30 minutes on a single Cloud TPU to achieve a Dev
F1 score of 91.0%.

8See (10) in https://gluebenchmark.com/faq.
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BERT: Pretraining tasks

Masked language modelling
I standard conditional language

models only model context in one
direction at a time

I BERT performs bidirectional
encoding by masking 15% of the
input tokens

I Inspired by the cloze task
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Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

12 / 36



Natural Language Processing 1

Recent advances in NLP

BERT: Pretraining tasks

Next sentence prediction
I Randomly sample sentence pairs,

such that 50% of the time the
sentences follow each other.

I Predict whether the second
sentence follows the first or not.

I This models the relations between
sentences (useful for many tasks,
e.g. QA)
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Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-
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BERT: pretraining

I Pre-training loss: the sum of the
mean MLM likelihood and the mean
NSP likelihood

I Data: BooksCorpus (800M words)
and English Wikipedia (2500M
words)
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Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-
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BERT: fine-tuning
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Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-
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The contributions of BERT

I Advanced the state-of-the-art in a range of NLP tasks

I Demonstrated the importance of bidirectional pretraining

I Reduced the need for task-specific architectures

I Most widely-used NLP model (54K+ citations)

I Traditional linguistic hierarchy emerges within layers of BERT
(Tenney et al. 2019)

I lower layers – syntax; higher layers – semantics and discourse.

Tenney et al. 2019. BERT Rediscovers the Classical NLP Pipeline
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Generative language models: The GPT family

Radford et al. 2019. Language Models are Unsupervised Multitask
Learners

GPT, GPT2, GPT3

I Left-to-right language model

I Generative model, i.e. able to generate text (unlike BERT)

I Transformer architecture (GPT comparable in size to BERT
BASE)

I Interesting intuition: multitask learning from natural language
instructions.
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More than a language model?

I Many tasks are already described in the data in some way

I Can language models learn to perform tasks from natural
language instructions found in web text?

Language Models are Unsupervised Multitask Learners

to infer and perform many different tasks on examples with
this type of format.

Language modeling is also able to, in principle, learn the
tasks of McCann et al. (2018) without the need for explicit
supervision of which symbols are the outputs to be pre-
dicted. Since the supervised objective is the the same as the
unsupervised objective but only evaluated on a subset of the
sequence, the global minimum of the unsupervised objective
is also the global minimum of the supervised objective. In
this slightly toy setting, the concerns with density estimation
as a principled training objective discussed in (Sutskever
et al., 2015) are side stepped. The problem instead becomes
whether we are able to, in practice, optimize the unsuper-
vised objective to convergence. Preliminary experiments
confirmed that sufficiently large language models are able to
perform multitask learning in this toy-ish setup but learning
is much slower than in explicitly supervised approaches.

While it is a large step from the well-posed setup described
above to the messiness of “language in the wild”, Weston
(2016) argues, in the context of dialog, for the need to
develop systems capable of learning from natural language
directly and demonstrated a proof of concept – learning a
QA task without a reward signal by using forward prediction
of a teacher’s outputs. While dialog is an attractive approach,
we worry it is overly restrictive. The internet contains a vast
amount of information that is passively available without
the need for interactive communication. Our speculation is
that a language model with sufficient capacity will begin
to learn to infer and perform the tasks demonstrated in
natural language sequences in order to better predict them,
regardless of their method of procurement. If a language
model is able to do this it will be, in effect, performing
unsupervised multitask learning. We test whether this is the
case by analyzing the performance of language models in a
zero-shot setting on a wide variety of tasks.

2.1. Training Dataset

Most prior work trained language models on a single do-
main of text, such as news articles (Jozefowicz et al., 2016),
Wikipedia (Merity et al., 2016), or fiction books (Kiros
et al., 2015). Our approach motivates building as large and
diverse a dataset as possible in order to collect natural lan-
guage demonstrations of tasks in as varied of domains and
contexts as possible.

A promising source of diverse and nearly unlimited text is
web scrapes such as Common Crawl. While these archives
are many orders of magnitude larger than current language
modeling datasets, they have significant data quality issues.
Trinh & Le (2018) used Common Crawl in their work on
commonsense reasoning but noted a large amount of doc-
uments “whose content are mostly unintelligible”. We ob-
served similar data issues in our initial experiments with

”I’m not the cleverest man in the world, but like they say in
French: Je ne suis pas un imbecile [I’m not a fool].

In a now-deleted post from Aug. 16, Soheil Eid, Tory candidate
in the riding of Joliette, wrote in French: ”Mentez mentez,
il en restera toujours quelque chose,” which translates as,
”Lie lie and something will always remain.”

“I hate the word ‘perfume,”’ Burr says. ‘It’s somewhat better
in French: ‘parfum.’

If listened carefully at 29:55, a conversation can be heard
between two guys in French: “-Comment on fait pour aller
de l’autre coté? -Quel autre coté?”, which means “- How
do you get to the other side? - What side?”.

If this sounds like a bit of a stretch, consider this ques-
tion in French: As-tu aller au cinéma?, or Did you go to
the movies?, which literally translates as Have-you to go to
movies/theater?

“Brevet Sans Garantie Du Gouvernement”, translated to
English: “Patented without government warranty”.

Table 1. Examples of naturally occurring demonstrations of En-
glish to French and French to English translation found throughout
the WebText training set.

Common Crawl. Trinh & Le (2018)’s best results were
achieved using a small subsample of Common Crawl which
included only documents most similar to their target dataset,
the Winograd Schema Challenge. While this is a pragmatic
approach to improve performance on a specific task, we
want to avoid making assumptions about the tasks to be
performed ahead of time.

Instead, we created a new web scrape which emphasizes
document quality. To do this we only scraped web pages
which have been curated/filtered by humans. Manually
filtering a full web scrape would be exceptionally expensive
so as a starting point, we scraped all outbound links from
Reddit, a social media platform, which received at least 3
karma. This can be thought of as a heuristic indicator for
whether other users found the link interesting, educational,
or just funny.

The resulting dataset, WebText, contains the text subset
of these 45 million links. To extract the text from HTML
responses we use a combination of the Dragnet (Peters &
Lecocq, 2013) and Newspaper1 content extractors. All re-
sults presented in this paper use a preliminary version of
WebText which does not include links created after Dec
2017 and which after de-duplication and some heuristic
based cleaning contains slightly over 8 million documents
for a total of 40 GB of text. We removed all Wikipedia
documents from WebText since it is a common data source
for other datasets and could complicate analysis due to over-

1https://github.com/codelucas/newspaper
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Recent advances in NLP

InstructGPT and ChatGPT

InstructGPT

I trained to follow an instruction in a prompt and provide a
detailed response.

ChatGPT

I optimized for dialogue
I make GPT generations more "conversational": can provide

more natural answers, answer follow-up questions etc.
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Recent advances in NLP

Outstanding challenges and future directions

I Interpretability
I Multitask-learning
I Continual learning
I Low-resource languages
I Few-shot learning and generalisation
I Common sense reasoning

We discuss these topics in an advanced NLP courses, such as
Advanced Topics on Computational Semantics (block 5)
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Summary of the course

Levels of language analysis

1. Morphology — the structure of words.
2. Syntax — the way words are used to form phrases.
3. Semantics

I Lexical semantics — the meaning of individual words.
I Compositional semantics — the construction of meaning of

longer phrases and sentences (based on syntax).

4. Discourse and pragmatics — meaning in context.
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Summary of the course

Ambiguity

Ambiguity: same strings can mean different things

I Morphology: unionised (un- ion -ise -ed vs. union -ise -ed)
I Word senses: bank (finance or river?)
I Part of speech: chair (noun or verb?)
I Syntactic structure: I saw a man with a telescope
I Discourse relations: Max fell. John pushed him.
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Summary of the course

Modelling morphology

unionised: un- ion -ise -ed vs. union -ise -ed

I stemming, i.e. removing inflections
unionise

I lemmatisation, i.e. full morphological analysis
unionise PAST VERB
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Summary of the course

Modelling morphology

How?

1. Traditionally, rule-based methods

2. More recently, neural models: e.g. character LSTMs
(advanced NLP courses)

Why is it useful?

I provides information about word structure, e.g. shame -less.
Relevant to semantics.

I and grammatical properties, e.g. part of speech, tense, number.
Informative for syntactic tasks.
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Summary of the course

Modelling syntax

How?

1. n-gram language models

I compute probability of a sequence

2. Part-of-speech tagging

I Sequence labelling task (assign a label to each word)
I Hidden Markov Models (HMM)
I more recently, neural sequence labelling (e.g. LSTMs)

3. Syntactic parsing
I (Probabilistic) context-free grammars
I Chart parsing
I Dependency structure
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Summary of the course

Modelling syntax

What kind of information do they capture?

1. n-gram language models

I word order
I short-distance dependencies

2. Part-of-speech tagging

I grammatical properties of words
I coarse-grained word sense

3. Syntactic parsing
I hierarchical structure of sentences
I dependencies between words
I types of phrases (e.g. NP, VP).
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Summary of the course

Modelling syntax
Why is this useful?

1. n-gram language models
I language generation, e.g. fluency ranking
I speech recognition, i.e. hypothesis ranking
I as features in classification tasks

2. Part-of-speech tagging
I precursor to parsing
I lexical semantics
I as features in classification tasks

3. Syntactic parsing
I semantic composition
I co-reference resolution (to identify NPs)
I applications (e.g. summarisation).
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Summary of the course

Modelling semantics

How?

1. Lexical semantics

I word sense disambiguation (supervised classification)
I distributional semantics
I skip-gram word embeddings

2. Compositional semantics

I compositional distributional semantics
I neural models: LSTMs and tree LSTMs

Which of the above models rely on syntax?
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Summary of the course

Modelling semantics

What kind of information do these models capture?

1. Lexical semantics
I word meanings / senses
I semantic similarity
I semantic relations (e.g. hyponymy, synonymy)

2. Compositional semantics
I meanings of phrases
I sentence representation learning

(general-purpose representations useful for many tasks –
underlie SOTA models; discussed in ATCS course)
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Summary of the course

Modelling semantics

Why is this useful?

1. Lexical semantics
I in applications (e.g. sentiment, summarisation)
I in parsing (e.g. to resolve PP attachment ambiguity)
I semantic similarity useful in co-reference resolution
I input to neural models

2. Compositional semantics
I paraphrasing
I sentence similarity in applications (e.g. ordering in

summarisation)
I sentence representation learning underlies SOTA models
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Summary of the course

Modelling discourse

How?

1. Discourse relations
I Classification over pairs of sentences
I Tree-structured representations of documents

2. Learning document representations
I Neural models: LSTMs, attention, HAN
I Some later models incorporate discourse structure (ATCS)

3. Co-reference resolution
I Linguistically-motivated features
I Neural models: Lee et al (2017)
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Summary of the course

Modelling discourse

Why is this useful?

1. Discourse relations
I in applications
I e.g. summarisation: remove specific types of satellites
I sentiment: identify contrasts in discourse

2. Learning document representations
I Underlie all document classification tasks

3. Co-reference resolution
I in semantics: pronouns need to be resolved
I in applications (e.g. sentiment, summarisation)

33 / 36



Natural Language Processing 1

Summary of the course

Why does the course cover so much linguistics?

Why does the course cover so much linguistics, when all we use
nowadays is machine learning anyway?

To be able to advance the state of the art you need to:

I understand the nature of the learning problem

I understand the structure of your data

I understand what patterns you might find in the data

I develop an appropriate learning algorithm for this

Understanding linguistic properties can lead to algorithmic advances
in ML, e.g. the word meaning variation in context motivated the
design of self-attention.
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Summary of the course

Exam content
All lectures including guest lectures.

I Morphological processing
I n-gram language models
I Part-of-speech tagging
I Syntax, formal grammars and syntactic parsing
I Distributional semantics and word embeddings
I Compositional distributional semantics
I Neural sequence processing and sentence representations
I Discourse processing
I Summarisation, dialogue modelling, machine translation

You are allowed to bring a cheat sheet (A4) and a calculator.
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Summary of the course

Types of questions

I Explain a particular linguistic phenomenon and why it is
challenging for particular NLP methods / applications

I Explain the strengths and limitations of a particular method

I Apply a method to a given example

I Given examples of system errors, explain why these arise

I How can one apply a method from one NLP task to solve a
particular problem in another NLP task
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