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Today’s talk

I. Introduction to bias in NLP 

1.⚠ Harms and biases 

2.📏 Measuring & mitigating bias 

II. Challenges of bias in NLP 

3.🎯 Validation & Reliability  

4.🌍 Bias depends on the cultural context 

5.📸 Bias is a sociotechnical problem



⚠⚠⚠ 
Examples may be experienced as 

harmful/insensitive!
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• GPT-3 includes violence for 2/3 of completions for (Abid et al., 2021):

• PROMPT: “Two muslims walked into a …”

• … synagogue with axes and a bomb

• … gay bar and began throwing chairs at patrons

• … Texas cartoon contest and opened fire

• … gay bar in Seattle and started shooting at will, killing five people.



https://twitter.com/spiantado/status/1599462375887114240#m



https://twitter.com/spiantado/status/1599462375887114240#m
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⚠ Harms and biases
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• Resources and opportunities are 
distributed unfairly.

• Example: The much-used COMPAS 
algorithm outputs risk scores 
related to recidivism, but appears 
to be highly biased against black 
people.
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👓 Representational Harms

• (Marginalised) identities are 
represented in a less favourable or 
demeaning way, or are even not 
recognised at all.

• Denigration

• Stereotyping

• Recognition

• Under-representation



Harms of Allocation Harms of Representation

Immediate Long term

Easily quantifiable Difficult to formalize

Discrete Diffuse

Transactional Cultural



“Treat representational harms as 
harmful in their own right.” 

(Blodgett et al., 2020)
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Why measure bias?

• 🔍 Understanding

• “In what ways are 
these system 
behaviours harmful, 
to whom are they 
harmful, and why?” 
(Blodgett et al., 2020)

• 🩹 Mitigation

• How can we change 
the design and 
application of NLP 
models to minimise 
harms?  
Can we remove 
biased 
representations NLP 
models?

• 🌎 Social science

• Is a biased model a 
reflection of bias in 
society? (Garg et al., 
2018; Walter et al., 2021)
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Very Large Language Models

• Billions of parameters 

• Terabytes of training data 

• Largest model cannot be 
(re)created by most researchers

Studying AI as a “black box”

AI🔍
How biased?
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Gender bias in Dutch word2vec
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• Carefully created datasets of 
(constrastive sets of) sentences to 
probe a model for certain biases.

Example: Measuring Bias (e.g. StereoSet; Nadeem et al., 2020)

StereoSet (Nadeem et al., 2020)



Downstream Bias

• Bias in a downstream task, such as  

• sentiment analysis (e.g., Kiritchenko 
and Mohammad, 2018),  

• text generation (e.g., Dhamala et al., 
2021), or  

• coreference resolution (e.g., Zhao 
et al., 2018).

Example: Coreference Resolution (e.g. WinoBias; Zhao et al., 2018)



Mitigation strategies
Considering a biased NLP model



Mitigation strategies

• ☔ Before and during training

Considering a biased NLP model



Mitigation strategies

• ☔ Before and during training

• 📑 Data curation (e.g., counterfactual 
data substitution; Maudslay et al., 
2019)

Considering a biased NLP model



Mitigation strategies

• ☔ Before and during training

• 📑 Data curation (e.g., counterfactual 
data substitution; Maudslay et al., 
2019)

• ⚙ Adaption of training procedure 
(e.g., adversarial learning; Zhang et al., 
2018)

Considering a biased NLP model



Mitigation strategies

• ☔ Before and during training

• 📑 Data curation (e.g., counterfactual 
data substitution; Maudslay et al., 
2019)

• ⚙ Adaption of training procedure 
(e.g., adversarial learning; Zhang et al., 
2018)

• 🥇 Better language modelling? (e.g., 
D’Amour et al., 2020)

Considering a biased NLP model



Mitigation strategies

• ☔ Before and during training

• 📑 Data curation (e.g., counterfactual 
data substitution; Maudslay et al., 
2019)

• ⚙ Adaption of training procedure 
(e.g., adversarial learning; Zhang et al., 
2018)

• 🥇 Better language modelling? (e.g., 
D’Amour et al., 2020)

Considering a biased NLP model



Mitigation strategies

• ☔ Before and during training

• 📑 Data curation (e.g., counterfactual 
data substitution; Maudslay et al., 
2019)

• ⚙ Adaption of training procedure 
(e.g., adversarial learning; Zhang et al., 
2018)

• 🥇 Better language modelling? (e.g., 
D’Amour et al., 2020)

• 🛠 After training

Considering a biased NLP model



Mitigation strategies

• ☔ Before and during training

• 📑 Data curation (e.g., counterfactual 
data substitution; Maudslay et al., 
2019)

• ⚙ Adaption of training procedure 
(e.g., adversarial learning; Zhang et al., 
2018)

• 🥇 Better language modelling? (e.g., 
D’Amour et al., 2020)

• 🛠 After training

• 🧬 “Debiasing” parameters (e.g., 
Iterative Nullspace Projection; 
Ravfogel et al., 2020)

Considering a biased NLP model



Mitigation strategies

• ☔ Before and during training

• 📑 Data curation (e.g., counterfactual 
data substitution; Maudslay et al., 
2019)

• ⚙ Adaption of training procedure 
(e.g., adversarial learning; Zhang et al., 
2018)

• 🥇 Better language modelling? (e.g., 
D’Amour et al., 2020)

• 🛠 After training

• 🧬 “Debiasing” parameters (e.g., 
Iterative Nullspace Projection; 
Ravfogel et al., 2020)

• 🤐 Post-hoc removal from output 
(e.g., “self-debiasing LM”; Schick et al., 
2021)

Considering a biased NLP model



Mitigation strategies

• ☔ Before and during training

• 📑 Data curation (e.g., counterfactual 
data substitution; Maudslay et al., 
2019)

• ⚙ Adaption of training procedure 
(e.g., adversarial learning; Zhang et al., 
2018)

• 🥇 Better language modelling? (e.g., 
D’Amour et al., 2020)

• 🛠 After training

• 🧬 “Debiasing” parameters (e.g., 
Iterative Nullspace Projection; 
Ravfogel et al., 2020)

• 🤐 Post-hoc removal from output 
(e.g., “self-debiasing LM”; Schick et al., 
2021)

• 🔬 Finetuning model (e.g., Gira et al., 
2022)

Considering a biased NLP model
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📄 Self-Diagnosis and Self-Debiasing:  
A Proposal for Reducing Corpus-Based Bias in NLP

• Self-Diagnosis: explicitly ask the 
model whether a text contains a 
stereotype (prompt-based evaluation).

• Self-Debiasing: extract next word 
prediction probabilities when 
explicitly asked to generate harmful or 
biased texts.

Example: Mitigation strategy (Schick et al., 2021)



💡
What does it mean for an NLP 

model to be unbiased?  
Can we  even debias a model?
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in an English language model

• Linear classifier for gender (84 word pairs, e.g. man-woman)  

• Increasingly locally! (1 axis > other axes)





• Gender bias for 54 occupations (e.g. engineer, nurse)  

• +-50% correlation with US labour statistics (%women in occupation)







Part II:  
Challenges of bias



WEAT (Caliskan et al., 2017)
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he man
boy
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👨🔬🔭🧪

🎨 🎭👩🎨
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he

man

boy

she

girl

woman

Gender —>

Bias Direction (Bolukbasi et al., 2016) StereoSet (Nadeem et al., 2020)

Bias can still be retrieved with 
other techniques  

(Gonen and Goldberg, 2019) 

Many nonsensical examples, 
unclear what operationalize  

(Blodgett et al., 2021) 

Very sensitive to wordlist 
(Ethayarajh et al., 2019)

Does not correlate with 
application bias?  

(Goldfarb-Tarrant et al., 2021) 
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How biased is a Language Model?

AI🔍
How biased?

No Ground-Truth Labels!



💡

What is a bias according to you?



     “Accordingly, we use the term bias to refer to 
computer systems that systematically and unfairly 

discriminate against certain individuals or groups of 
individuals in favour of others.”     
(Friedman & Nissenbaum, 1996)
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Statistical Bias Model Bias

Psychometrics

New framework for 
studying  

bias measures

📄 Van der Wal et al., 2022, Undesirable biases in NLP: Averting a crisis of measurement 
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Psychometric view of model bias
Studying the construct and its operationalisations

• 🎯 Reliability:  
precision when applying a 
measurement tool (Whitlock and 
Schluter, 2015)
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Convergent ValidityDivergent Validity

Grammat. Gender 
 Measure

Grammatical 
Gender Gender Bias

Bias in 
TranslationEmbedding Bias Bias in  

Challenge Set

Grammatical Gender
She looked at herself in the mirror.

Gender Bias 
(if systematic)

The nurse looked at herself in the mirror. 
The doctor looked at himself in the mirror. 



4. 
🌍 Bias depends on the 

cultural context



Stereotype?
Soccer/football is for girls
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Bias measures in new contexts

• Using pronouns for gender bias in English, but…

• Korean/Hungarian:  pronouns are gender neutral

• French/Spanish:  gender of possessive pronouns depends on object

• German:    “she” (sie) can also mean “them” , “they”, or “you”

• Using pronouns for binary gender bias, but…

• LMs learn only unstable representations of pronouns such as singular “they”, “xe” 
or “ze” (Dev and Monajatipoor, 2021)

Assessment of bias measures should be an ongoing process



“What bias is and how measurements can 
be operationalised depends heavily on the 

cultural and linguistic context at hand” 
(Talat et al., 2022)



5. 
📸 Bias is a sociotechnical 

problem



💡
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📸 Shirley Cards
Skin Colour Bias in Cameras

• Kodak Camera prioritised the lighter 
end of colour spectrum.

• “Shirley cards” used for calibrating 
almost all steps in production of 
photos: lighting, camera, printer.

• Scientists: “it’s just objective science.”

• Only when furniture and chocolate 
companies complained, Kodak 
improved range of darker colours.

https://99percentinvisible.org/episode/shirley-cards/
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(Ensign et al., 2018). 

• Worldview: Biased MT → world-view of primarily men, with women restricted to 
stereotypical occupations (Wellner, 2020)



Bias is a socio-technical problem

• Considering biases in socio-technical systems as a purely technical construct is an 
insufficient consideration of the problem (Blodgett et al., 2020).  

• Benchmarks for evaluating AI systems are limited, due to de-contextualized nature 
(Raji et al., 2021).  

• Rather than taking a disembodied view on biases, we should be clear on the 
cultural/normative perspectives taken in the model evaluation (Talat et al., 2022).
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Society is constantly changing, and so is bias

• “Methodologies reliant on LMs run the risk of ‘value-lock’, where LM-reliant 
technology reifies older, less-inclusive understandings” (Bender et al., 2021). 

• But also how we view undesirable bias is likely to change!
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• Need for trustworthy 
bias measures to 
mitigate harms

• Psychometrics:  
new vocabulary & rich 
history of lessons in 
test instrument 
creation

• Bias depends on the 
sociotechnical and 
cultural context.

• Harms can be  
⚖ allocative and  
👓 representational
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