
Dialogue Modelling
Raquel Fernández 
Institute for Logic, Language and Computation (ILLC)

NLP1 guest lecture, December 2022



What is dialogue modelling?


Current NLP methods to model dialogue systems / chatbots


Three examples of recent research done by my group

Plan for today



Using language for cross-speaker communication and interaction


Primary form of language use and language learning

What is it and why do we care
Dialogue

Any luck 
finding 

anything?

Not yet. 

But I got two 
interviews.



Dialogue
What is it and why do we care
It is convenient to distinguish between


Social chit-chat dialogue


Task-oriented dialogue



Modelling a dialogue agent involves:


Understanding the utterances by the dialogue partner.


Keeping track of the dialogue history.


Deciding what to say.


Generating an utterance that conveys the speaker’s intend.

Dialogue modelling



(McTear, 2020)A dialogue agent
Task-oriented dialogue agents are typically modelled using a 
modular architecture, with modules for the steps above
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Only present in spoken systems

confidence score

system’s intentword string



(McTear, 2020)A dialogue agent

acoustic signal

user’s intent word string predicted intent

Only present in spoken systems

confidence score

system’s intentword string

NLU



Speech act or dialogue act: the function of (or the action 
performed by) an utterance. The intention of the speaker.


statement, question, answer, agreement, request, ….


There isn’t a one-to-one mapping between form and 
function (between the word string and the dialogue act)


The gun is loaded. Threat? Warning? Statement?


It may require inference (e.g., computing a “conversational 
implicature”): 


A: Are you going to Paul’s party?

B: I have to work. 


(=> I’m not going — negative answer)

NLU
Intent prediction: Why is it difficult?



Predict a meaning representation given the word string. 

In task-oriented dialogue, these are usually “frames” consisting of:


Domain of the conversation (if not pre-defined)

Each domain, has a set of possible user intents (task goals). 

Each intent, has a set of possible slots and slot values.

Intent prediction: What is it in practice?
NLU

What are possible morning flights 
from Boston to SF on Tuesday?

29.2 • FRAME BASED DIALOG AGENTS 13

29.2.2 Natural language understanding for filling slots

The goal of the natural language understanding component is to extract three things
from the user’s utterance. The first task is domain classification: is this user fordomain

classification

example talking about airlines, programming an alarm clocks, or dealing with their
calendar? Of course this 1-of-n classification tasks is unnecessary for single-domain
systems that are focused on, say, only calendar management, but multi-domain di-
alog systems are the modern standard. The second is user intent determination:intent

determination

what general task or goal is the user trying to accomplish? For example the task
could be to Find a Movie, or Show a Flight, or Remove a Calendar Appointment.
Finally, we need to do slot filling: extract the particular slots and fillers that the userslot filling

intends the system to understand from their utterance with respect to their intent.
From a user utterance like this one:

Show me morning flights from Boston to San Francisco on Tuesday

a system might want to build a representation like:

DOMAIN: AIR-TRAVEL
INTENT: SHOW-FLIGHTS
ORIGIN-CITY: Boston
ORIGIN-DATE: Tuesday
ORIGIN-TIME: morning
DEST-CITY: San Francisco

while an utterance like

Wake me tomorrow at 6

should give an intent like this:

DOMAIN: ALARM-CLOCK
INTENT: SET-ALARM
TIME: 2017-07-01 0600-0800

The task of slot-filling, and the simpler tasks of domain and intent classification,
are special cases of the task of semantic parsing discussed in Chapter ??. Dialogue
agents can thus extract slots, domains, and intents from user utterances by applying
any of the semantic parsing approaches discussed in that chapter.

The method used in the original GUS system, and still quite common in indus-
trial applications, is to use hand-written rules, often as part of the condition-action
rules attached to slots or concepts.

For example we might just define a regular expression consisting of a set strings
that map to the SET-ALARM intent:

wake me (up) | set (the|an) alarm | get me up

We can build more complex automata that instantiate sets of rules like those
discussed in Chapter 20, for example extracting a slot filler by turning a string
like Monday at 2pm into an object of type date with parameters (DAY, MONTH,
YEAR, HOURS, MINUTES).

Rule-based systems can be even implemented with full grammars. Research sys-
tems like the Phoenix system (Ward and Issar, 1994) consists of large hand-designed
semantic grammars with thousands of rules. A semantic grammar is a context-freesemantic

grammar

grammar in which the left-hand side of each rule corresponds to the semantic entities
being expressed (i.e., the slot names) as in the following fragment:

Wake me tomorrow at six.
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Many of the NLP techniques you have seen in this course are 
relevant for intent prediction in dialogue:


- word embeddings, POS tagging, syntactic parsing, 
compositional semantics, etc. 


This approach requires annotated dialogue datasets where 
utterances are annotated with meaning representations. 

Intent prediction: What is it in practice?
NLU

What are possible morning flights 
from Boston to SF on Tuesday?
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Some resources

• https://parl.ai/docs/tasks.html 

• https://breakend.github.io/DialogDatasets/references.html 

• https://docs.google.com/spreadsheets/d/1N5_5gBKlGR-

OrigRNct4jQ6iEqSycyqcoN61JpsHFDQ/htmlview 

https://parl.ai/docs/tasks.html
https://breakend.github.io/DialogDatasets/references.html
https://docs.google.com/spreadsheets/d/1N5_5gBKlGR-OrigRNct4jQ6iEqSycyqcoN61JpsHFDQ/htmlview
https://docs.google.com/spreadsheets/d/1N5_5gBKlGR-OrigRNct4jQ6iEqSycyqcoN61JpsHFDQ/htmlview


(McTear, 2020)A dialogue agent

acoustic signal

user’s intent word string predicted intent

Only present in spoken systems

confidence score

system’s intentword string

DM



The relevant slots may be filled across multiple dialogue turns— 
the dialogue context / history keeps track of this information.


The dialogue decision model / policy: predict the next system 
action given dialogue context (e.g., slots that are still missing).


System intent with the highest probability given the context. 

Dialogue management

U: Show me morning flights to SF.
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[           ]

[           ]
REQUEST(ORIGIN-CITY)

S: Where are you flying from?



How likely is the system to have understood the user?


We can exploit NLU confidence scores to decide on a 
confirmation/rejection policy:

Confirmation and rejection
Dialogue management

24 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

In this example, instead of just repeating “When would you like to leave?”, the
rejection prompt gives the caller more guidance about how to formulate an utter-
ance the system will understand. These you-can-say help messages are important in
helping improve systems’ understanding performance (Bohus and Rudnicky, 2005).
If the caller’s utterance gets rejected yet again, the prompt can reflect this (“I still
didn’t get that”), and give the caller even more guidance.

An alternative strategy for error handling is rapid reprompting, in which therapid
reprompting

system rejects an utterance just by saying “I’m sorry?” or “What was that?” Only
if the caller’s utterance is rejected a second time does the system start applying
progressive prompting. Cohen et al. (2004) summarize experiments showing that
users greatly prefer rapid reprompting as a first-level error prompt.

It is common to use rich features other than just the dialogue state representa-
tion to make policy decisions. For example, the confidence that the ASR system
assigns to an utterance can be used by explicitly confirming low-confidence sen-
tences. Condience is a metric that the speech recognizer can assign to its transcrip-
tion of a sentence to indicate how confident it is in that transcription. Confidence is
often computed from the acoustic log-likelihood of the utterance (greater probabil-
ity means higher confidence), but prosodic features can also be used in confidence
prediction. For example, utterances with large F0 excursions or longer durations,
or those preceded by longer pauses, are likely to be misrecognized (Litman et al.,
2000).

Another common feature in confirmation is the cost of making an error. For ex-
ample, explicit confirmation is common before a flight is actually booked or money
in an account is moved. Systems might have a four-tiered level of confidence with
three thresholds a , b , and g:

< a low confidence reject
� a above the threshold confirm explicitly
� b high confidence confirm implictly
� g very high confidence don’t confirm at all

24.4.5 Natural language generation in the dialogue-state model
Finally, once the policy has decided what speech act to generate, the natural language
generation component needs to generate the text of a response to the user.

Once a dialogue act has been decided, we need to generate the text of the re-
sponse to the user. The task of natural language generation (NLG) in the information-
state architecture is often modeled in two stages, content planning (what to say),content

planning
and sentence realization (how to say it).sentence

realization
Here we’ll assume content planning has been done by the dialogue policy, which

has chosen the dialogue act to generate, and chosen some attributes (slots and values)
that the planner wants to say to the user (either to give the user the answer, or as part
of a confirmation strategy).

Fig. 24.16 shows some sample input/outputs for the sentence realization phase.
In the first example, the content planner has chosen the dialogue act RECOMMEND
and some particular slots (name, neighborhood, cuisine) and their fillers. The goal
of the sentence realizer is to generate a sentence like lines 1 or 2 shown in the figure,
by training on many such examples of representation/sentence pairs from a large
corpus of labeled dialogues.

Training data is hard to come by; we are unlikely to see every possible restaurant
with every possible attribute in many possible differently worded sentences. There-
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input. This is generally done by two methods: confirming understandings with the
user and rejecting utterances that the system is likely to have misunderstood.

As we saw in the prior section, most systems introduce particular strategies and
actions related to confirmation and rejection. When using the explicit confirmationexplicit

confirmation
strategy, a system asks the user a direct question to confirm the system’s under-
standing, like the two examples below in which the system asks a (boldface) yes-no
confirmation question:

S: Which city do you want to leave from?
U: Baltimore.
S: Do you want to leave from Baltimore?
U: Yes.
U: I’d like to fly from Denver Colorado to New York City on September

twenty first in the morning on United Airlines
S: Let’s see then. I have you going from Denver Colorado to New York

on September twenty first. Is that correct?
U: Yes

When using the implicit confirmation strategy, a system instead can demon-implicit
confirmation

strate its understanding as a grounding strategy, for example repeating back the
system’s understanding as part of asking the next question, as in the two examples
below:

U: I want to travel to Berlin
S: When do you want to travel to Berlin?
U2: Hi I’d like to fly to Seattle Tuesday Morning
A3: Traveling to Seattle on Tuesday, August eleventh in the morning.

Your full name?

Explicit and implicit confirmation have complementary strengths. Explicit con-
firmation makes it easier for users to correct the system’s misrecognitions since a
user can just answer “no” to the confirmation question. But explicit confirmation is
awkward and increases the length of the conversation (Danieli and Gerbino 1995,
Walker et al. 1998). The explicit confirmation dialogue fragments above sound non-
natural and definitely non-human; implicit confirmation is much more conversation-
ally natural.

Confirmation is just one kind of conversational action by which a system can
express lack of understanding. Another option is rejection, in which a system givesrejection

the user a prompt like I’m sorry, I didn’t understand that.
Sometimes utterances are rejected multiple times. This might mean that the user

is using language that the system is unable to follow. Thus, when an utterance is
rejected, systems often follow a strategy of progressive prompting or escalatingprogressive

prompting
detail (Yankelovich et al. 1995, Weinschenk and Barker 2000), as in this example
from Cohen et al. (2004):

System: When would you like to leave?
Caller: Well, um, I need to be in New York in time for the first World Series game.
System: <reject>. Sorry, I didn’t get that. Please say the month and day you’d like

to leave.
Caller: I wanna go on October fifteenth.

CONFIRM_EXPLICIT(ORIGIN-CITY)
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CONFIRM_IMPLICIT(DEST-CITY)



https://www.amazon.science/blog/new-alexa-features-interactive-teaching-by-customers

Confidence scores can also be exploited to identify unknown slots 
and learn to generalise to new situations

Dialogue management
Advanced: Learning and generalisation



(McTear, 2020)A dialogue agent

acoustic signal

user’s intent word string predicted intent

Only present in spoken systems

confidence score

system’s intentword string

NLG



Assuming the DM has chosen a next system action/intent…


The goal of the NLG module is to learn to generate sentences by 
training on many representation/sentence pairs from an annotated 
dialogue corpus


Some examples:

NLG
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recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 Au Midi is in Midtown and serves French food.
2 There is a French restaurant in Midtown called Au Midi.
recommend(restaurant name= Loch Fyne, neighborhood = city
centre, cuisine = seafood)

3 Loch Fyne is in the City Center and serves seafood food.
4 There is a seafood restaurant in the City Centre called Loch Fyne.

Figure 24.16 Two examples of inputs to the sentence realization phase of NLG, showing
the dialogue act and attributes prespecified by the content planner. Line 1-2 and 3-4 show dif-
ferent possible output sentences to be generated by the sentence realizer. From the restaurant
recommendation system of Nayak et al. (2017).

fore it is common in sentence realization to increase the generality of the training
examples by delexicalization. Delexicalization is the process of replacing specificdelexicalization
words in the training set that represent slot values with a generic placeholder to-
ken representing the slot. Fig. 24.17 shows the result of delexicalizing the training
sentences in Fig. 24.16.

recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 restaurant name is in neighborhood and serves cuisine food.
2 There is a cuisine restaurant in neighborhood called restaurant name.

Figure 24.17 Delexicalized sentences that can be used for generating many different relex-
icalized sentences. From the restaurant recommendation system of Nayak et al. (2017).

Mapping from frames to delexicalized sentences is generally done by encoder
decoder models (Wen et al. 2015a, Wen et al. 2015b, Mrkšić et al. 2017, inter
alia), trained on large hand-labeled corpora of task-oriented dialogue (Budzianowski
et al., 2018). The input to the encoder is a sequence of tokens xt that represent
the dialogue act and its arguments. Thus the dialogue act RECOMMEND and the
attribute/value pairs service:decent, cuisine:null might be represented as a flat se-
quence of tokens (Nayak et al., 2017), each mapped to a learned embedding wt , as
shown in Fig. 24.18.

decentservice:RECOMMEND cuisine: null

[name] has decent service

ENCODER

DECODER

Figure 24.18 An encoder decoder sentence realizer mapping slots/fillers to English.

The encoder reads all the input slot/value representations, and the decoder out-
puts the following delexicalized English sentence:

restaurant name has decent service

We can then use the input frame from the content planner to relexicalize (fill in therelexicalize
exact restaurant or neighborhood or cuisine) resulting in:

Au Midi has decent service



Sequence-to-sequence prediction (cf. previous lecture): 


Input: linearised meaning representation

Output: word string (system utterance)

NLG
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Figure 24.17 Delexicalized sentences that can be used for generating many different relex-
icalized sentences. From the restaurant recommendation system of Nayak et al. (2017).

Mapping from frames to delexicalized sentences is generally done by encoder
decoder models (Wen et al. 2015a, Wen et al. 2015b, Mrkšić et al. 2017, inter
alia), trained on large hand-labeled corpora of task-oriented dialogue (Budzianowski
et al., 2018). The input to the encoder is a sequence of tokens xt that represent
the dialogue act and its arguments. Thus the dialogue act RECOMMEND and the
attribute/value pairs service:decent, cuisine:null might be represented as a flat se-
quence of tokens (Nayak et al., 2017), each mapped to a learned embedding wt , as
shown in Fig. 24.18.

decentservice:RECOMMEND cuisine: null

[name] has decent service

ENCODER

DECODER

Figure 24.18 An encoder decoder sentence realizer mapping slots/fillers to English.

The encoder reads all the input slot/value representations, and the decoder out-
puts the following delexicalized English sentence:

restaurant name has decent service

We can then use the input frame from the content planner to relexicalize (fill in therelexicalize
exact restaurant or neighborhood or cuisine) resulting in:

Au Midi has decent service
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recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 Au Midi is in Midtown and serves French food.
2 There is a French restaurant in Midtown called Au Midi.
recommend(restaurant name= Loch Fyne, neighborhood = city
centre, cuisine = seafood)

3 Loch Fyne is in the City Center and serves seafood food.
4 There is a seafood restaurant in the City Centre called Loch Fyne.

Figure 24.16 Two examples of inputs to the sentence realization phase of NLG, showing
the dialogue act and attributes prespecified by the content planner. Line 1-2 and 3-4 show dif-
ferent possible output sentences to be generated by the sentence realizer. From the restaurant
recommendation system of Nayak et al. (2017).

fore it is common in sentence realization to increase the generality of the training
examples by delexicalization. Delexicalization is the process of replacing specificdelexicalization
words in the training set that represent slot values with a generic placeholder to-
ken representing the slot. Fig. 24.17 shows the result of delexicalizing the training
sentences in Fig. 24.16.

recommend(restaurant name= Au Midi, neighborhood = midtown,
cuisine = french

1 restaurant name is in neighborhood and serves cuisine food.
2 There is a cuisine restaurant in neighborhood called restaurant name.

Figure 24.17 Delexicalized sentences that can be used for generating many different relex-
icalized sentences. From the restaurant recommendation system of Nayak et al. (2017).

Mapping from frames to delexicalized sentences is generally done by encoder
decoder models (Wen et al. 2015a, Wen et al. 2015b, Mrkšić et al. 2017, inter
alia), trained on large hand-labeled corpora of task-oriented dialogue (Budzianowski
et al., 2018). The input to the encoder is a sequence of tokens xt that represent
the dialogue act and its arguments. Thus the dialogue act RECOMMEND and the
attribute/value pairs service:decent, cuisine:null might be represented as a flat se-
quence of tokens (Nayak et al., 2017), each mapped to a learned embedding wt , as
shown in Fig. 24.18.

decentservice:RECOMMEND cuisine: null

[name] has decent service

ENCODER

DECODER

Figure 24.18 An encoder decoder sentence realizer mapping slots/fillers to English.

The encoder reads all the input slot/value representations, and the decoder out-
puts the following delexicalized English sentence:

restaurant name has decent service

We can then use the input frame from the content planner to relexicalize (fill in therelexicalize
exact restaurant or neighborhood or cuisine) resulting in:

Au Midi has decent service

(NB: Delexicalised representation where entities are replaced 
with general placeholders to help with generalisation)



acoustic signal

user’s intent word string predicted intent

Only present in spoken systems

confidence score

system’s intentword string

Non-modular systems



Dialogue response generation from previous turn(s), without 
intermediate meaning representations.


Typically used to model social chit-chat dialogue (no need to 
make progress towards task completion)


Two methods: Retrieval vs generation

Chatbots
Non-modular systems



Given a user turn q and a dialogue corpus C


Find in C a turn p that is most similar to q 


Retrieve the turn r following p in C


Use r as a response to q

Retrieval
Non-modular systems



Sequence-to-sequence models: 


- Inspired by machine translation

Generation
Non-modular systems

Encoder RNN to produce a representation of the previous turns


Decoder RNN to generate the response word-by-word by 
conditioning on the context and the response so far

Encoding

Decoding



An alternative to the encoder-decoder architecture: 


Use a large pre-trained language model (e.g., GPT-2)


Fine-tune it on conversational data


Use the language model directly as a response generator

Non-modular systems
Generation



Non-modular systems
PROS


• No annotations needed

• No finite, predefined set meaning representation

CONS


• Very data-hung: trained on dialogue corpora with hundreds of millions or words

• No real understanding

• Tendency to output generic utterances (uninformative, bland, repetitive)

• Simplistic encoding of the dialogue history, leading to semantic inconsistency

Encoder-Decoder models

Examples of generated responses:

U: tell me ... how long have you had this falling sickness ?

S: i’m not a doctor.

U: How long does it take you guys to learn the drill?

S: Like 2 weeks ago!!

U: Where do you live?

S: I live in England.

U: In which city do you live?

S: I live in Los Angeles.

[adapted from Jurafsky & Martin, SLP-3]

Problems:
• no real understanding, lack of coherence / consistency
• reproducing general surface patters in the training data

 dialogue happens in context – there is more than what’s on the

surface of an utterance

Raquel Fernández NLP1 guest lecture 9



Evaluation


Very complex and difficult to operationalise


Easier for task-oriented dialogue (task completion)


Ethical considerations


Implicit biases and reinforcement of stereotypes present in the 
training data


Deception: being perceived as human (anthropomorphism) may 
be problematic

… that we won’t be able cover today
Other important topics



What is dialogue modelling?


Current NLP methods to model dialogue systems / chatbots


Three examples of recent research done by my group

Plan for today



Language style varies across sociolinguistic factors:

- In this case, generation adapted to the age group of the user.


Use of GPT-2 with “control” module trained age-annotated data.


Extensive evaluation with humans judgements and discussion of 
ethical considerations.

Example 1

GEM Workshop @EMNLP-2022



Many conversations involve more than the linguistic modality.


Language + vision encoder-decoder architecture.


Evaluation against linguistic properties of human dialogues.

Example 2

NAACL-2019



Use of NLP techniques to analyse human-human dialogue.


Information theoretic perspective: estimate information content / 
processing effort with a large language model.


Analyse patterns of information dynamics: interesting from a 
psycholinguistic point of view and informative for AI modelling.

Example 3

EMNLP-2021



Dialogue Modelling Group @ UvA

https://dmg-illc.github.io/dmg/

For these and other papers
(on dialogue and beyond)


