
Lecture 6: Compositional semantics
and sentence representations

Rochelle Choenni
NLP1 2022 November 17, 2022

Credits: Sandro Pezelle, Ekaterina Shutova,
J. Bastings, Mario Giulianelli

1

Outline
● Compositional semantics
● Compositional distributional

semantics
● Compositional semantics with

neural networks

2

Compositional semantics

3

➔ Principle of Compositionality: meaning of each whole phrase derivable from
meaning of its parts.

➔ Sentence structure conveys some meaning
➔ Deep grammars: model semantics alongside syntax, one semantic

composition rule per syntax rule

4

Compositional semantics alongside syntax

Non-trivial issues with semantic composition

5

‣ Similar syntactic structures may have different meanings
➡ it barks
➡ it rains; it snows (pleonastic pronoun)

‣ Different syntactic structures may have the same meaning (e.g., passive constructions)
➡ Kim ate the apple.
➡ The apple was eaten by Kim.

‣ Not all phrases are interpreted compositionally (e.g., idioms)
➡ red tape
➡ kick the bucket

but they can be interpreted compositionally too, so we can not simply block them.

6

‣ Additional meaning can arise through composition (e.g., logical metonymy)
➡ fast programmer
➡ fast plane
➡ enjoy a book
➡ enjoy a cup of tea

‣ Meaning transfers and additional connotations can arise through
composition (e.g., metaphor)
➡ I can’t buy this story.
➡ This sum will buy you a ride on the train.

‣ Recursive composition

Non-trivial issues with semantic composition

7

Issues with semantic composition

Modelling compositional semantics

8

1. Compositional distributional semantics
○ composition is modelled in a vector space

○ unsupervised

○ general purpose representations

2. Compositional semantics with neural networks
○ supervised or self-supervised

○ (typically) task-specific representations

Outline
● Compositional semantics
● Compositional distributional

semantics
● Compositional semantics with

neural networks

9

Compositional distributional semantics

10

‣ Given a finite vocabulary, natural languages licence an infinite amount of sentences.

‣ So it is impossible to learn vector representations for all sentences.

➡ But we can still use distributional word representations and learn to perform semantic
composition in distributional space.

Can distributional semantics can be extended to account for
the meaning of phrases and sentences?

Vector mixture models

11

Mitchell and Lapata, 2010. Composition in
Distributional Models of Semantics Models

➔ Additive
➔ Multiplicative

Simple, but surprisingly effective!

12

‣ Correlate with human similarity judgments about adjective-noun, noun-noun, verb-noun
and noun-verb pairs

‣ The additive and the multiplicative model are symmetric (commutative):
they do not take word order or syntax into account.

➡ John hit the ball = The ball hit John

‣ More suitable for modelling content words, would not apply well to function words (e.g.
conjunctions, prepositions etc.):

➡ some dogs, lice and dogs, lice on dogs

Additive and multiplicative models

Lexical function models

13

Distinguish between:

‣ words whose meaning is directly determined
by their distributional profile, e.g. nouns

‣ words that act as functions transforming the
distributional profile of other words, e.g.,
adjectives, adverbs

Lexical function models

14

Baroni and Zamparelli. (2010). Nouns are vectors, adjectives are matrices: Representing adjective-noun
constructions in semantic space. In Proceedings of EMNLP.

Adjectives modelled as lexical functions that are applied to nouns: old dog = old(dog)

➔ Adjectives are parameter matrices (Aold, Afurry, etc.)

➔ Nouns are vectors (house, dog, etc.)

➔ Composition is a linear transformation: old dog = Aold х dog.

Learning adjective matrices

15

For each adjective, learn a parameter matrix that allows to predict adjective-noun phrase
vectors.

Training set

Test set

X

house
dog
car
cat
toy
…

elephant
mercedes

Y

old house
old dog
old car
old cat
old toy
…

old elephant
old mercedes

Outline
● Compositional semantics
● Compositional distributional

semantics
● Compositional semantics with

neural networks

17

1. How do we learn a
(task-specific) representation of
a sentence with a neural
network?

2. How do we make a prediction
for a given task from that
representation?

18

We will see the task, dataset
and models of Practical 2!

Task

19

Task: Sentiment classification of movie reviews

20

 You’ll probably love it. →

0. very negative

1. negative

2. neutral

3. positive

4. very positive
Task-specific: The learned
representation has to be
“specialized” on sentiment!

Words (and sentences) into vectors

21

trash

classic

masterpiece
an Oscar-winning movie

x

y

When we talk about representations ...

Sentence representation: A (very) simplified picture

22

 cDSMs (sum) NNs

you

will

probably

love

it

you

will

probably

love
it

 you will probably love it you will probably love it

Dataset

23

Dataset: Stanford Sentiment Treebank (SST)

24

~12K data-points including:

1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. more detailed sentiment scores (node-level)

Binary parse tree: One example

25

Models

26

Models

27

1. Bag of Words (BOW)
2. Continuous Bag of Words (CBOW)
3. Deep Continuous Bag of Words (Deep CBOW)
4. Deep CBOW + pre-trained word embeddings
5. LSTM
6. Tree LSTM

First approach: Sentence + Sentiment

28

1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. node-level sentiment scores

1. Bag of Words (BOW)

29

What is a Bag of Words?

30
Credits: CMU

‣ Additive model: does not take
word order or syntax into
account

‣ Task-specific word
representations with fixed
dimensionality (d = 5)

‣ Dimensions of vector space
are explicit, interpretable

Bag of Words

31

I

loved

this

movie

bias b

∑ xt + b

argmax 3

 Sum word embeddings, add bias

Bag of Words

32

this [0.0, 0.1, 0.1, 0.1, 0.0]

movie [0.0, 0.1, 0.1, 0.2, 0.1]

is [0.0, 0.1, 0.0, 0.0, 0.0]

stupid [0.9, 0.5, 0.1, 0.0, 0.0]

bias [0.0, 0.0, 0.0, 0.0, 0.0]

sum [0.9, 0.8, 0.3, 0.3, 0.1]

argmax: 0 (very negative)

 I hate that I love this movie = I love that I hate this movie

Turning words into numbers

33

We want to feed words to a neural network
How to turn words into numbers?

cat is closer to tree
than to dog?!

Bad idea: number sequence
cat 1
tree 2
chair 3
dog 4
mat 5

Good idea: one-hot vectors
cat [0, 0, 0, 0, 1]
tree [0, 0, 0, 1, 0]
chair [0, 0, 1, 0, 0]
dog [0, 1, 0, 0, 0]
mat [1, 0, 0, 0, 0]

One-hot vectors select word embeddings

34

=

one-hot vector

Used as
“lookup table”
in practice

parameters embedding

2. Continuous Bag of Words
(CBOW)

35

‣ Additive model: does not take word order or syntax into
account

‣ Task-specific word representations of arbitrary
dimensionality

‣ Dimensions of vector space are not interpretable

‣ Prediction can be traced back to the sentence vector
dimensions

CBOW

Continuous Bag of Words (CBOW)

37

I

loved

this

movie

∑ xt

W

Sum word embeddings, project to 5D using W, add bias: W (∑ xt) + b

∑ xt

W

Note that a bias term (of size 5) is added to the final output vector (not shown). Also, this is not the same as word2vec CBOW!

Recall: Matrix Multiplication

38

1 2 3

4 5 6

1 2

1 2

1 2

⨉ =

2x3

3x2

1⨉1 + 2⨉1 + 3⨉1 1⨉2 + 2⨉2 + 3⨉2

4⨉1 + 5⨉1 + 6⨉1 4⨉2 + 5⨉2 + 6⨉2

Rows multiply with columns

2x2

What about this?

39

I loved this movie

Variable sentence vector size, dependent on sentence length

‣ Not very sensible conceptually
➡ sentences in a different vector space than words
➡ one vector space for each sentence length in the dataset

‣ Difficult in practice
➡ what size should the transformation matrix be?
➡ vector size can grow very large

3. Deep CBOW

40

‣ Additive model: does not take word order or syntax into
account

‣ Task-specific word representations of arbitrary
dimensionality

‣ Dimensions of vector space are not interpretable

‣ More layers and non-linear transformations: prediction
cannot be easily traced back

Deep CBOW

42

Deep CBOW

I

loved

this

movie

∑ xt

tanh

W’’ tanh(W’ tanh(W (∑ xt) + b) + b’) + b’’

tanh

∑ xt

W

W’

W’’

Note that a bias term is added whenever we multiply with a W (not shown)

What about this?

tanh

tanh

∑ xt

W

W’

tanh

tanh

W’’’

WN

W’’

Is more complexity always
better?

Question

44

We can learn more complex features, but the only error signal that we receive

comes from sentiment prediction.

How can we further help the model?

4. Deep CBOW + Pretrained
embeddings

45

46

Deep CBOW with pretrained embeddings

I

loved

this

movie

∑ xt

tanh

W’’ tanh(W’ tanh(W (∑ xt) + b) + b’) + b’’

tanh

∑ xt

W

W’

W’’

Note that a bias term is added whenever we multiply with a W (not shown)

Instead of learning them from
scratch, feed word2vec or
Glove embeddings!

47

Deep CBOW + pre-trained embeddings

‣ Additive model: does not take word order or syntax into account

‣ Dimensions of vector space are not interpretable

‣ Multiple layers and non-linear transformations: prediction cannot be easily traced back

‣ Pre-trained general-purpose word representations (e.g., Skip-gram, GloVe)
➡ keep frozen: not updated during training
➡ fine-tune: updated with task-specific learning signal (specialised)

Recap: Training a neural network

48

We train our network with Stochastic Gradient Descent (SGD):

1. Sample a training example
2. Forward pass

a. Compute network activations, output vector
3. Compute loss

a. Compare output vector with true label using a loss function (Cross Entropy)
4. Backward pass (backpropagation)

a. Compute gradient of loss w.r.t. (learnable) parameters (= weights + bias)
5. Take a small step in the opposite direction of the gradient

Cross Entropy Loss

49

Given:

ŷ = [0.0589, 0.0720, 0.0720, 0.7177, 0.0795] output vector (after softmax) from forward pass
y = [0, 0, 0, 1, 0] target / label (y3 = 1)

When our output is categorical (i.e., a number of classes), we can use a Cross Entropy loss:

CE(y, ŷ) = - ∑ yi log ŷi

SparseCE(y = 3, ŷ) = - log ŷy

torch.nn.CrossEntropyLoss
works like this and does the
softmax on o for you!

Softmax

50

o = [-0.1, 0.1, 0.1, 2.4, 0.2]

softmax(oi) = exp(oi) / ∑j exp(oj)

This makes o sum to 1.0:

softmax(o) = [0.0589, 0.0720, 0.0720, 0.7177, 0.0795]

We don’t need a softmax
for prediction, there we
simply take the argmax

But we do need a softmax
combined to CE to compute
model loss (argmax is NOT
differentiable)

Recurrent Neural Networks

51

52

- RNNs widely used for handling sequences!

- RNNs ~ multiple copies of same network, each passing a message to a

successor

- Take an input vector x and output an output vector h

- Crucially, h influenced by entire history of inputs fed in in the past

- Internal state h gets updated at every time step → in the simplest case, this state

consists of a single hidden vector h

Introduction: Recurrent Neural Network (RNN)

Elman, J. L. (1990). Finding structure in time.
Cognitive science, 14(2), 179-211.

Example:
the cat sat on the mat
x1 x2 x3 x4 x5 x6

Let’s compute the RNN state after reading in
this sentence.

Remember:
ht = f(xt, ht-1)

Introduction: Recurrent Neural Network (RNN)

53

h1 = f(x1, h0)
h2 = f(x2, f(x1, h0))
h3 = f(x3, f(x2, f(x1, h0)))
…
h6 = f(x6, f(x5, f(x4,
...)))

RNNs model sequential data - one input xt per time step t

the -> h1 = f(x1, h0)
cat -> h2 = f(x2, h1)
sat -> h3 = f(x3, h2)
…
mat -> h6 = f(x6, h5)

Introduction: Recurrent Neural Network (RNN)

54
Elman (1990). Finding structure in time.

ht = f(xt, ht−1)

= 𝜎(Wxt + Rht-1 + b)R

W

xt

++

The transition function f consists of an affine transformation followed by a non-linear activation

Matrix based on the
previous hidden
state

Matrix based on
current input

Introduction: Unfolding the RNN

55

x1 x2 x3 x4

R R R

W W W W

Same R every
time step!

Same W every
time step!Word embedding

Introduction: Making a prediction

56

x1 x2 x3 x4

R R R

W W W W

O

We can find the prediction
using argmax

Training:
apply softmax,
compute cross entropy loss,
backpropagate

O
R R R

Introduction: The vanishing gradient problem

57

Simple RNNs are hard to train because of the vanishing gradient problem.

During backpropagation, gradients can quickly become small,

as they repeatedly go through multiplications (R) & non-linear functions (e.g. sigmoid or tanh)

x1 x2 x3 x4

W W W W

compute loss &
BPTT

For more details see: Kyunghyun Cho. Natural Language Understanding with Distributed Representation. Section 4.3.

Introduction: The vanishing gradient problem

58
For more details see: Kyunghyun Cho. Natural Language Understanding with Distributed Representation. Section 4.3.

x1 x2 xN

✖0.5 ✖0.5 ✖0.5

W W W

O

R is shared across every timestep!

Imagine that R contains an entry value r1 = 0.5

The first input gets multiplied by 0.5num. unrolls N

0.55 ~ 0.03

0.510 ~ 9e-4

0.515 ~ 3e-5

0.520 ~ 9e-7

…

59
For more details see: Kyunghyun Cho. Natural Language Understanding with Distributed Representation. Section 4.3.

x1 x2 xN

✖1.5 ✖1.5 ✖1.5

W W W

O

What about this?

Similar problem called exploding gradients!

RNN vs ANN

R R R

W1 W2 WL

<1 <1 <1

<1 >1 >1

5. Long Short-Term Memory
network (LSTM)

61

Long Short-Term Memory (LSTM)

62

LSTMs are a special kind of RNN that can deal with long-term dependencies in the data by alleviating
the vanishing gradient problem in RNNs

 “ I lived in France for a while when I was a kid so I can speak fluent…” -> French

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735-1780.

LSTM: Core idea

63

1. Maintain a separate memory cell state ct from what is outputted (long term

memory)

2. Use gates to control the flow of information:

a. Forget gate gets rid of irrelevant information

b. Input gate to store new relevant information from the current input

c. Selectively update the cell state

d. Output gate returns a filtered version of the cell state

3. Backpropagation through time with partially uninterrupted gradient flow

MIT Introduction to Deep Learning 6.S191: Recurrent Neural Networks by Ava Soleimany

Image credits: http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTMs

RNN:

ht = f(xt, ht−1)

 = 𝜎(Wxt + Rht-1 + b)

LSTM:

ht, ct = f(xt, ht−1, ct-1)

= lstm(xt, ht-1, ct-1)

http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM cell

65

tanh

⨉ ＋

tanh

σ σ

σ

⨉

⨉

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

cell state

forget gate

input gate

output gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM: Cell state

66

tanh

⨉ ＋

tanh

σ σ

σ

⨉

⨉

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

cell state

Runs straight down the entire chain, with only some minor linear interactions. LSTM can remove

or add information to the cell state, carefully regulated by structures called gates.

http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM: Forget gate

67

tanh

⨉ ＋

tanh

σ σ

σ

⨉

⨉

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

forget gate

Decide what information to throw away from the cell state.

http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM: Candidate cell

68

tanh

⨉ ＋

tanh

σ σ

σ

⨉

⨉

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

candidates

Extracts new candidate values, gt, from the previous hidden state and the current input that

could be added to the cell state.

http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM: Input gate

69

tanh

⨉ ＋

tanh

σ σ

σ

⨉

⨉

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

input gate

Decide what new information to store in the cell state.

http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM

70

tanh

⨉ ＋

tanh

σ σ

σ

⨉

⨉

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

first step

second step

Update the cell state: 1. forget things we decided to forget earlier, 2. add the new candidate values

scaled by how much we decided to update each state value

http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM: Output gate

71

1. Decide what parts of the cell state we’re going to output, 2. the cell state is put through tanh and

multiplied by the output of the output gate, so that we only output the parts we decided to.

tanh

⨉ ＋

tanh

σ σ

σ

⨉

⨉

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

first step

second step

output gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Long Short-Term Memory (LSTM)

72

ht, ct = lstm(xt, ht-1, ct-1)

input gate it = σ(Wi xt + Ri ht−1 + bi)

forget gate ft = σ(Wf xt + Rf ht−1 + bf)

candidate gt = tanh(Wg xt + Rg ht−1 + bg)

output gate ot = σ(Wo xt + Ro ht−1 + bo)

cell state ct = ft ⊙ ct−1 + it ⊙ gt
hidden state ht = ot ⊙ tanh(ct)

hidden state cell state previous hidden state and cell state

LSTMs: Applications & Success in NLP

73

- Language modeling (Mikolov et al., 2010; Sundermeyer et al., 2012)

- Parsing (Vinyals et al., 2015; Kiperwasser and Goldberg, 2016; Dyer et al., 2016)

- Machine translation (Bahdanau et al., 2015)

- Image captioning (Bernardi et al., 2016)

- Visual question answering (Antol et al., 2015)

- … and many other tasks!

6. Tree LSTM

74

75

Sentence representations with NNs

‣ Bag of Words models

➡ sentence representations are order-independent function of the word representations

‣ Sequence models

➡ sentence representations are an order-sensitive function of a sequence of word
representations (surface form)

‣ Tree-structured models

➡ sentence representations are a function of the word representations, sensitive to the
syntactic structure of the sentence

Second approach: Sentence + Sentiment + Syntax

76

1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. node-level sentiment scores

Exploiting tree structure

77

Instead of treating our input as a sequence, we can take an alternative approach:

assume a tree structure and use the principle of compositionality.

The meaning (vector) of a sentence is determined by:

1. the meanings of its words and

2. the rules that combine them

Adapted from Stanford cs224n.

Why would it be useful?

78

Helpful in disambiguation: similar “surface” / different structure

Credits: https://cs224d.stanford.edu/lectures/CS224d-Lecture10.pdf

https://cs224d.stanford.edu/lectures/CS224d-Lecture10.pdf

Constituency Parse

79
http://demo.allennlp.org/constituency-parsing

Can we obtain a sentence vector using the tree structure given by a parse?

http://demo.allennlp.org/constituency-parsing

Recurrent vs Tree Recursive NN

80

I loved this movie

this movielovedI

RNNs cannot capture phrases without prefix context
and often capture too much of last words in final vector

Tree Recursive neural
networks require a parse
tree for each sentence

Adapted from Stanford cs224n.

Tree Recursive NN

81

this movielovedI

NODE

Adapted from Stanford cs224n.

child child

Practical II data set: Stanford Sentiment Treebank (SST)

82

 3
 ____________|____________________
 | 4
 | _________________________|__
 | 4 |
___	______________							
	4							
	_________	__________						
		3						
		_____	______________________					
			4					
			________________	_______				
				2				
				_______	___			
	3			2				
	____	_____			___	_____		
		4	3	2				
		_____	___	_____	_______	___	___	
2 2 2 3 2 2 3 2 2 2 2 2 2								
 It 's a lovely film with lovely performances by Buy and Accorsi .

sentiment label for root node

sentiment label for each node

Tree LSTMs: Generalize LSTM to tree structure

83

Use the idea of LSTM (gates, memory cell) but allow for multiple inputs (node children)

Proposed by 3 groups in the same summer:

● Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved Semantic

Representations From Tree-Structured Long Short-Term Memory Networks. ACL 2015.

○ Child-Sum Tree LSTM

○ N-ary Tree LSTM

● Phong Le and Willem Zuidema.

Compositional distributional semantics with long short term memory. *SEM 2015.

● Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo.

Long short-term memory over recursive structures. ICML 2015.

Tree LSTMs

84

1. Child-Sum Tree LSTM

sums over all children of a node; can be used for any N of children

1. N-ary Tree LSTM

different parameters for each child; better granularity (interactions between children)

but maximum N of children per node has to be fixed

Credits: Daniel Perez https://www.slideshare.net/tuvistavie/tree-lstm

https://www.slideshare.net/tuvistavie/tree-lstm

Child-Sum Tree LSTM

85

Children outputs and memory cells are summed

1. NO children order

2. works with variable number of children (sum!)

3. shares gates weights between children

⊙o

⊙i

Child-Sum Tree LSTM

86

h1c1 hN cN

x

u

parent c

first child

parent h

ĥ = ∑h

⊙f1 ⊙fN

Nth child

state = sum of
children’s h!

candidates

N-ary Tree LSTM

87

 Separate parameter matrices for each child k

1. each node must have at most N (e.g., binary) ordered children

2. fine-grained control on how information propagates

3. forget gate can be parametrized (N matrices, one per k) so that siblings affect each other

Implemented
in Practical 2

⊙i

⊙o

N-ary Tree LSTM

88

left child

left hleft c right h right cx

u

parent c

right childword

parent h

⊙fl ⊙fr

candidate values

N-ary Tree LSTM

89

useful for encoding
constituency trees

LSTMs vs Tree-LSTMs

90

Standard LSTMs be considered as (a special case of) Tree-LSTMs

91

Tree-LSTM variants

‣ Child-Sum Tree-LSTM
➡ sum over the hidden representations of all children of a node (no children order)
➡ can be used for a variable number of children
➡ shares parameters between children
➡ suitable for dependency trees

‣ N-ary Tree-LSTM
➡ discriminates between children node positions (weighted sum)
➡ fixed maximum branching factor: can be used with N children at most
➡ different parameters for each child
➡ suitable for constituency trees

Transition Sequence Representation

92

Building a tree with a transition sequence

93

We can describe a binary tree using a shift-reduce transition sequence

(I (loved (this movie)))

 S S S S R R R

We start with a buffer (queue) and an empty stack:

stack = []

buffer = queue([I, loved, this, movie])

Iterate through the transition sequence:

if SHIFT (S): take first word (leftmost) of the buffer, push it to the stack

if REDUCE (R): pop top 2 words from stack + reduce them into a new node (w/ tree LSTM)

practical II explains how
to obtain this sequence

Transition sequence example

94

(I (loved (this movie)))

 S S S S R R R

stack

buffer I loved this movie
h c h c h c h c

Transition sequence example

95

(I (loved (this movie)))

 S S S S R R R

stack

buffer

I

loved this movie
h c h c h c

Transition sequence example

96

(I (loved (this movie)))

 S S S S R R R

stack

buffer

I

loved

this movie
h c h c

Transition sequence example

97

(I (loved (this movie)))

 S S S S R R R

stack

buffer

I

loved

this

movie
h c

Transition sequence example

98

(I (loved (this movie)))

 S S S S R R R

stack

buffer

I

loved

this

movie

Transition sequence example

99

(I (loved (this movie)))

 S S S S R R R

stack

buffer

I

loved

this

this movie

movie

this movie

Tree LSTM

Transition sequence example

100

(I (loved (this movie)))

 S S S S R R R

stack

buffer

I

loved this movie

loved this movie

loved this movie

Tree LSTM

Transition sequence example

101

(I (loved (this movie)))

 S S S S R R R

stack

buffer

I loved this movie

I loved this movie

Tree LSTM

I loved this movie

this is your root node
for classification

Mini-batch SGD

102

Transition sequence example (mini-batched)

103

(I (loved (this movie))) (It (was boring))

 S S S S R R R S S S R R

stack

buffer It was boring *PAD*
h c h c h c h c

I loved this movie

Transition sequence example (mini-batched)

104

(I (loved (this movie))) (It (was boring))

 S S S S R R R S S S R R

stack

buffer *PAD*
h c

movie

I

loved

this

It

was

boring

Transition sequence example (mini-batched)

105

(I (loved (this movie))) (It (was boring))

 S S S S R R R S S S R R

stack

buffer *PAD*
h c

I

loved

this

It

was boring

movie

Transition sequence example (mini-batched)

106

(I (loved (this movie))) (It (was boring))

 S S S S R R R S S S R R

stack

buffer *PAD*
h c

I

loved

this movie

It was boring

this movie

Tree LSTM

It was boring

this movie

was boringIt

Transition sequence example (mini-batched)

107

(I (loved (this movie))) (It (was boring))

 S S S S R R R S S S R R

stack

buffer *PAD*
h c

I

loved this movie

It was boring

Transition sequence example (mini-batched)

108

(I (loved (this movie))) (It (was boring))

 S S S S R R R S S S R R

stack

buffer *PAD*
h c

It was boringI loved this movie

Optional approach: Sentence + Sentiment + Syntax + Node-level sentiment

109

1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. node-level sentiment scores

Summary

110

Recap

111

● Bag of Words models: BOW, CBOW, Deep CBOW

○ Can encode a sentence of arbitrary length, but loses word order

● Sequence models: RNN and LSTM

○ Sensitive to word order

○ RNN has vanishing gradient problem, LSTM deals with this

○ LSTM has input, forget, and output gates that control information flow

● Tree-based models: Child-Sum & N-ary Tree LSTM

○ Generalize LSTM to tree structures

○ Exploit compositionality, but require a parse tree

Extra

112

Input

113

In a TreeLSTM over a constituency tree (ours!), the leaf nodes take the corresponding word vectors

as input

Recap: Activation functions

114

Let’s use an extra vector, cell state c

Introduction: Intuition to solving the vanishing gradient

115

x1 x2 x3 x4

I I I
c1 c2 c3 c4

h1 h2 h3 h4

Adapted from Dyer, LxMLS 2016.

ct = ct-1 + f(xt) ht = tanh(ct)

ct = ct-1 + f(xt, ht-1) ht = tanh(ct)

Introduction: A small improvement

116

x1 x2 x3 x4

I I I
c1 c2 c3 c4

h1 h2 h3 h4

Adapted from Dyer, LxMLS 2016.

Better gradient propagation is
possible when you use additive
rather than multiplicative/highly
non-linear recurrent dynamics

Child-Sum Tree LSTM

117

useful for encoding
dependency trees

A naive recursive NN

118

Combine every two children (left and right) into a parent node p:

p = tanh(Wleftxleft + Wrightxright + b)

a bit simplistic and
does not work well for
longer sentences

Richard Socher et al. Parsing natural scenes and natural language with recursive neural networks. ICML 2011.

xleft xright

tanh

SGD vs GD

119

SGD:

for epoch in 1..E
 for each training example
 compute loss (forward pass)
 compute gradient of loss (backward)
 update parameters
 end for
end for

Gradient Descent (GD):

for epoch in 1..E
 for each training example
 compute loss (forward pass)
 compute gradient of loss (backward)
 accumulate gradient
 end for
 update parameters
end for

● fast, but high variance
● might find better optimum

because of variance

Source: Neubig.

Mini-batch SGD
strikes a balance

between these two

● slow, but more stable (not overly
influenced by most recent training
example)

● can get stuck in local optimum

