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Compositional semantics
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➔ Principle of Compositionality: meaning of each whole phrase derivable from 
meaning of its parts. 

➔ Sentence structure conveys some meaning 
➔ Deep grammars: model semantics alongside syntax, one semantic 

composition rule per syntax rule 
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Compositional semantics alongside syntax



Non-trivial issues with semantic composition
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‣ Similar syntactic structures may have different meanings
➡ it barks
➡ it rains; it snows (pleonastic pronoun)

‣ Different syntactic structures may have the same meaning (e.g., passive constructions)
➡ Kim ate the apple.
➡ The apple was eaten by Kim.

‣ Not all phrases are interpreted compositionally (e.g., idioms)
➡ red tape
➡ kick the bucket

but they can be interpreted compositionally too, so we can not simply block them.
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‣ Additional meaning can arise through composition (e.g., logical metonymy)
➡ fast programmer
➡ fast plane
➡ enjoy a book
➡ enjoy a cup of tea

‣ Meaning transfers and additional connotations can arise through 
composition (e.g., metaphor)
➡ I can’t buy this story.
➡ This sum will buy you a ride on the train.

‣ Recursive composition

Non-trivial issues with semantic composition
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Issues with semantic composition



Modelling compositional semantics
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1. Compositional distributional semantics
○  composition is modelled in a vector space

○  unsupervised

○  general purpose representations

2. Compositional semantics with neural networks
○  supervised or self-supervised

○  (typically) task-specific representations
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Compositional distributional semantics
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‣ Given a finite vocabulary, natural languages licence an infinite amount of sentences.

‣ So it is impossible to learn vector representations for all sentences.

➡ But we can still use distributional word representations and learn to perform semantic 
composition in distributional space.

Can distributional semantics can be extended to account for 
the meaning of phrases and sentences?



Vector mixture models
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Mitchell and Lapata, 2010. Composition in 
Distributional Models of Semantics Models

➔ Additive 
➔ Multiplicative

Simple, but surprisingly effective!
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‣ Correlate with human similarity judgments about adjective-noun, noun-noun, verb-noun 
and noun-verb pairs

‣ The additive and the multiplicative model are symmetric (commutative): 
they do not take word order or syntax into account.

➡ John hit the ball = The ball hit John

‣ More suitable for modelling content words, would not apply well to function words (e.g. 
conjunctions, prepositions etc.):

➡ some dogs, lice and dogs, lice on dogs

Additive and multiplicative models



Lexical function models
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Distinguish between:

‣ words whose meaning is directly determined
by their distributional profile, e.g. nouns

‣ words that act as functions transforming the 
distributional profile of other words, e.g., 
adjectives, adverbs



Lexical function models
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Baroni and Zamparelli. (2010). Nouns are vectors, adjectives are matrices: Representing adjective-noun 
constructions in semantic space. In Proceedings of EMNLP.

Adjectives modelled as lexical functions that are applied to nouns: old dog = old(dog)

➔ Adjectives are parameter matrices (Aold, Afurry, etc.)

➔ Nouns are vectors (house, dog, etc.)

➔ Composition is a linear transformation: old dog = Aold  х dog. 



Learning adjective matrices
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For each adjective, learn a parameter matrix that allows to predict adjective-noun phrase 
vectors.

Training set

Test set

X

house
dog
car
cat
toy
…

elephant
mercedes

Y

old house
old dog
old car
old cat
old toy
…

old elephant
old mercedes
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1. How do we learn a 
(task-specific) representation of 
a sentence with a neural 
network?

2. How do we make a prediction 
for a given task from that 
representation?
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We will see the task, dataset 
and models of Practical 2!



Task
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Task: Sentiment classification of movie reviews
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                                     You’ll probably love it.    → 

0. very negative

1. negative

2. neutral

3. positive

4. very positive
Task-specific: The learned 
representation has to be 
“specialized” on sentiment!



Words (and sentences) into vectors
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trash

classic

masterpiece
an Oscar-winning movie

x

y

When we talk about representations ...



Sentence representation: A (very) simplified picture
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                                           cDSMs (sum)                                    NNs

you

will

probably

love

it

you

will

probably

love
it

                             you will probably love it              you will probably love it



Dataset
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Dataset: Stanford Sentiment Treebank (SST)
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~12K data-points including:

1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. more detailed sentiment scores (node-level)



Binary parse tree: One example
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Models
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Models
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1. Bag of Words (BOW)
2. Continuous Bag of Words (CBOW)
3. Deep Continuous Bag of Words (Deep CBOW)
4. Deep CBOW + pre-trained word embeddings
5. LSTM
6. Tree LSTM



First approach: Sentence + Sentiment
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1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. node-level sentiment scores



1. Bag of Words (BOW)
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What is a Bag of Words?
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Credits: CMU

‣ Additive model: does not take 
word order or syntax into 
account

‣ Task-specific word 
representations with fixed 
dimensionality (d = 5)

‣ Dimensions of vector space 
are explicit, interpretable 



Bag of Words
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I

loved

this

movie

bias b

∑ xt + b

argmax             3

                Sum word embeddings, add bias



Bag of Words
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this   [0.0, 0.1, 0.1, 0.1, 0.0]

movie  [0.0, 0.1, 0.1, 0.2, 0.1]

is     [0.0, 0.1, 0.0, 0.0, 0.0]

stupid [0.9, 0.5, 0.1, 0.0, 0.0]

bias   [0.0, 0.0, 0.0, 0.0, 0.0]

--------------------------------

sum    [0.9, 0.8, 0.3, 0.3, 0.1]

argmax: 0 (very negative)

 I hate that I love this movie = I love that I hate this movie



Turning words into numbers
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We want to feed words to a neural network
How to turn words into numbers?

cat is closer to tree 
than to dog?!

Bad idea: number sequence
cat 1
tree 2
chair 3
dog 4
mat 5

Good idea: one-hot vectors
cat [0, 0, 0, 0, 1]
tree [0, 0, 0, 1, 0]
chair [0, 0, 1, 0, 0]
dog [0, 1, 0, 0, 0]
mat [1, 0, 0, 0, 0]



One-hot vectors select word embeddings
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=

one-hot vector

Used as 
“lookup table” 
in practice

parameters embedding



2. Continuous Bag of Words 
(CBOW)
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‣ Additive model: does not take word order or syntax into 
account

‣ Task-specific word representations of arbitrary 
dimensionality

‣ Dimensions of vector space are not interpretable

‣ Prediction can be traced back to the sentence vector 
dimensions 

CBOW



Continuous Bag of Words (CBOW)
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I

loved

this

movie

∑ xt

W

Sum word embeddings, project to 5D using W, add bias: W (∑ xt) + b

∑ xt

W

Note that a bias term (of size 5) is added to the final output vector (not shown). Also, this is not the same as word2vec CBOW!



Recall: Matrix Multiplication
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1 2 3

4 5 6

1 2

1 2

1 2

⨉ =

2x3

3x2

1⨉1 + 2⨉1 + 3⨉1 1⨉2 + 2⨉2 + 3⨉2

4⨉1 + 5⨉1 + 6⨉1 4⨉2 + 5⨉2 + 6⨉2

Rows multiply with columns

2x2



What about this?
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I loved this movie

Variable sentence vector size, dependent on sentence length

‣ Not very sensible conceptually
➡ sentences in a different vector space than words
➡ one vector space for each sentence length in the dataset

‣ Difficult in practice
➡ what size should the transformation matrix be?
➡ vector size can grow very large



3. Deep CBOW
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‣ Additive model: does not take word order or syntax into 
account

‣ Task-specific word representations of arbitrary 
dimensionality

‣ Dimensions of vector space are not interpretable

‣ More layers and non-linear transformations: prediction 
cannot be easily traced back

Deep CBOW
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Deep CBOW

I

loved

this

movie

∑ xt

tanh

W’’ tanh( W’ tanh( W (∑ xt) + b ) + b’ ) + b’’

tanh

∑ xt

W

W’

W’’

Note that a bias term is added whenever we multiply with a W (not shown)



What about this?

tanh

tanh

∑ xt

W

W’

tanh

tanh

   
W’’’

WN

W’’

Is more complexity always 
better?



Question
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We can learn more complex features, but the only error signal that we receive 

comes from sentiment prediction.

How can we further help the model? 



4. Deep CBOW + Pretrained 
embeddings

45
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Deep CBOW with pretrained embeddings

I

loved

this

movie

∑ xt

tanh

W’’ tanh( W’ tanh( W (∑ xt) + b ) + b’ ) + b’’

tanh

∑ xt

W

W’

W’’

Note that a bias term is added whenever we multiply with a W (not shown)

Instead of learning them from 
scratch, feed word2vec or 
Glove embeddings!
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Deep CBOW + pre-trained embeddings

‣ Additive model: does not take word order or syntax into account

‣ Dimensions of vector space are not interpretable

‣ Multiple layers and non-linear transformations: prediction cannot be easily traced back

‣ Pre-trained general-purpose word representations (e.g., Skip-gram, GloVe)
➡ keep frozen: not updated during training
➡ fine-tune: updated with task-specific learning signal (specialised) 



Recap: Training a neural network
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We train our network with Stochastic Gradient Descent (SGD):

1. Sample a training example
2. Forward pass

a. Compute network activations, output vector
3. Compute loss

a. Compare output vector with true label using a loss function (Cross Entropy)
4. Backward pass (backpropagation)

a. Compute gradient of loss w.r.t. (learnable) parameters (= weights + bias)
5. Take a small step in the opposite direction of the gradient



Cross Entropy Loss
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Given:

ŷ = [0.0589, 0.0720, 0.0720, 0.7177, 0.0795] output vector (after softmax) from forward pass
y = [  0,   0,   0,   1,   0] target / label (y3 = 1)

When our output is categorical (i.e., a number of classes), we can use a Cross Entropy loss:

CE(y, ŷ) = - ∑ yi log ŷi

SparseCE(y = 3, ŷ) = - log ŷy

torch.nn.CrossEntropyLoss 
works like this and does the 
softmax on o for you!



Softmax
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o = [-0.1, 0.1, 0.1, 2.4, 0.2]

softmax(oi) = exp(oi) / ∑j exp(oj)

This makes o sum to 1.0:

softmax(o) = [0.0589, 0.0720, 0.0720, 0.7177, 0.0795]

We don’t need a softmax 
for prediction, there we 
simply take the argmax

But we do need a softmax 
combined to CE to compute 
model loss (argmax is NOT 
differentiable)



Recurrent Neural Networks
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- RNNs widely used for handling sequences!

- RNNs ~ multiple copies of same network, each passing a message to a 

successor

- Take an input vector x and output an output vector h

- Crucially, h influenced by entire history of inputs fed in in the past

- Internal state h gets updated at every time step → in the simplest case, this state 

consists of a single hidden vector h

Introduction: Recurrent Neural Network (RNN)

Elman, J. L. (1990). Finding structure in time. 
Cognitive science, 14(2), 179-211.



Example:
the cat sat on the mat
x1 x2 x3 x4 x5 x6

Let’s compute the RNN state after reading in 
this sentence.

Remember:
ht = f( xt, ht-1 )

Introduction: Recurrent Neural Network (RNN)
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h1 = f(x1, h0)
h2 = f(x2, f(x1, h0))
h3 = f(x3, f(x2, f(x1, h0)))
…
h6 = f(x6, f(x5, f(x4, 
...)))

RNNs model sequential data - one input xt per time step t

the -> h1 = f(x1, h0)
cat -> h2 = f(x2, h1)
sat -> h3 = f(x3, h2)
…
mat -> h6 = f(x6, h5)



Introduction: Recurrent Neural Network (RNN)
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Elman (1990). Finding structure in time.

ht = f( xt, ht−1 )

= 𝜎( Wxt + Rht-1 + b )R

W

xt

++

The transition function f consists of an affine transformation followed by a non-linear activation

Matrix based on the 
previous hidden 
state

Matrix based on 
current input



Introduction: Unfolding the RNN
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x1 x2 x3 x4

R R R

W W W W

Same R every 
time step!

Same W every 
time step!Word embedding



Introduction: Making a prediction
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x1 x2 x3 x4

R R R

W W W W

O

We can find the prediction 
using argmax

Training: 
apply softmax, 
compute cross entropy loss, 
backpropagate



O
R R R

Introduction: The vanishing gradient problem

57

Simple RNNs are hard to train because of the vanishing gradient problem. 

During backpropagation, gradients can quickly become small, 

as they repeatedly go through multiplications (R) & non-linear functions (e.g. sigmoid or tanh)

x1 x2 x3 x4

W W W W

compute loss & 
BPTT

For more details see: Kyunghyun Cho. Natural Language Understanding with Distributed Representation. Section 4.3.



Introduction: The vanishing gradient problem
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For more details see: Kyunghyun Cho. Natural Language Understanding with Distributed Representation. Section 4.3.

x1 x2 xN

✖0.5 ✖0.5 ✖0.5

W W W

O

R is shared across every timestep!

Imagine that R contains an entry value r1 =  0.5

The first input gets multiplied by  0.5num. unrolls N

0.55 ~  0.03

0.510 ~  9e-4

0.515 ~  3e-5 

0.520 ~  9e-7

…
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For more details see: Kyunghyun Cho. Natural Language Understanding with Distributed Representation. Section 4.3.

x1 x2 xN

✖1.5 ✖1.5 ✖1.5

W W W

O

What about this?

Similar problem called exploding gradients!



RNN vs ANN

R R R

W1 W2 WL

<1 <1 <1

<1 >1 >1



5. Long Short-Term Memory 
network (LSTM)

61



Long Short-Term Memory (LSTM)
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LSTMs are a special kind of RNN that can deal with long-term dependencies in the data by alleviating 
the vanishing gradient problem in RNNs

 “ I lived in France for a while when I was a kid so I can speak fluent…” -> French

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term 
memory. Neural computation, 9(8), 1735-1780.



LSTM: Core idea
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1. Maintain a separate memory cell state ct from what is outputted (long term 

memory)

2. Use gates to control the flow of information:

a. Forget gate gets rid of irrelevant information

b. Input gate to store new relevant information from the current input

c. Selectively update the cell state

d. Output gate returns a filtered version of the cell state

3. Backpropagation through time with partially uninterrupted gradient flow

MIT Introduction to Deep Learning 6.S191: Recurrent Neural Networks by Ava Soleimany



Image credits: http://colah.github.io/posts/2015-08-Understanding-LSTMs 

LSTMs

RNN:

ht      = f( xt, ht−1 )

         = 𝜎( Wxt + Rht-1 + b )

LSTM:

ht, ct = f( xt, ht−1, ct-1 )

= lstm(xt, ht-1, ct-1)

http://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM cell

65

tanh

⨉ ＋

tanh

σ σ

σ

⨉

⨉

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

cell state 

forget gate

input gate

output gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM: Cell state
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tanh

⨉ ＋

tanh

σ σ

σ

⨉

⨉

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

cell state

Runs straight down the entire chain, with only some minor linear interactions. LSTM can remove 

or add information to the cell state, carefully regulated by structures called gates.

http://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM: Forget gate
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tanh

⨉ ＋

tanh

σ σ

σ

⨉

⨉

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

forget gate

Decide what information to throw away from the cell state.

http://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM: Candidate cell
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tanh

⨉ ＋

tanh

σ σ

σ

⨉

⨉

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

candidates

Extracts new candidate values, gt, from the previous hidden state and the current input that 

could be added to the cell state.

http://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM: Input gate
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tanh

⨉ ＋

tanh

σ σ

σ

⨉

⨉

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

input gate

Decide what new information to store in the cell state. 

http://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM
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tanh

⨉ ＋

tanh

σ σ

σ

⨉

⨉

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

first step

second step

Update the cell state: 1.  forget things we decided to forget earlier, 2. add the new candidate values 

scaled by how much we decided to update each state value

http://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM: Output gate
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1. Decide what parts of the cell state we’re going to output, 2. the cell state is put through tanh and 

multiplied by the output of the output gate, so that we only output the parts we decided to.

tanh

⨉ ＋

tanh

σ σ

σ

⨉

⨉

ct-1

ht-1

xt

ct

ht

ft it

ot

gt

Adapted from http://colah.github.io/posts/2015-08-Understanding-LSTMs . Yellow blocks: ɸ(W[ht-1;xt] + b), blue blocks: element-wise operation

first step

second step

output gate

http://colah.github.io/posts/2015-08-Understanding-LSTMs


Long Short-Term Memory (LSTM)
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ht, ct = lstm(xt, ht-1, ct-1)

input gate it =    σ(Wi xt + Ri ht−1 + bi)

forget gate ft =    σ(Wf xt + Rf ht−1 + bf)

candidate gt = tanh(Wg xt + Rg ht−1 + bg)

output gate ot =    σ(Wo xt + Ro ht−1 + bo)

cell state ct = ft ⊙ ct−1 + it ⊙ gt
hidden state ht = ot ⊙ tanh(ct)

hidden state cell state previous hidden state and cell state



LSTMs: Applications & Success in NLP
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- Language modeling (Mikolov et al., 2010; Sundermeyer et al., 2012)

- Parsing (Vinyals et al., 2015; Kiperwasser and Goldberg, 2016; Dyer et al., 2016)

- Machine translation (Bahdanau et al., 2015)

- Image captioning (Bernardi et al., 2016)

- Visual question answering (Antol et al., 2015)

- … and many other tasks!



6. Tree LSTM

74
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Sentence representations with NNs

‣ Bag of Words models

➡ sentence representations are order-independent function of the word representations

‣ Sequence models

➡ sentence representations are an order-sensitive function of a sequence of word 
representations (surface form)  

‣ Tree-structured models

➡ sentence representations are a function of the word representations, sensitive to the 
syntactic structure of the sentence



Second approach: Sentence + Sentiment + Syntax
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1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. node-level sentiment scores



Exploiting tree structure

77

Instead of treating our input as a sequence, we can take an alternative approach: 

assume a tree structure and use the principle of compositionality.

The meaning (vector) of a sentence is determined by:

1. the meanings of its words and

2. the rules that combine them

Adapted from Stanford cs224n.



Why would it be useful?
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Helpful in disambiguation: similar “surface” / different structure

Credits: https://cs224d.stanford.edu/lectures/CS224d-Lecture10.pdf

https://cs224d.stanford.edu/lectures/CS224d-Lecture10.pdf


Constituency Parse

79
http://demo.allennlp.org/constituency-parsing 

Can we obtain a sentence vector using the tree structure given by a parse?

http://demo.allennlp.org/constituency-parsing


Recurrent vs Tree Recursive NN
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I loved this movie

this movielovedI

RNNs cannot capture phrases without prefix context 
and often capture too much of last words in final vector

Tree Recursive neural 
networks require a parse 
tree for each sentence

Adapted from Stanford cs224n.



Tree Recursive NN

81

this movielovedI

NODE

Adapted from Stanford cs224n.

child child



Practical II data set: Stanford Sentiment Treebank (SST)
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              3                                                                     
  ____________|____________________                                                  
 |                                 4                                                
 |        _________________________|______________________________________________   
 |       4                                                                        | 
 |    ___|______________                                                          |  
 |   |                  4                                                         | 
 |   |         _________|__________                                               |  
 |   |        |                    3                                              | 
 |   |        |               _____|______________________                        |  
 |   |        |              |                            4                       | 
 |   |        |              |            ________________|_______                |  
 |   |        |              |           |                        2               | 
 |   |        |              |           |                 _______|___            |  
 |   |        3              |           |                |           2           | 
 |   |    ____|_____         |           |                |        ___|_____      |  
 |   |   |          4        |           3                |       2         |     | 
 |   |   |     _____|___     |      _____|_______         |    ___|___      |     |  
 2   2   2    3         2    2     3             2        2   2       2     2     2 
 |   |   |    |         |    |     |             |        |   |       |     |     |  
 It  's  a  lovely     film with lovely     performances  by Buy     and Accorsi  .

sentiment label for root node

sentiment label for each node



Tree LSTMs: Generalize LSTM to tree structure
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Use the idea of LSTM (gates, memory cell) but allow for multiple inputs (node children)

Proposed by 3 groups in the same summer:

● Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved Semantic 

Representations From Tree-Structured Long Short-Term Memory Networks. ACL 2015.

○ Child-Sum Tree LSTM

○ N-ary Tree LSTM

● Phong Le and Willem Zuidema. 

Compositional distributional semantics with long short term memory. *SEM 2015.

● Xiaodan Zhu, Parinaz Sobihani, and Hongyu Guo. 

Long short-term memory over recursive structures. ICML 2015.



Tree LSTMs

84

1. Child-Sum Tree LSTM

sums over all children of a node;  can be used for any N of children

1. N-ary Tree LSTM

different parameters for each child; better granularity (interactions between children) 

but maximum N of children per node has to be fixed

Credits: Daniel Perez https://www.slideshare.net/tuvistavie/tree-lstm

https://www.slideshare.net/tuvistavie/tree-lstm


Child-Sum Tree LSTM
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Children outputs and memory cells are summed

1. NO children order

2. works with variable number of children (sum!)

3. shares gates weights between children



⊙o

⊙i

Child-Sum Tree LSTM

86

h1c1 hN cN

x

u

parent c

first child

parent h

ĥ = ∑h

⊙f1 ⊙fN

Nth child

state = sum of 
children’s h!

candidates



N-ary Tree LSTM

87

 Separate parameter matrices for each child k 

1. each node must have at most N (e.g., binary) ordered children

2. fine-grained control on how information propagates

3. forget gate can be parametrized (N matrices, one per k) so that siblings affect each other

Implemented 
in Practical 2



⊙i

⊙o

N-ary Tree LSTM

88

left child

left hleft c right h right cx

u

parent c

right childword

parent h

⊙fl ⊙fr

candidate values



N-ary Tree LSTM
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useful for encoding 
constituency trees



LSTMs vs Tree-LSTMs
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Standard LSTMs be considered as (a special case of) Tree-LSTMs 
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Tree-LSTM variants

‣ Child-Sum Tree-LSTM
➡ sum over the hidden representations of all children of a node (no children order)
➡ can be used for a variable number of children
➡ shares parameters between children
➡ suitable for dependency trees

‣ N-ary Tree-LSTM
➡ discriminates between children node positions (weighted sum)
➡ fixed maximum branching factor: can be used with N children at most
➡ different parameters for each child 
➡ suitable for constituency trees



Transition Sequence Representation
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Building a tree with a transition sequence
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We can describe a binary tree using a shift-reduce transition sequence

(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

We start with a buffer (queue) and an empty stack:

stack = [] 

buffer = queue([I, loved, this, movie])

Iterate through the transition sequence:

if SHIFT (S): take first word (leftmost) of the buffer, push it to the stack

if REDUCE (R): pop top 2 words from stack + reduce them into a new node (w/ tree LSTM)

practical II explains how 
to obtain this sequence



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer I loved this movie
h c h c h c h c



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved this movie
h c h c h c



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved

this movie
h c h c



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved

this

movie
h c



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved

this

movie



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved

this

this movie

movie

this movie

Tree LSTM



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I

loved this movie

loved this movie

loved this movie

Tree LSTM



Transition sequence example
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(I ( loved ( this movie ) ) )

 S   S       S    S     R R R

stack

buffer

I loved this movie

I loved this movie

Tree LSTM

I loved this movie

this is your root node 
for classification



Mini-batch SGD
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Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer It was boring *PAD*
h c h c h c h c

I loved this movie



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer *PAD*
h c

movie

I

loved

this

It

was

boring



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer *PAD*
h c

I

loved

this

It

was boring

movie



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer *PAD*
h c

I

loved

this movie

It was boring

this movie

Tree LSTM

It was boring

this movie

was boringIt



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer *PAD*
h c

I

loved this movie

It was boring



Transition sequence example (mini-batched)
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(I ( loved ( this movie ) ) )        (It ( was boring ) )

 S   S       S    S     R R R         S    S   S      R R

stack

buffer *PAD*
h c

It was boringI loved this movie



Optional approach: Sentence + Sentiment + Syntax + Node-level sentiment
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1. one-sentence review + “global” sentiment score

2. tree structure (syntax)

3. node-level sentiment scores



Summary
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Recap
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● Bag of Words models: BOW, CBOW, Deep CBOW

○ Can encode a sentence of arbitrary length, but loses word order

● Sequence models: RNN and LSTM

○ Sensitive to word order

○ RNN has vanishing gradient problem, LSTM deals with this

○ LSTM has input, forget, and output gates that control information flow

● Tree-based models: Child-Sum & N-ary Tree LSTM

○ Generalize LSTM to tree structures 

○ Exploit compositionality, but require a parse tree



Extra
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Input
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In a TreeLSTM over a constituency tree (ours!), the leaf nodes take the corresponding word vectors 

as input



Recap: Activation functions
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Let’s use an extra vector, cell state c

Introduction: Intuition to solving the vanishing gradient

115

x1 x2 x3 x4

I I I
c1 c2 c3 c4

h1 h2 h3 h4

Adapted from Dyer, LxMLS 2016.

ct = ct-1 + f(xt) ht = tanh(ct)



ct = ct-1 + f(xt, ht-1) ht = tanh(ct)

Introduction: A small improvement

116

x1 x2 x3 x4

I I I
c1 c2 c3 c4

h1 h2 h3 h4

Adapted from Dyer, LxMLS 2016.

Better gradient propagation is 
possible when you use additive 
rather than multiplicative/highly 
non-linear recurrent dynamics



Child-Sum Tree LSTM
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useful for encoding 
dependency trees



A naive recursive NN
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Combine every two children (left and right) into a parent node p:

p = tanh( Wleftxleft + Wrightxright + b )

a bit simplistic and
does not work well for 
longer sentences

Richard Socher et al. Parsing natural scenes and natural language with recursive neural networks. ICML 2011.

xleft xright

tanh



SGD vs GD
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SGD:

for epoch in 1..E
  for each training example
    compute loss (forward pass)
    compute gradient of loss (backward)
    update parameters
  end for
end for

Gradient Descent (GD):

for epoch in 1..E
  for each training example
    compute loss (forward pass)
    compute gradient of loss (backward)
    accumulate gradient
  end for
  update parameters
end for

● fast, but high variance
● might find better optimum 

because of variance

Source: Neubig. 

Mini-batch SGD 
strikes a balance 

between these two

● slow, but more stable (not overly 
influenced by most recent training 
example)

● can get stuck in local optimum


