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Syntax and formal grammars

Why is syntax important?

◮ Last time we saw models of word sequences – n-grams

◮ Why is this insufficient?

◮ Because language has long-distance dependencies:

The computer which I had just put into the

machine room on the fifth floor is crashing.

◮ We want models that can capture these dependencies.
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Syntax and formal grammars

Syntactic parsing

Modelling syntactic structure of phrases and sentences.

Why is it useful?

◮ as a step in assigning semantics

◮ checking grammaticality

◮ applications: e.g. produce features for classification in

sentiment analysis
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Syntax and formal grammars

Generative grammar

a formally specified grammar that can generate all and only the

acceptable sentences of a natural language

Internal structure:

the big dog slept

can be bracketed

((the (big dog)) slept)

constituent a phrase whose components form a coherent unit

The internal structures are typically given labels, e.g. the big

dog is a noun phrase (NP) and slept is a verb phrase (VP)
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Syntax and formal grammars

Phrases and substitutability

◮ POS categories indicate which words are substitutable.

For e.g., substituting adjectives:

I saw a red cat

I saw a sleepy cat

◮ Phrasal categories indicate which phrases are

substitutable. For e.g., substituting noun phrases:

Dogs sleep soundly
My next-door neighbours sleep soundly

Green ideas sleep soundly

◮ Examples of phrasal categories: Noun Phrase (NP), Verb

Phrase (VP), Prepositional Phrase (PP), etc.

We want to capture substitutability at the phrasal level!
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Syntax and formal grammars

Context free grammars

1. a set of non-terminal symbols (e.g., S, VP);

2. a set of terminal symbols (i.e., the words);

3. a set of rules (productions), where the LHS (mother) is a

single non-terminal and the RHS is a sequence of one or

more non-terminal or terminal symbols (daughters);

S -> NP VP

V -> fish

4. a start symbol, conventionally S, which is a non-terminal.

Exclude empty productions, NOT e.g.:

NP -> ǫ
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Syntax and formal grammars

A simple CFG for a fragment of English

rules

S -> NP VP

VP -> VP PP

VP -> V

VP -> V NP

VP -> V VP

NP -> NP PP

PP -> P NP

lexicon

V -> can

V -> fish

NP -> fish

NP -> rivers

NP -> pools

NP -> December

NP -> Scotland

NP -> it

NP -> they

P -> in
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Syntax and formal grammars

Analyses in the simple CFG

they fish

(S (NP they) (VP (V fish)))

they can fish

(S (NP they) (VP (V can) (VP (V fish))))

(S (NP they) (VP (V can) (NP fish)))

they fish in rivers

(S (NP they) (VP (VP (V fish))

(PP (P in) (NP rivers))))
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Syntax and formal grammars

Analyses in the simple CFG
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Syntax and formal grammars

Structural ambiguity without lexical ambiguity

they fish in rivers in December

(S (NP they)

(VP (VP (VP (V fish))

(PP (P in) (NP rivers)))

(PP (P in) (NP December))))

(S (NP they)

(VP (VP (V fish))

(PP (P in) (NP (NP rivers)

(PP (P in) (NP December)))))
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Syntax and formal grammars

Structural ambiguity without lexical ambiguity

they fish in rivers in December

(S (NP they)

(VP (VP (VP (V fish))

(PP (P in) (NP rivers)))

(PP (P in) (NP December))))

(S (NP they)

(VP (VP (V fish))

(PP (P in) (NP (NP rivers)

(PP (P in) (NP December)))))
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Syntax and formal grammars

Parse trees
S

NP VP

they V VP

can VP PP

V

fish

P NP

in December

(S (NP they)

(VP (V can)

(VP (VP (V fish))

(PP (P in)

(NP December)))))
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Syntactic parsing

A simple CFG for a fragment of English

rules

S -> NP VP

VP -> VP PP

VP -> V

VP -> V NP

VP -> V VP

NP -> NP PP

PP -> P NP

lexicon

V -> can

V -> fish

NP -> fish

NP -> rivers

NP -> pools

NP -> December

NP -> Scotland

NP -> it

NP -> they

P -> in
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Syntactic parsing

Chart parsing

chart store partial results of parsing in a vector

edge representation of a rule application

Edge data structure:

[id,left_vtx, right_vtx,mother_category, dtrs]

. they . can . fish .

0 1 2 3

Fragment of chart:

id left right mother daughters

1 0 1 NP (they)

2 1 2 V (can)

3 1 2 VP (2)

4 0 2 S (1 3)
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Syntactic parsing

Bottom up parsing: example

they can fish

1:NP 2:V

3:VP
4:S

5:V

6:VP
7:VP

8:S 9:NP
10:VP

11:S
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Syntactic parsing
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Syntactic parsing

Resulting chart

. they . can . fish .

0 1 2 3

id left right mother daughters

1 0 1 NP (they)

2 1 2 V (can)

3 1 2 VP (2)

4 0 2 S (1 3)

5 2 3 V (fish)

6 2 3 VP (5)

7 1 3 VP (2 6)

8 0 3 S (1 7)

9 2 3 NP (fish)

10 1 3 VP (2 9)

11 0 3 S (1 10)
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Syntactic parsing

Output results for spanning edges

Spanning edges are 8 and 11:

Output results for 8

(S (NP they) (VP (V can) (VP (V fish))))

Output results for 11

(S (NP they) (VP (V can) (NP fish)))
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Syntactic parsing

A bottom-up chart parser

Parse:

Initialize the chart

For each word word, let from be left vtx,

to right vtx and dtrs be (word)

For each category category

lexically associated with word

Add new edge from, to, category, dtrs

Output results for all spanning edges
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Syntactic parsing

Inner function

Add new edge from, to, category, dtrs:

Put edge in chart: [id,from,to, category,dtrs]

For each rule lhs → cat1 . . . catn−1,category

Find sets of contiguous edges

[id1,from1,to1, cat1,dtrs1] . . .

[idn−1,fromn−1,from, catn−1,dtrsn−1]

(such that to1 = from2 etc)

For each set of edges,

Add new edge from1, to, lhs, (id1 . . . id)
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Syntactic parsing

Parse construction

they can fish

1:NP 2:V

3:VP
4:S

5:V

6:VP
7:VP

8:S 9:NP
10:VP

11:S

word = they, categories = {NP}

Add new edge 0, 1, NP, (they)

Matching grammar rules: {VP→V NP, PP→P NP}

No matching edges corresponding to V or P
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Syntactic parsing

Parse construction

they can fish

1:NP 2:V

3:VP
4:S

5:V

6:VP
7:VP

8:S 9:NP
10:VP

11:S

word = can, categories = {V}

Add new edge 1, 2, V, (can)

Matching grammar rules: {VP→V}

recurse on edges {(2)}
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Syntactic parsing

Parse construction

they can fish

1:NP 2:V

3:VP
4:S

5:V

6:VP
7:VP

8:S 9:NP
10:VP

11:S

Add new edge 1, 2, VP, (2)

Matching grammar rules: {S→NP VP, VP→V VP}

recurse on edges {(1,3)}
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Syntactic parsing

Parse construction

they can fish

1:NP 2:V

3:VP
4:S

5:V

6:VP
7:VP

8:S 9:NP
10:VP

11:S

Add new edge 0, 2, S, (1, 3)

No matching grammar rules for S

Matching grammar rules: {S→NP VP, VP→V VP}

No edges for V VP
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Syntactic parsing

Parse construction

they can fish

1:NP 2:V

3:VP
4:S

5:V

6:VP
7:VP

8:S 9:NP
10:VP

11:S

word = fish, categories = {V, NP}

Add new edge 2, 3, V, (fish) NB: fish as V

Matching grammar rules: {VP→V}

recurse on edges {(5)}
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Syntactic parsing

Parse construction

they can fish

1:NP 2:V

3:VP
4:S

5:V

6:VP
7:VP

8:S 9:NP
10:VP

11:S

Add new edge 2, 3, VP, (5)

Matching grammar rules: {S →NP VP, VP →V VP}

No edges match NP

recurse on edges for V VP: {(2,6)}
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Syntactic parsing

Parse construction

they can fish

1:NP 2:V

3:VP
4:S

5:V

6:VP
7:VP

8:S 9:NP
10:VP

11:S

Add new edge 1, 3, VP, (2, 6)

Matching grammar rules: {S→NP VP, VP→V VP}

recurse on edges for NP VP: {(1,7)}
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Syntactic parsing

Parse construction

they can fish

1:NP 2:V

3:VP
4:S

5:V

6:VP
7:VP

8:S 9:NP
10:VP

11:S

Add new edge 0, 3, S, (1, 7)

No matching grammar rules for S

Matching grammar rules: {S→NP VP, VP →V VP}

No edges matching V
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Syntactic parsing

Parse construction

they can fish

1:NP 2:V

3:VP
4:S

5:V

6:VP
7:VP

8:S 9:NP
10:VP

11:S

Add new edge 2, 3, NP, (fish) NB: fish as NP

Matching grammar rules: {VP→V NP, PP→P NP}

recurse on edges for V NP {(2,9)}
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Syntactic parsing

Parse construction

they can fish

1:NP 2:V

3:VP
4:S

5:V

6:VP
7:VP

8:S 9:NP
10:VP

11:S

Add new edge 1, 3, VP, (2, 9)

Matching grammar rules: {S→NP VP, VP→V VP}

recurse on edges for NP VP: {(1, 10)}
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Syntactic parsing

Parse construction

they can fish

1:NP 2:V

3:VP
4:S

5:V

6:VP
7:VP

8:S 9:NP
10:VP

11:S

Add new edge 0, 3, S, (1, 10)

No matching grammar rules for S

Matching grammar rules: {S→NP VP, VP→V VP}

No edges corresponding to V VP

Matching grammar rules: {VP→V NP, PP→P NP}

No edges corresponding to P NP



Natural Language Processing 1

Syntactic parsing

Packing

To make parsing more efficient:

◮ don’t add equivalent edges as whole new edges

◮ dtrs is a set of lists of edges (to allow for alternatives)

about to add: [id,l_vtx, right_vtx,ma_cat, dtrs]

and there is an existing edge:

[id-old,l_vtx, right_vtx,ma_cat, dtrs-old]

we simply modify the old edge to record the new dtrs:

[id-old,l_vtx, right_vtx,ma_cat, dtrs-old ∪ dtrs]

and do not recurse on it: never need to continue computation

with a packable edge.
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Syntactic parsing

Packing example

1 0 1 NP {(they)}

2 1 2 V {(can)}

3 1 2 VP {(2)}

4 0 2 S {(1 3)}

5 2 3 V {(fish)}

6 2 3 VP {(5)}

7 1 3 VP {(2 6)}

8 0 3 S {(1 7)}

9 2 3 NP {(fish)}

Instead of edge 10 1 3 VP {(2 9)}

7 1 3 VP {(2 6), (2 9)}

and we’re done
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Syntactic parsing

Packing example

they can fish

1:NP 2:V

3:VP
4:S

5:V

6:VP
7:VP

8:S 9:NP

+

Both spanning results can now be extracted from edge 8.
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Probabilistic CFG

Probabilistic Parsing

I How can we choose the correct tree for a given sentence?

I Traditional approach: grammar rules hand-written by
linguists

I constraints added to limit unlikely parses for sentences
I hand-written grammars are not robust: often fail to parse

new sentences.

I Current approach: use probabilities
I Probabilitistic CFG (PCFG)
I a CFG where each rule is augmented with a probability
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Probabilistic CFG

An Example PCFG

S → NP VP .8
S → VP .2
NP → D N .4
NP → NP PP .4
NP → PN .2
VP → V NP .7
VP → VP PP .3
PP → P NP 1

D → the .8
D → a .2
N → flight 1
PN → john .9
PN → schiphol .1
V → booked 1
P → from 1

How to compute the probability of a parse tree?
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Probabilistic CFG

Computing the probability of a parse tree

The probability of a parse tree for a given sentence:

I the product of the probabilities of all the grammar rules
used in the sentence derivation.

S

NP

PN

john

VP

V

booked

NP

D

a

N

flight

P(t) =P(S → NP VP)× P(NP → PN)× P(PN → john)×
P(VP → V NP)× P(V → booked)×
P(NP → D N)× P(D → a)× P(N → flight)

=.8× .2× .9× .7× .4× .2× 1

=.008064
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Probabilistic CFG
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Probabilistic CFG

Disambiguation with PCFGs

These probabilities can provide a criterion for disambiguation:

I i.e. a ranking over possible parses for any sentence
I we can choose the parse tree with the highest probability.
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Probabilistic CFG

Disambiguation with PCFGs

S → NP VP .8
S → VP .2
NP → D N .4
NP → NP PP .4
NP → PN .2
VP → V NP .7
VP → VP PP .3
PP → P NP 1

D → the .8
D → a .2
N → flight 1
PN → john .9
PN → schiphol .1
V → booked 1
P → from 1

John booked a flight from Schiphol

S

NP

PN

john

VP

V

booked

NP

NP

a flight

PP

from schiphol

S

NP

PN

john

VP

VP

V

booked

NP

a flight

PP

from schiphol

P(t1) = 6.4512× 10−5 P(t2) = 4.8384× 10−5
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Probabilistic CFG

Treebank PCFGs

I Treebanks: instead of paying linguists to write a grammar,
pay them to annotate real sentences with parse trees.

I This way, we implicitly get a grammar
(for CFG: read the rules off the trees)

I And we get probabilities for those rules
I We can use these probabilities to improve disambiguation
I and also speed up parsing.
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Probabilistic CFG

Estimating rule probabilities from a treebank

A treebank: a collection of sentences annotated with constituent trees

Tejaswini Deoskar Statistical Parsing

ML estimation of rule probabilities from treebank
• A treebank: a collection sentences annotated with constituent trees

• An estimated probability of a rule (maximum likelihood estimates)

• Smoothing is helpful
✦ Especially important for pre-terminal rules

4

The number of times the rule used 
in the corpus

The number of times the nonterminal X 
appears in the treebank 

An estimated probability of a rule (maximum likelihood estimates):

Tejaswini Deoskar Statistical Parsing

ML estimation of rule probabilities from treebank
• A treebank: a collection sentences annotated with constituent trees

• An estimated probability of a rule (maximum likelihood estimates)

• Smoothing is helpful
✦ Especially important for pre-terminal rules

4

The number of times the rule used 
in the corpus

The number of times the nonterminal X 
appears in the treebank 
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Dependency structure

Dependency structure

A dependency structure consists of dependency relations,
which are binary and asymmetric.

John hit the ball

A relation consists of
I a head (H) — hit
I a dependent (D) — John
I a label identifying the relation between H and D — Subject
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Dependency structure

Dependency structure

A dependency structure consists of dependency relations,
which are binary and asymmetric.

John hit the ball

A relation consists of
I a head (H) — hit
I a dependent (D) — ball
I a label identifying the relation between H and D — Object
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Dependency structure

Example dependency structure

Dependency Grammar
Dependency Parsing

Constituents vs. Dependencies
Dependency Relations
Dependency Trees

Constituents vs. Dependencies

But from a semantic point of view, the important thing about
verbs such as like is that they license two NPs:

1 an agent, found in subject position or with nominative
inflection;

2 a patient, found in object position or with accusative
inflection.

Which arguments are licensed, and which roles they play, depends
on the verb (configuration is secondary).

To account for semantic patters, we focus dependency. Depen-
dencies can be identified even in non-configurational languages.

Frank Keller Natural Language Understanding 5

Dependency Grammar
Dependency Parsing

Constituents vs. Dependencies
Dependency Relations
Dependency Trees

Dependency Structure

A dependency structure consists of dependency relations, which are
binary and asymmetric . A relation consists of:

a head (H);

a dependent (D);

a label identifying the relation between H and D.

nmod nmodnmod

obj

nmod

pmod

p
ROOT

subj

JJ             NN   VBD    JJ       NN       IN        JJ             NNS     PU

Economic   news   had    little   effect    on     financial     markets    .

[From Joakim Nivre, Dependency Grammar and Dependency Parsing.]

Frank Keller Natural Language Understanding 6

Dependency Grammar
Dependency Parsing

Constituents vs. Dependencies
Dependency Relations
Dependency Trees

Dependency Trees

Formally, the dependency structure of a sentence is a graph with
the words of the sentence as its nodes, linked by directed, labeled
edges, with the following properties:

connected: every node is related to at least one other node,
and (through transitivity) to ROOT;

single headed: every node (except ROOT) has exactly one
incoming edge (from its head);

acyclic: the graph cannot contain cycles of directed edges.

These conditions ensure that the dependency structure is a tree.

Frank Keller Natural Language Understanding 7

Dependency Grammar
Dependency Parsing

Constituents vs. Dependencies
Dependency Relations
Dependency Trees

Dependency Trees: Projectivity

We distinguish projective and non-projective dependency trees:

A dependency tree is projective wrt. a particular linear order of its
nodes if, for all edges h ! d and nodes w , w occurs between h
and d in linear order only if w is dominated by h.

I heard Cecilia teach the horses to sing

Frank Keller Natural Language Understanding 8
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Dependency structure

Dependency parsing

Output a list of dependencies between words in the sentence.

John hit the ball.

(SUBJ head=hit dep=John)
(OBJ head=hit dep=ball)
(DET head=ball dep=the)

Why is it useful?

I dependencies provide an interface to semantics
“Who did what to whom”
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Dependency structure

The cost of parsing errors...

Incorrect dependencies
(SUBJ head=hit dep=ball)
(OBJ head=hit dep=John)
(DET head=ball dep=the)
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Syntactic parsing
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