
Natural Language Processing 1

Natural Language Processing 1
Lecture 3: Morphological processing

Katia Shutova

ILLC
University of Amsterdam

4 November 2020

1 / 24



Natural Language Processing 1

Morphology and finite state techniques

Stems and affixes

◮ morpheme: the minimal information carrying unit

◮ affix: morpheme which only occurs in conjunction with

other morphemes

◮ words made up of stem (more than one for compounds)

and zero or more affixes.

e.g., dog+s, book+shop+s

◮ slither, slide, slip etc have somewhat similar meanings, but

sl- not a morpheme.

2 / 24



Natural Language Processing 1

Morphology and finite state techniques

Affixation

◮ suffix: dog +s, truth +ful

◮ prefix: un+ wise (derivational only)

◮ infix: Arabic stem k_t_b: kataba (he wrote); kotob (books)

In English: sang (stem sing): not productive

e.g., (maybe) absobloodylutely

◮ circumfix: not in English

German ge+kauf+t (stem kauf, affix ge-t)

3 / 24



Natural Language Processing 1

Morphology and finite state techniques

Productivity

productivity: whether affix applies generally, whether it applies

to new words

sing, sang, sung

ring, rang, rung

BUT: ping, pinged, pinged

So this infixation pattern is not productive:

sing, ring are irregular

4 / 24



Natural Language Processing 1

Morphology and finite state techniques

Productivity

productivity: whether affix applies generally, whether it applies

to new words

sing, sang, sung

ring, rang, rung

BUT: ping, pinged, pinged

So this infixation pattern is not productive:

sing, ring are irregular

4 / 24



Natural Language Processing 1

Morphology and finite state techniques

Inflectional morphology

◮ e.g., plural suffix +s, past participle +ed

◮ sets slots in some paradigm

e.g., tense, aspect, number, person, gender, case

◮ inflectional affixes are not combined in English

◮ generally fully productive (except irregular forms)

e.g., texted

5 / 24



Natural Language Processing 1

Morphology and finite state techniques

Derivational morphology

◮ e.g., un-, re-, anti-, -ism, -ist etc

◮ broad range of semantic possibilities, may change part of

speech

◮ indefinite combinations

e.g., antiantidisestablishmentarianism

anti-anti-dis-establish-ment-arian-ism

◮ generally semi-productive: e.g., escapee, textee, ?dropee,

?snoree, *cricketee (* and ?)

◮ zero-derivation: e.g. tango, waltz

6 / 24



Natural Language Processing 1

Morphology and finite state techniques

Guess the structure...

◮ ruined

◮ settlement

◮ inventive

◮ archive

◮ unionised

7 / 24



Natural Language Processing 1

Morphology and finite state techniques

Guess the structure...

◮ ruined

◮ settlement

◮ inventive

◮ archive

◮ unionised

7 / 24



Natural Language Processing 1

Morphology and finite state techniques

Guess the structure...

◮ ruined

◮ settlement

◮ inventive

◮ archive

◮ unionised

7 / 24



Natural Language Processing 1

Morphology and finite state techniques

Guess the structure...

◮ ruined

◮ settlement

◮ inventive

◮ archive

◮ unionised

7 / 24



Natural Language Processing 1

Morphology and finite state techniques

Guess the structure...

◮ ruined

◮ settlement

◮ inventive

◮ archive

◮ unionised

7 / 24



Natural Language Processing 1

Morphology and finite state techniques

Internal structure and ambiguity

Morpheme ambiguity: stems and affixes may be individually

ambiguous: e.g. dog (noun or verb), +s (plural or 3persg-verb)

Structural ambiguity: e.g., shorts or short -s

unionised could be union -ise -ed or un- ion -ise -ed

Bracketing: un- ion -ise -ed

◮ *((un- ion) -ise) -ed

◮ un- ((ion -ise) -ed)

8 / 24



Natural Language Processing 1

Morphology and finite state techniques

Using morphological processing in NLP

◮ compiling a full-form lexicon

◮ stemming for IR (not linguistic stem)

◮ lemmatization, i.e. morphological analysis:
◮ finding stems and affixes as a precursor to parsing (often

inflections only)

◮ generation
◮ Morphological processing may be bidirectional: i.e., parsing

and generation.

party + PLURAL <-> parties

sleep + PAST_VERB <-> slept

9 / 24



Natural Language Processing 1

Morphology and finite state techniques

Compiling a full form lexicon

10 / 24



Natural Language Processing 1

Morphology and finite state techniques

Compiling a full form lexicon

11 / 24



Natural Language Processing 1

Morphology and finite state techniques

Using morphological processing in NLP

◮ compiling a full-form lexicon

◮ stemming for IR (not linguistic stem)

◮ lemmatization, i.e. morphological analysis:
◮ finding stems and affixes as a precursor to parsing (often

inflections only)

◮ generation
◮ Morphological processing may be bidirectional: i.e., parsing

and generation.

party + PLURAL <-> parties

sleep + PAST_VERB <-> slept

12 / 24



Natural Language Processing 1

Morphology and finite state techniques

Morphological processing

Surface form mapped to stem(s) and affixes (or abstractions of

affixes):

OPTION 1 pinged / ping-ed

OPTION 2 pinged / ping PAST_VERB

pinged / ping PSP_VERB

sang / sing PAST_VERB

sung / sing PSP_VERB

13 / 24



Natural Language Processing 1

Morphology and finite state techniques

Lexical requirements for morphological processing

◮ affixes, plus the associated information conveyed by the

affix

ed PAST_VERB

ed PSP_VERB

s PLURAL_NOUN

◮ irregular forms, with associated information similar to that

for affixes

began PAST_VERB begin

begun PSP_VERB begin

◮ stems with syntactic categories

e.g. to avoid corpus being analysed as corpu -s

14 / 24



Natural Language Processing 1

Morphology and finite state techniques

Spelling rules

◮ English morphology is essentially concatenative
◮ irregular morphology — inflectional forms have to be listed

◮ regular phonological and spelling changes associated with
affixation, e.g.

◮ -s is pronounced differently with stem ending in s, x or z
◮ spelling reflects this with the addition of an e (boxes etc)

◮ in English, description is independent of particular

stems/affixes

15 / 24



Natural Language Processing 1

Morphology and finite state techniques

e-insertion
e.g. boxˆs to boxes

ε → e/







s

x

z







ˆ s

◮ map ‘underlying’ form to surface form

◮ mapping is left of the slash, context to the right

◮ notation:

position of mapping

ε empty string

ˆ affix boundary — stem ˆ affix

◮ same rule for plural and 3sg verb

◮ formalisable/implementable as a finite state transducer

16 / 24



Natural Language Processing 1

Morphology and finite state techniques

e-insertion
e.g. boxˆs to boxes

ε → e/







s

x

z







ˆ s

◮ map ‘underlying’ form to surface form

◮ mapping is left of the slash, context to the right

◮ notation:

position of mapping

ε empty string

ˆ affix boundary — stem ˆ affix

◮ same rule for plural and 3sg verb

◮ formalisable/implementable as a finite state transducer

16 / 24



Natural Language Processing 1

Morphology and finite state techniques

e-insertion
e.g. boxˆs to boxes

ε → e/







s

x

z







ˆ s

◮ map ‘underlying’ form to surface form

◮ mapping is left of the slash, context to the right

◮ notation:

position of mapping

ε empty string

ˆ affix boundary — stem ˆ affix

◮ same rule for plural and 3sg verb

◮ formalisable/implementable as a finite state transducer

16 / 24



Natural Language Processing 1

Morphology and finite state techniques

Finite state automata for recognition
day/month pairs: e.g. 12/2, 1/12 etc.

0,1,2,3 digit / 0,1 0,1,2

digit digit

1 2 3 4 5 6

◮ non-deterministic — after input of ‘2’, in state 2 and state 3.
◮ double circle indicates accept state
◮ accepts e.g., 11/3 and 3/12
◮ also accepts 37/00 — overgeneration

17 / 24



Natural Language Processing 1

Morphology and finite state techniques

e-insertion

e.g. boxˆs to boxes

ε → e/







s

x

z







ˆ s

◮ notation:

position of mapping

ε empty string

ˆ affix boundary — stem ˆ affix

18 / 24



Natural Language Processing 1

Morphology and finite state techniques

Finite state transducer

1

e : e
other : other

ε : ˆ

2

s : s

3

4

e : e
other : other

s : s
x : x
z : z e : ˆ

s : s
x : x
z : z

ε → e/







s

x

z







ˆ s

surface : underlying

c a k e s ↔ c a k e ˆ s
b o x e s ↔ b o x ˆ s

19 / 24



Natural Language Processing 1

Morphology and finite state techniques

Analysing b o x e s

1

e : e
other : other

ε : ˆ

2

s : s

3

4

e : e
other : other

s : s
x : x
z : z e : ˆ

s : s
x : x
z : z

Input: b o x e s

Accept output: b o x ˆ s

Accept output: b o x e s

Input: b o x e ǫ s
Accept output: b o x e ˆ s

20 / 24



Natural Language Processing 1

Morphology and finite state techniques

Using FSTs

◮ FSTs assume tokenization (word boundaries) and words

split into characters. One character pair per transition!

◮ Analysis: return character list with affix boundaries, so

enabling lexical lookup.

◮ Generation: input comes from stem and affix lexicons.

◮ One FST per spelling rule: either compile to big FST or run

in parallel.

◮ FSTs do not allow for internal structure:
◮ can’t model un- ion -ize -d bracketing.

21 / 24



Natural Language Processing 1

Morphology and finite state techniques

How is morphological processing implemented?

◮ rule-based methods, e.g. the Porter stemmer
◮ part of NLTK toolkit
◮ used in the practical

◮ probabilistic models for morphological segmentation

◮ neural models with character-level input

(discussed later in the course)

22 / 24



Natural Language Processing 1

Morphology and finite state techniques

Acknowledgement

Some slides were adapted from Ann Copestake and Tejaswini

Deoskar

23 / 24


	Morphology and finite state techniques

