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» as the capacity of the model increases (more clusters),
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The problem with MLE
Motivating example from Liang and Klein (2007)

» mixture of Gaussians trained via EM

K training test
log-likelihood log-likelihood
1 -364 -368
2 -204 -206
4 -82 —> -128
12 21 -147
20 86 -173

» as the capacity of the model increases (more clusters),
training likelihood strictly improves
» but what happens with test likelihood?

Example from Liang and Klein (2007): ACL tutorial on Structured Bayesian Nonparametric Models
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The problem with MLE

That's why you were told to always do model selection

» on heldout set
» preferably via cross-validation

Can you see limitations of this approach?

» availability of data
> representativeness of heldout set
» discrete optimisation: combinatorial search over models
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Conventions

» N observations
x = (r1,...,ZN)
» ith observation z; € {1,...,K}
» all but the ith observation x_;
» N cluster indicators
z=1(21,...,2N)
» ith cluster indicator z; € {1,...,C}
» all but the ith cluster assignment z_;
» Parameter vector
0={61,...,0K)

» Collection of parameter vectors
0=, . .. 00
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Mixture model

Let's assume = to be 1 of K, and z to be 1 of C

Ql=
S

» categorical likelihood

» uniform prior over mixture components, i.e.
mixing weights are fixed and uniform

> 90 ¢ Ag_1
Fori=1,...,N
Zi ~U(C)

1
Xz‘"gaz—uzi =cn~ Cat(Q(C)) ( )

What is a sensible conditional distribution X|0(¢) ~ Cat(6())?
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What makes a good conditional?

¢ =1 (the blue cluster), K =4
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Can you make any assumptions before observing data?
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Bayes rule
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Bayes rule
What does Bayes rule tell you?

likelihood prior

P PR
U= ""prgy < PAWE®) )
posterior eme

P the likelihood tells you how well a hypothesis h explains the
observed data d;

» the prior tells you how much h conforms to expectations
about what a good hypothesis looks like regardless of
observed data;

> the evidence tells you how well your model M explains the
data, i.e. P(d) is actually P(d|M)

P the posterior updates our beliefs about hypotheses in light of
observed data.
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Maximum likelihood estimation

An optimisation problem based on the (log-)likelihood function

h* = argmax P(d|h) = argmax log P(d|h) (3)
h h \—/—/L(h)

> all hypotheses are equally likely a priori;
P can be approached by coordinate ascent methods;

P local optimality guarantees;
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All the same a priori

Before data, MLE is equally happy with the hypotheses on the left
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Constraining MLE

Maximum a posteriori
h* = argmax P(d|h)P(h)
h

= argmax log P(d|h) + log P(h)
h

» perhaps fine if P(h) has a single narrow peak
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Constraining MLE

Maximum a posteriori
h* = argmax P(d|h)P(h)
h

= argmax log P(d|h) + log P(h)
h

v

perhaps fine if P(h) has a single narrow peak

> priors often indicate preference for a subset of hypotheses over
another, multiple peaks make optimisation considerably harder

> still a point estimate, teaches us very little about the overall
model (set of assumptions)
“I read before that Bayesian priors are just like regularisers, | even
know that a Gaussian prior is just Lo regularisation”
» that only covers the specification of a prior

» Bayesian modelling does not end at prior specification
you need the crucial part: posterior inference
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NLP1

Bayesian modelling
Dirichlet-Multinomial model
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A Bayesian model

Frequentist (i @ Bayesian 15} G e
N

In a Bayesian model, parameters are no different from data

P they are random variables much like data
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A Bayesian model

Frequentist (i @ Bayesian 15} G e
N

In a Bayesian model, parameters are no different from data
P they are random variables much like data
> only they are not observed

Bayesians do condition on deterministic quantities
» (3 here are called hyperparameters

» but most Bayesians leave those fixed (no search!)

We will study an example that illustrates important concepts
Dirichlet-Multinomial model

Wilker Aziz NLP1 2019
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Dirichlet distribution

A distribution over the open simplex of K-dimensional vectors
we denote the simplex by

K
AK_lz{GERI;O:Z@k:l} QRI;O (5)
k=1

QO3

Use this and this to learn more

Wilker Aziz NLP1 2019
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https://github.com/uva-slpl/nlp2/blob/gh-pages/resources/notebooks/Dirichlet.ipynb
https://en.wikipedia.org/wiki/Dirichlet_distribution

Count vector

For observations x, where x; is 1 of K
define n(®) as the K-dimensional vector such that

N

ne = Z[J}Z = k] (6)

=1
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Count vector

For observations x, where x; is 1 of K
define n(®) as the K-dimensional vector such that

N

ne = Z[l’z = k]

i=1
Example: for K =3 and N =6

X = <$1 :2,332 :3,x3 = 1,$4:2,$5 :2,.736 :3>

nx) —
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Count vector

For observations x, where x; is 1 of K
define n(®) as the K-dimensional vector such that

N

ne = Z[l’z = k]
i=1
Example: for K =3 and N =6
X = <$1 = 2,%2 = 3,%3 = 1,$4 = 2,$5 = 27«776 = 3>

n®) = (n1=1,n=3,n3=2)

Wilker Aziz NLP1 2019
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Gamma function

A generalisation of the factorial function to R

I(z) = /OOO e Lexp(—e)de

Properties
» T'(n) = (n — 1)! for positive integer n
> I'(z)=(z—-1)I'(z—-1)

Wilker Aziz NLP1 2019
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Dirchlet-Multinomial

[3

Model
6|8 ~ Dir(B)
X;|0 ~ Cat(0)

Wilker Aziz NLP1 2019
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Dirchlet-Multinomial

[)’

0|3 ~ Dix(5)
M - (5)
i|0 ~ Cat(f) fori=1,...,N

Model

Joint distribution

P(x,0|8) = P(0)P(x|) (9)
= Dir(6|8) Mult(n™|0, N)

Wilker Aziz NLP1 2019
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Multinomial likelihood
For 0 € Ag_1

P(x]6) = Mult(n®]0, N)
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Multinomial likelihood
For 6 € AK—l
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Wilker Aziz NLP1 2019

17



Multinomial likelihood
For 6 € AK—l

Wilker Aziz
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Multinomial likelihood
For 6 € AK—l

P(x]0) = Mult( <X>|a N)
H 0"

Hk 1F(nk+1 -

Hk 1”k

Example: for K =3 and N =6

0= (0, =0.2,0, =0.3,03 = 0.5)
X = <$1 :2,.2132 :3,.%'3 = 1,%4:2,1'5 :2,376 :3>

x)

n( =(n1 =1,n9 =3,n3 =2)

(...
P(x|0) = H( )9% X 63 x 02

Wilker Aziz NLP1 2019
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Dirichlet prior

For 8 € RY,

Wilker Aziz NLP1 2019
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Dirichlet prior

For 8 € RY,

Wilker Aziz NLP1 2019

Dir(]8) =

T(Zf' 1 Br)
[T T(Br)

K
x H 95’“71
k=1

||::]N

Qﬁk—l

(11)
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Dirichlet prior

For 8 € RE,
Bi) &
Dir(|3) = ZL 1 ) H o1
H 1 T(Br) 1o
B (11)
x H 95’“71

k=1

We call

ﬂk 1_ Hkrlr(ﬁk)
/AK 1k1_[1 (Z 18%)

the Dirichlet normaliser

Wilker Aziz NLP1 2019
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Posterior

P(0x, )
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Posterior

P(0]x, 8) oc P(x[0)P(0]5)

x (Zk l”}""_l Hgnk
[T D + 1

Mult (n(%) |9)
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Posterior

P(0]x, 8) oc P(x[0)P(0]5)

1) K 5 K
o Ty e + H P> k=1 Br) H ggrl
HA’:I (g + 1) 42 171 (5/)
Mult(n(¥)|6) Dir(0]5)
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Posterior

P(0]x, 8) oc P(x[0)P(0]5)

K . K
(Zk 1 Nk +1 H T \Lik=1FK) ))k) H Hﬁkfl
H/ C(ng +1) 4 171 1 ( %) kla g
Mult(n(¥)|6) Dir(0]5)

K
S
k=1
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Posteri

or

P(0]x, 8) oc P(x[0)P(0]5)

Wilker Aziz

K . K
(Zk 1 Nk + 1 H T \Lik=1FK) ))k) H Hﬁkfl
TS T+ 1) ~ T T i

K K
o [T o0 < T o0
k=1 k=1
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Posteri

or

P(0]x, 8) oc P(x[0)P(0]5)

Wilker Aziz
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(Zk 1 Nk + 1 H T \Lik=1FK) ))k) H Hﬁkfl
TS T+ 1) ~ T T i

K K
o [T o0 < T o0
k=1 k=1

O B
_ ng+Br—1
= [1%

k=1
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Posteri

or

P(0]x, 8) oc P(x[0)P(0]5)

Wilker Aziz

K . K
(Zk 1 Nk + 1 H T \Lik=1FK) ))k) H Hﬁkfl
TS T+ 1) ~ T T i

K K
o [T o0 < T o0
k=1 k=1

K
=11 Ot o Dir(9|n™)

k=1
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Posterior

P(0]x, 8) oc P(x[0)P(0]5)

Thus

Wilker Aziz

K . K
(Zk 1 Nk + 1 H L2 k=1Fk) ),L-) H Hlljkfl
/7 I]] +1 k—1 ]71,[(3]‘) k—1

K K
oS H o x JJ o
k=1

K
H gl o Dir(9)n™) + B)

K

P(0]x,8) = [T+ (12

k=1

of Dir(n() +8)

normallser
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Posterior

P(0]x, 8) oc P(x[0)P(0]5)

(Zk ]”/ +1 ﬁ 2 \Zk=1 k) /),/c) ﬁg r—1
k=1 1711<3L’> k=1

/, 11; +1

Mult(n(*)|9) Dir(0|8)
K K
o [T o0 < T o0
k=1 k=1

K
=[] 67" « Dir(6]n™ + B)
k=1

Thus

TN+ YK 80 3 grHBr—1
T T+ Br) oy

of Dir(n() +8)

P(Q‘X7 B) =

normallser
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Posterior predictive distribution

Suppose a new data point x4 = j is available

ﬂ
o)

P(zy = jlx,B) = /A P(0,zn41x,8)d0

K—-1

N1 is independent of x given 6
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Posterior predictive distribution

Suppose a new data point x4 = j is available

ﬂ
o)

P(zy = jlx,B) = /A P(0,zn41]x, 8)d0

K-1
= P(zni1 = jl0) P(6x,3) do
A ———_—\——————

likelihood posterior

z N1 is independent of x given 6

Wilker Aziz NLP1 2019
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Posterior predictive distribution (cont.)

Suppose a new data point x4 = j is available

Plaxi = jix8) = [ Ploxss = il6) P(O]x,8)do

K—1 -
likelihood posterior
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Posterior predictive distribution (cont.)

Suppose a new data point x4 = j is available

Plaxi = jix8) = [ Ploxss = il6) P(O]x,8)do

K—1 -
likelihood posterior

= / 0; x do
A
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Posterior predictive distribution (cont.)

Suppose a new data point x4 = j is available

P(zni1 =jlx,B) = /A P(zyy1 = jl0) P(0]x,3)do

likelihood posterior

:/ 9]' % (N+Zk 151@ HenkJrﬁk 1d9
A1 Hk 1F(nk+ﬁk)k 1

constant wrt 6
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Posterior predictive distribution (cont.)

Suppose a new data point x4 = j is available

P(zni1 =jlx,B) = /A P(zyy1 = jl0) P(0]x,3)do

likelihood posterior

:/ 9]' % (N+Zk 151@ HenkJrﬁk 1d9
A1 Hk 1F(nk+ﬁk)k 1

constant wrt 6
D(N + YK
A, +Zk15k)/ 0; a0
Hk:l F(nk‘i‘ﬁk) A1

constant wrt 6
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Posterior predictive distribution (cont.)

Suppose a new data point x4 = j is available

P(zni1 =jlx,B) = /A P(zyy1 = jl0) P(0]x,3)do

likelihood posterior

:/ 9]' « (N+Zk 151@ HenkJﬁBk 1d9
Ar—y Hk 1 T(ne + Br) ooy

constant wrt 6

Hszl L(nk + Br) Jak ’ ! k5 b

constant wrt 6 K 9"k+5k*1
Hk:l k
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Posterior predictive distribution (cont.)

Suppose a new data point x4 = j is available

P(zni1 =jlx,B) = /A P(zyy1 = jl0) P(0]x,3)do

likelihood posterior

:/ 9]' « (N+Zk 151@ HenkJﬁBk 1d9
Ar—y Hk 1 T(ne + Br) ooy

constant wrt 6

Hszl L(nk + Br) Jak ’ ! k5 b

constant wrt 6 K 9"k+5k*1
Hk:l k

(N . ) et B —
_ (K + D 1 Bk’) / 9]' 3185 H ekkJrﬁk 140
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Posterior predictive distribution (cont.)

Plans =jx8) = [ Plaxsi = l6) POl )do

Ag—1 -
likelihood posterior

_ F(N+ Zszl 5k) / eﬂjJrﬁj H enk+ﬁk—1d0
Hllg{zl P(nk +/8k) Ag-1 J k#j b
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Posterior predictive distribution (cont.)

Plans =jx8) = [ Plaxsi = l6) POl )do

Ag—1 -
likelihood posterior

_ P(N+ Zszl 5k) / eﬂjJrﬁj H gnk+ﬁk—1d6
Hllg{zl P(nk +/8k) Ag-1 J k#j b

Dir normaliser
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Posterior predictive distribution (cont.)

Plans =jx8) = [ Plaxsi = l6) POl )do

Ag—1 -
likelihood posterior

_ P(N+ Zé(:l 5k) / eﬂjJrﬁj H gnk+ﬂk—1d6
Hllg{zl P(nk +/8k) Ag-1 J k#j b

Dir normaliser

_ PV + 30 )
[Tr—1 T(ng + B)
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Posterior predictive distribution (cont.)

Plans =jx8) = [ Plaxsi = l6) POl )do

Ag—1 -
likelihood posterior

_ F(N+ Zszl 5k) / eﬂjJrﬁj H enk+ﬁk—1d0
Hllg{zl P(nk +/8k) Ag-1 J k#j b

Dir normaliser

_ PV + 30 ) ,
[Tr—1 T(ng + B) (N + Y4 Be+ 1)
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Posterior predictive distribution (cont.)

Plans =jx8) = [ Plaxsi = l6) POl )do

Ag—1 -
likelihood posterior

_ E(I]{V ";(anK:—i gk; /A 9?j+ﬁj H 92k+ﬁk_ld0
k=1 k k K-1 k#j
Dir normaliser
DN+ 5 Br) Ty + B+ 1) Tz Tni + Br)
SIS PO+ B TV 300 Be 1)
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Posterior predictive distribution (cont.)

Plans =jx8) = [ Plaxsi = l6) POl )do

Ag—1 -
likelihood posterior

_ F(I]{V + Yk Br) / 9?j+ﬁj TT o+
[T T(ng + Br) JAk 4 Py
Dir normaliser
L(nj + B + 1) [z T + Br)
D(N+3K B +1)
(nj + B)L(nj + Bj) Iez; I'(nk + Br)
(N + 5y Be)T(N + S5 Br)

_ (N + Zszl B
[Ths T(n + Br
TV + X By
TTr=y T(n + B

~— | — ~— [~—
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Posterior predictive distribution (cont.)

P(zya1 = j|x, B) = /A P(n 41 = j16) P(0]x, §) d

likelihood posterior

F(N + Zszl /Bk) nj+053; np+B8i—1
= 0 ] 0 a0
Hlé{zl P(nk + /Bk‘) /AK 1 J ]};[J K
Dir normaliser
_ (v + Siey Be) D(ny + B; + 1) [yp; Dk + B)
TTis: T(ni + B) D(N + Y4 B + 1)
D(N + 30 Be) (05 + 5j)T(nj + B5) Iz T (e + Br)
)
)
)

T T+ By (N3 ﬁk TN + S Br)
_ DOV + 50051 Bi) (0 + BT (ny + By) Ty T + Br)
H?:1 F(nkz + B (N + Ek 1 Bkz) (\ + Z}{\:l sigk)
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Posterior predictive distribution (cont.)

P(zya1 = j|x, B) = /A P(n 41 = j16) P(0]x, §) d

likelihood posterior

F(N + Zszl /Bk) nj+053; np+B8i—1
= 0 ] 0 a0
Hlé{zl P(nk + /Bk‘) /AK 1 J ]};[J K
Dir normaliser
_ (v + Siey Be) D(ny + B; + 1) [yp; Dk + B)
TTis: T(ni + B) D(N + Y4 B + 1)
D(N + 30 Be) (05 + 5j)T(nj + B5) Iz T (e + Br)
)
)
)

LT+ Br) (N + 2 /3k) (N + 1 B)
TN 4505 B) (ng + Bi)T(n + B) Tl T + Br)
H?:1 F(nkz + /3k (N + Ek 1 Bkz) (\ + Z}{\:l sigk)

_ ni+ B
N+ B
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Dirchlet-Multinomial (overview)

p—()—®)
N
Joint distribution

P(x,0|8) = P(0)P(x|0)
= Dir(0|8) Mult(n™® |9, N)
Posterior
P(6]x, 8) = Dir(6]n®™) + 3)
Predictive posterior
n; + B;

P(zni1 =jlx,B) = NiyE G
k=1

Wilker Aziz NLP1 2019
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Exchangeability

Random variables are called exchangeable under a model when all
permutations of the set of outcomes have the same probability
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permutations of the set of outcomes have the same probability

» in our Dirichlet-Multinomial model any re-ordering of the
observations is equally likely to occur
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Exchangeability

Random variables are called exchangeable under a model when all
permutations of the set of outcomes have the same probability

» in our Dirichlet-Multinomial model any re-ordering of the
observations is equally likely to occur

Combine that fact with the predictive posterior result

n; + B;

P(eni1 =jlx,B) = m
k=1
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Exchangeability

Random variables are called exchangeable under a model when all
permutations of the set of outcomes have the same probability

» in our Dirichlet-Multinomial model any re-ordering of the
observations is equally likely to occur

Combine that fact with the predictive posterior result

. nj + f;
Plans = jx,8) = — =" (16)
N + i B
and we can single out any observation, e.g. x;
P(Xi = j‘X,i,,@) = (17)
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Exchangeability

Random variables are called exchangeable under a model when all
permutations of the set of outcomes have the same probability

» in our Dirichlet-Multinomial model any re-ordering of the
observations is equally likely to occur

Combine that fact with the predictive posterior result

__nit B
N+ 0 Br

and we can single out any observation, e.g. x;

P($N+1 :j|X, B)

P(x; = jlx i, ) = (17)

N-1+YK 8
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Exchangeability

Random variables are called exchangeable under a model when all
permutations of the set of outcomes have the same probability

» in our Dirichlet-Multinomial model any re-ordering of the
observations is equally likely to occur

Combine that fact with the predictive posterior result

__nit B
N+ 0 Br

and we can single out any observation, e.g. x;

P($N+1 :j|X, B)

"g'x*"') + Bj
N-1+K 8

P(x; = jlx i, ) = (17)
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Summary

Friends do not let friends optimise
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Summary

Friends do not let friends optimise
» no point estimates, we use all possible model parameters
» this is called Bayesian inference, or simply, inference

» Bayesian models have memory: the posterior summarises what
we learnt from data

» If we collect more data x’, we can update the posterior,
P(0)x,%', ) = Dir(0|n®™ + n*) + g)
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Summary

Friends do not let friends optimise

>
>
>

Wilker Aziz

no point estimates, we use all possible model parameters
this is called Bayesian inference, or simply, inference

Bayesian models have memory: the posterior summarises what
we learnt from data

If we collect more data x’, we can update the posterior,
P(6]x,x', 8) = Dir(|n®) + n) + )

MLE is memoryless: there is one fixed 6, no matter how much
more data you see, # will never change

NLP1 2019 25



NLP1

Applications

Wilker Aziz
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Bayesian mixture model with categorical observations

« 1/C
(D f(or—s
N
Suppose the task is to label observations 1, ...,z with cluster
assignments 21, ..., z,.
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Bayesian mixture model with categorical observations

« 1/C

)

@‘ﬁ

Suppose the task is to label observations 1, ...,z with cluster
assignments 21, ..., z,.

=

We would need to explore our posterior p(z|x, «, [3)
but this is a very complex object
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Bayesian mixture model with categorical observations

« 1/C

)

@‘ﬁ

Suppose the task is to label observations 1, ...,z N with cluster
assignments 21, ..., z,.

=

We would need to explore our posterior p(z|x, «, [3)
but this is a very complex object

» conditioning on x induces (undirected) dependencies amongst
z and 8 — this is called moralisation in PGMs

> integrating 6 out induces (undirected) dependencies amongst
z and x — this is called variable elimination in PGMs

Wilker Aziz NLP1 2019
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Bayesian mixture model with categorical observations

« 1/C

@11+

Let's try to explore the posterior distribution one variable at a
time, that is, let's try and characterise P(z;, x;|z—i,Xx_;, a, 3)

=

This will lead to a class of approximate inference algorithms known
as Markov Chain Monte Carlo (MCMC)
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Bayesian mixture model with categorical observations

1/C

@ Note that, given 0, the ith labelled data
point is independent of other labelled

@ e dataz_;,x_;.
i

Thus, P(Zi>$iae|z—iax—i7ﬂ) = P(9|Z_1,X_i,6)P(Zi,$i‘9)

and P(z; = c,x; = klz—i,x—i, B) = [ P(2i, i, 0c|z—i, x—i, 8)d0,
due to marginal independence of . (with respect to .)
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Bayesian mixture model with categorical observations

«— 1/C

0 B
o

Wilker Aziz NLP1 2019
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Bayesian mixture model with categorical observations

Define counts based on joint assignments to x_;,z_;
«— 1/C

K
Nek = Z[zJ = c|[z; = k] Ne = Z Ne k
k=1

h J#i
‘—rﬁ
¢ g nC:[nC,la"'vnc,K]
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Bayesian mixture model with categorical observations

Define counts based on joint assignments to x_;,z_;
«— 1/C

K
Nek = Z[zJ = c|[z; = k] Ne = Z Ne k
k=1

h J#i
‘—rﬁ
¢ g nC:[nC,la"'an,K]

P(H’,’Z = kazi = C’X_i,Z_i,ec,Oé,/B)

= PO|x—i,z_;, ) P(x; =k, z = c|0) db.
Ag_1

Dir(6|6-+nc) Lxbo
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Bayesian mixture model with categorical observations

Define counts based on joint assignments to x_;,z_;
«— 1/C

K
Nek = Z[zJ = c|[z; = k] Ne = Z Ne k
k=1

h J#i
‘—rﬁ
¢ g nC:[nC,la"'an,K]

P(H’,’Z = kazi = C’X_i,Z_i,ec,Oé,/B)

= PO|x—i,z_;, ) P(x; =k, z = c|0) db.
Ag_1

Dir(6c|-+ne) X0c.k

%
_ 1 / 605 Dir(6.18 + n.)d6,
C A1
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Bayesian mixture model with categorical observations

Define counts based on joint assignments to x_;,z_;
«— 1/C

K
Nek = Z[ZJ = c|[z; = k] Ne = Z Ne k
k=1

h J#i
‘—rﬁ
¢ g nC:[nC,la"'an,K]

P(H’,’Z = kazi = C’X_i,Z_i,ec,Oé,/B)

= PO|x—i,z_;, ) P(x; =k, z = c|0) db.
Ag_1

Dir(6c|-+ne) X0c.k

%
_ 1 / 605 Dir(6.18 + n.)d6,
C A1

nc,k+/8
ne+KpB

Thus, P(z; = c|x—j,x; = k,z_;,, B)
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Mixing weights

What does it mean to have uniform prior over components?
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Mixing weights

What does it mean to have uniform prior over components?
» unlike it may seem, it does not mean to promote diversity!

Let's see whether the posterior is peaked

& x P(z|z)

x P(x|z)
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Mixing weights

What does it mean to have uniform prior over components?
» unlike it may seem, it does not mean to promote diversity!

Let's see whether the posterior is peaked

& x P(z|z)

x P(x|z)

» uniform prior leaves it up to the likelihood to control sparsity

» luckily we are promoting sparse likelihoods X |z
because 6(*) ~ Dir(3)
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Mixing weights

What does it mean to have uniform prior over components?
» unlike it may seem, it does not mean to promote diversity!

Let's see whether the posterior is peaked

& x P(z|z)

x P(x|z)

» uniform prior leaves it up to the likelihood to control sparsity

» luckily we are promoting sparse likelihoods X |z
because 6(*) ~ Dir(3)
» but P(z) has nothing to do with it!

Is there really no preference we can express about P(z)?
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Mixing weights

What does it mean to have uniform prior over components?
» unlike it may seem, it does not mean to promote diversity!

Let's see whether the posterior is peaked

& x P(z|z)

x P(x|z)

» uniform prior leaves it up to the likelihood to control sparsity

» luckily we are promoting sparse likelihoods X |z
because 6(*) ~ Dir(3)

» but P(z) has nothing to do with it!

Is there really no preference we can express about P(z)?

» what about preferring to use fewer components?
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Sparse prior over mixing weights

Say we have 10 components, how do you want to use them?

Wilker Aziz
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Bayesian mixture model - Sparse prior over mixing weights
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Bayesian mixture model - Sparse prior over mixing weights

Define counts based on joint assignments to x_;,z_;

a K
nek = [zp=dlzj =k  ne=) nex

() J#i k=1
@ g b ne = [Net,. .- NeK| t=[ni,...,nc]
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Bayesian mixture model - Sparse prior over mixing weights

Define counts based on joint assignments to x_;,z_;

a K
nek = [zp=dlzj =k  ne=) nex

() J#i k=1
@ g b ne = [Net,. .- NeK| t=[ni,...,nc]

Pz, =k, zi=cx_;,z_;,a, 3)
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Bayesian mixture model - Sparse prior over mixing weights

Define counts based on joint assignments to x_;,z_;

K
nep =Y Lz =dluy =k ne=) nek

J#i k=1
@ . ncl,...,nch] t:[nl,...,n(;]
N

P(xz: 7Z'_C|X717Z iy & 75)

— [ [ Plixi0) POz %01, 8) Plas = ko = clfe 6) dodo

Dir(¢|a+t) Dir(6.|B8+n.) PeXbc,k

Wilker Aziz NLP1 2019 33



Bayesian mixture model - Sparse prior over mixing weights

Define counts based on joint assignments to x_;,z_;

a K
nek = [zp=dlzj =k  ne=) nex

() J#i k=1
@ g b ne = [Net,. .- NeK| t=[ni,...,nc]

N

—k y %4 —C|X7“Z iy QX 75)

/ [ POl xis0) POulai x1) Plai = ko = 6, ) 606

Dir(¢|a+t) Dir(6.|8+n.) $exOc.k
- / ¢ Dir(dla + t)de x / Oc,r Dir(6|8 + nc)do.
c—1 Ag—1
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Bayesian mixture model - Sparse prior over mixing weights

Define counts based on joint assignments to x_;,z_;

a X
nek = [zp=dlzj =k  ne=) nex

() J# k=1
@B ne = [ne1,-omek]  t=[n1,... ncl

—k y %4 —C|X7“Z iy QX 75)

/ [ POl xis0) POulai x1) Plai = ko = 6, ) 606

Dir(¢|a+t) Dir(6.|8+n.) $exOc.k
- / ¢ Dir(dla + t)de x / Oc,r Dir(6|8 + nc)do.
Ac_1 A1
ne + nek + 0

_N—l—l—Caxnc—&—Kﬂ
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Bayesian HMM
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Bayesian HMM

Define counts based on joint
assignments to x_;,Z_;

Mmpe =3 [zj—1 =0b][z; = (]
i

C
my = mp.
c=1

E)—C
=)

N

NOINO
™
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Bayesian HMM

Er—CHr(Or—-

C
E—(@r—2
N, | C

P(Zi = C’X,Zfi,a,ﬁ)

Wilker Aziz NLP1 2019
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Bayesian HMM

Define counts based on joint
assignments to x_;,Z_;

Mmpe =3 [zj—1 =0b][z; = (]

C . .

JF

@O -
’ my = 2 My

p

N

Zi—1 = b

P(z; = c|x,z_;,c, 5) note that { isinz_;

Zi+l =
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Bayesian HMM

Define counts based on joint
assignments to x_;,Z_;

Mmpe =3 [zj—1 =0b][z; = (]

E)—C

NOINO
™

JF
) S
- my = mp.
c=1
Zi—1 = b ..
P(z = c|x,z_;,o,3) note that { isinz_;
R+l =

o P(zi1=b,2z = ¢, zip1 = d, v, = k|x_4,2_;,, )
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Bayesian HMM

Define counts based on joint
assignments to x_;,Z_;

e @ * Mpe = D [zj-1 = ][z = ]

c

J#i
8 C
S
c=1
zici=b . .
P(z; = c|x,z_;,c, 5) note that isinz_;
Zi+1 =

o P(zi1=b,2z = ¢, zip1 = d, v, = k|x_4,2_;,, )
mp e+ Ne g + B Meg + @

o T,
mp+Ca n.+ KB me.+ Ca
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Markov Chain Monte Carlo

We draw from the posterior P(z|x) via a Markov chain of random states
Yi,..., Y where P(yi|y<:) = P(yelye—1)
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> the transition probability from y to 3’ is coded in a matrix P
P;; corresponds to P(Y =i, Y = j)
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Markov Chain Monte Carlo

We draw from the posterior P(z|x) via a Markov chain of random states
Yi,..., Y where P(yi|y<:) = P(yelye—1)

> the transition probability from y to 3’ is coded in a matrix P
P;; corresponds to P(Y =i, Y = j)

» under certain conditions the chain converges to a stationary
distribution 7 such that Pr =7

» possible states are assignments to the variables in the model
» by defining P properly we guarantee that 7 is the true posterior

once the chain has converged each y; will be a sample from the
posterior
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Markov Chain Monte Carlo

We draw from the posterior P(z|x) via a Markov chain of random states
Yi,..., Y where P(yi|y<:) = P(yelye—1)

> the transition probability from y to 3’ is coded in a matrix P
P;; corresponds to P(Y =i, Y = j)

» under certain conditions the chain converges to a stationary
distribution 7 such that Pr =7

» possible states are assignments to the variables in the model
» by defining P properly we guarantee that 7 is the true posterior

» once the chain has converged each y; will be a sample from the
posterior

» we can design P by decomposing it Py --- Py
where each component satisfies Py (y, v )7 (y) = Pi(y', y)7(y’)
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Markov Chain Monte Carlo

We draw from the posterior P(z|x) via a Markov chain of random states
Yi,..., Y where P(yi|y<:) = P(yelye—1)

> the transition probability from y to 3’ is coded in a matrix P
P;; corresponds to P(Y =i, Y = j)

» under certain conditions the chain converges to a stationary
distribution 7 such that Pr =7

» possible states are assignments to the variables in the model
» by defining P properly we guarantee that 7 is the true posterior

once the chain has converged each y; will be a sample from the
posterior

» we can design P by decomposing it Py --- Py
where each component satisfies Py (y, v )7 (y) = Pi(y', y)7(y’)

» applying each of P in turn or choosing P at random produces a P
that satisfies the necessary conditions

Wilker Aziz NLP1 2019
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Gibbs sampler

We want to sample from P(z|x) with a Markov chain
a state y; = z®) is the t-th assignment to z
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To obtain a new state we

1. start a draft state z = z(t=1)
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Gibbs sampler

We want to sample from P(z|x) with a Markov chain
a state y; = z®) is the t-th assignment to z

To obtain a new state we

1. start a draft state z = z(t=1)

2. repeatfori=1,...,N
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Gibbs sampler

We want to sample from P(z|x) with a Markov chain
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Gibbs sampler

We want to sample from P(z|x) with a Markov chain
a state y; = z®) is the t-th assignment to z

To obtain a new state we

1. start a draft state z = z(!~1)
2. repeatfori=1,...,N
» resample Z; ~ P(z|x_;,2_;)
only variables in the Markov blanket of z; play a role
that's why this is feasible

3. after complete pass over the data we have a new state z(?)

When we have collected a large number T' of samples

> we can summarise the distribution and/or make decisions
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More in NLP

Topic modelling (Blei et al. 2003)

Unsupervised POS tagging (Goldwater and Griffiths 2007)
PCFGs (Johnson et al. 2007)

IBM model 1 and 2 (Mermer and Saraclar 2011)

Word alignments without NULL words (Schulz et al. 2016)
HMM alignments (Schulz and Aziz 2016)

vVvYvyVvVvyVvyy

Wilker Aziz NLP1 2019

37



Summary

» Friends don't let friends optimise

Wilker Aziz NLP1 2019

38



Summary

» Friends don't let friends optimise

» Bayesian modelling is not only about prior specification

Wilker Aziz NLP1 2019

38



Summary

» Friends don't let friends optimise
» Bayesian modelling is not only about prior specification

» Bayesian modelling is about uncertainty quantification

Wilker Aziz NLP1 2019

38



Summary

Friends don't let friends optimise
Bayesian modelling is not only about prior specification

Bayesian modelling is about uncertainty quantification

vvyyypy

Bayesians compare models (a set of assumptions)
not point estimates

Wilker Aziz NLP1 2019 38



Summary

Friends don't let friends optimise
Bayesian modelling is not only about prior specification

Bayesian modelling is about uncertainty quantification

vvyyypy

Bayesians compare models (a set of assumptions)
not point estimates

v

Comparing Bayesian models is easier

Wilker Aziz NLP1 2019 38



Summary

» Friends don't let friends optimise
» Bayesian modelling is not only about prior specification
» Bayesian modelling is about uncertainty quantification
» Bayesians compare models (a set of assumptions)

not point estimates
» Comparing Bayesian models is easier
» Bayesian modelling requires some maths ;)

Wilker Aziz NLP1 2019 38



Summary

» Friends don't let friends optimise
» Bayesian modelling is not only about prior specification
» Bayesian modelling is about uncertainty quantification
» Bayesians compare models (a set of assumptions)

not point estimates
» Comparing Bayesian models is easier
» Bayesian modelling requires some maths ;)

» Some families enjoy analytically available posteriors

Wilker Aziz NLP1 2019 38



Summary

vvyyypy

vvyyypwy

Wilker Aziz

Friends don't let friends optimise
Bayesian modelling is not only about prior specification
Bayesian modelling is about uncertainty quantification

Bayesians compare models (a set of assumptions)
not point estimates

Comparing Bayesian models is easier
Bayesian modelling requires some maths ;)
Some families enjoy analytically available posteriors

Inference can be done by simulation (MCMC)

NLP1 2019 38



Summary

vvyyypy

vvyyypwy

Wilker Aziz

Friends don't let friends optimise
Bayesian modelling is not only about prior specification
Bayesian modelling is about uncertainty quantification

Bayesians compare models (a set of assumptions)
not point estimates

Comparing Bayesian models is easier
Bayesian modelling requires some maths ;)
Some families enjoy analytically available posteriors

Inference can be done by simulation (MCMC)

NLP1 2019 38



Beyond

For more on latent variable modelling, especially with structured
data

> take NLP2

» though most of it will be frequentist (but for very good
reasons!)

For more on Bayesian modelling, approximate inference, and
probabilistic modelling with neural networks

> take DLANLP

» though MCMC will not be the method of choice, instead we
will look into variational inference

» and we will need to count on optimisation =0

» though with a nice twist ;)
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