Natural Language Processing 1 Live Q & A: Semantics

Katia Shutova

ILLC University of Amsterdam

25 November 2020

1/16

Characteristic model

- Weights given to the vector components express how characteristic a given context is for word w.
- Pointwise Mutual Information (PMI)

$$PMI(w,c) = \log \frac{P(w,c)}{P(w)P(c)} = \log \frac{P(w)P(c|w)}{P(w)P(c)} = \log \frac{P(c|w)}{P(c)}$$
$$P(c) = \frac{f(c)}{\sum_{k} f(c_{k})}, \quad P(c|w) = \frac{f(w,c)}{f(w)},$$
$$PMI(w,c) = \log \frac{f(w,c)\sum_{k} f(c_{k})}{f(w)f(c)}$$

f(w, c): frequency of word w in context cf(w): frequency of word w in all contexts f(c): frequency of context c

Our reference text

Douglas Adams, Mostly harmless

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

 Example: Produce distributions using a word window, PMI-based model

The semantic space

Douglas Adams, Mostly harmless

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

- Assume only keep open-class words.
- Dimensions:

difference	impossible	thing
get	major	turns
go	possibly	usually
goes	repair	wrong

(日)

Frequency counts...

Douglas Adams, Mostly harmless

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

Counts:

difference
get 1
go 3
goes 1

1

impossible 1 major 1 possibly 2 repair 1 thing 3 turns 1 usually 1 wrong 4

Conversion into 5-word windows...

Douglas Adams, Mostly harmless

The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair.

- ▶ Ø Ø **the** major difference
- ▶ Ø the major difference between
- the major difference between a
- major difference between a thing

Distribution for *wrong*

Douglas Adams, *Mostly harmless*

The major difference between a thing that [might go wrong and a) thing that cannot [possibly go wrong is that] when a thing that cannot [possibly go [wrong goes wrong] it usually] turns out to be impossible to get at or repair.

Distribution (frequencies):

difference 0	impossible 0
get 0	major 0
go 3	possibly 2
goes 2	repair 0

thing 0 turns 0 usually 1 wrong 2

Distribution for wrong

Overall word frequency counts in the corpus:

difference 1	impossible 1	thing 3
get 1	major 1	turns 1
go 3	possibly 2	usually 1
goes 1	repair 1	wrong 4

Contexts for wrong (frequencies):

difference 0	impossible 0	thing 0
get 0	major 0	turns 0
go 3	possibly 2	usually ⁻
goes 2	repair 0	wrong 2

PMI of wrong (w) and usually (c)

$$PMI(w,c) = \log \frac{f(w,c) \sum_{k} f(c_{k})}{f(w)f(c)} = \log \frac{1 * 20}{4 * 1} = \log 5 \approx 0.70$$

(日)

Distribution for wrong

Douglas Adams, Mostly harmless

The major difference between a thing that [might go wrong and a] thing that cannot [possibly go wrong is that] when a thing that cannot [possibly go [wrong goes wrong] it usually] turns out to be impossible to get at or repair.

Distribution (PPMIs):

difference 0 get 0 go 0.70 goes 1 impossible 0 major 0 possibly 0.70 repair 0 thing 0 turns 0 usually 0.70 wrong 0.40

Question 1: Clustering nouns

Question 1: Clustering nouns

Question 2: Modelling meaning change

Imagine that you are given a dataset of historical texts (1860-2020). It contains 5 parts each covering a particular time period. This type of data captures how language evolves.

How could you use **distributional semantics** or **word embeddings** to model change in word meaning over time?

Question(s) 3: Discussion

- How are the following tasks / methods affected by the differences in genre? Which of the tasks is more sensitive to this difference and why?
 - n-gram language modelling
 - PoS tagging
 - probabilistic syntactic parsing
 - distributional semantics and word embeddings
- 2. For the challenges and applications we discussed in Lecture 1, which problems can the above methods solve?

Question 4: Lexicon vs BOW

Discuss the similarities and differences between the lexicon-based approach to sentiment classification you saw in Practical 1 and the BOW approach of Practical 2.

Acknowledgement

Some slides were adapted from Aurelie Herbelot

・<
・<
・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・